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Abstract We present a novel approach that minimizes the
power consumption of embedded core-based systemsthrough hard-
ware/software partitioning. Our approach is based on the idea of
mapping clusters of operations/instructions to a core that yields
a high utilization rate of the involved resources (ALUs, multipli-
ers, shifters,� � �) and thus minimizing power consumption. Our ap-
proach iscomprehensivesince it takes into consideration thepower
consumption of a whole embedded system comprising a micropro-
cessor core, application specific (ASIC) core(s), cache cores and
a memory core. We report high reductions of power consumption
between 35% and 94% at the cost of a relatively small additional
hardware overhead of less than 16k cellswhilemaintaining or even
slightly increasing theperformancecompared to the initial design.

1 Int roduction
Minimizing power consumption of embedded systems is a cru-

cial task. Onereason is that ahigh power consumption may destroy
integrated circuits through overheating. Another reason is that mo-
bile computing devices (like cell phones, PDAs, digital cameras
etc.) draw their current from batteries, thus limiting the amount
of energy that can be consumed between two re-charging phases.
Hence, minimizing thepower consumption of thosesystemsmeans
to increase the device’s ”mobility” – an important factor for a pur-
chase decision of such device. Due to cost and power reduction,
most of those systems are integrated onto one single chip (SOC:
System–On–a–Chip). This ispossible through today’s featuresizes
of 0:18� that allow to integrate more than 100Mio. transistors on
a single chip1. In 2001 even larger systems of up to 400Mio. tran-
sistors may be integrated onto a single chip [2]. To cope with this
complexity, state-of-the-art design methodology deployed is core-
based system design[1]: the designer composes a system of cores
i.e. system components like, for example, an MPEG encoder en-
gine, a microprocessor core (short:�P core), peripherals etc. But
still, the designer has a high degree of freedom to optimize her/his
design according to the related design constraints since cores are
available in different forms: as ”hard” , ”firm” or ”soft” versions
(for a more detailed introduction of core-based design, please refer
to [3]). Whereas in the case of a hard core all design steps down
to layout and routing have already been completed, a soft core is
highly flexible since it is a structural or even behavioral descrip-
tion of the core’s functionality. Hence, after purchasing a soft core
in form of a behavioral description, the designer may still decide
whether to implement the core’s functionality completely asa soft-
ware program (running on a�P core) or as a hard-wired hardware
(ASIC core). Or, thedesigner may partition thecore’s functionality
between those (hardware and software) parts.

We present a novel approach that deploys a hardware/software
partitioning methodology to minimize the power consumption of a
whole system (�P core and instruction cache and data cache and
main memory and application specific cores (ASIC cores) like, for

1Due to the design gap [1] current SOCs hardly exceed 10Mio.
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example, MPEG, FFT etc. However, here we focus on the low
power hw/sw partitioning method only but use our framework to
estimate and optimize the power consumption of the other cores
that are not subject to hw/sw partitioning (like the main memory,
the caches, etc.). But note that those other cores have to be adapted
efficiently (e.g. size of memory, size of caches, cache policy etc.)
according to the particular hw/sw partitioning chosen.2

The rest of the paper isstructured as follows: the following section
gives an overview of related research while section 3 explains step
by step the algorithms of our approach starting with a motivational
example. Afterwards, in section 3.5 our whole design flow is intro-
duced. Conducted experiments and obtained results are presented
in section 4while section 5gives a conclusion.

2 Related Work
Hardware/software partitioning is a well-established design

methodology with the goal to increase the performance of a sys-
tem as described in approaches like [4, 5, 6, 7, 8, 9]. These and
many other approaches’ objective is to meet performance con-
straints while keeping the system cost (e.g. total chip area) as low
as possible. But none of them provide power related optimization
and estimation strategies.
Power optimization of software programs through analysis of en-
ergy consumption during the execution of single instructions has
been conducted in [12]. In fact these basic investigations and re-
sults are one basis for our partitioning approach. In [13] the power
consumption of high-performance microprocessors hasbeen inves-
tigated and specific software synthesis algorithms have been de-
rived to minimize for low power. The work reported in [18] deals
with an architectural–oriented power minimization approach.
Algorithmic related power investigations and optimizations have
been published by Ong et al. who showed that thepower consump-
tion may drastically depend on the algorithm deployed for a spe-
cific functionality. A power and performance simulation tool that
can beused to conduct architecture-level optimizationshasbeen in-
troduced by Sato et al. [15].
In [11] a task-level co-design methodology is introduced that opti-
mizes for power consumption and performance. The influence of
caches is not taken into consideration. Furthermore, the procedure
for task allocation is based on estimations for an average power
consumption of an processing element rather than assuming, for
example, data-dependent power consumption that may vary from
clock cycle to clock cycle. The approach described in [10] uses
a multiple-voltage power supply to minimize system-power con-
sumption.

Our approach is the first comprehensive system-level power op-
timization approach that deploys hardware/software partitioning
based on a fine-grained (instruction/operation-level) power estima-
tion analysis while yielding high energy savings between 35% to
94%.

3 Low Power Partitionin g Approach
The architecture of a system we apply our methodology to con-

sists of a �P core, a set of standard cores (main memory, caches
etc.) and a set of application specific cores. Our goal is to partition

2Thisisbecause— in caseof thecache— theaccesspattern may change
when a different hw/sw partition is used. Hence, power consumption is
likely to differ.
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a system (in the following we will simply talk of anapplication) ap-
plication between the�P core and the application specific core(s)
in order to minimize the total power consumption.
3.1 Motivational Example and Basic Idea

During the execution of a program on a�P core different hard-
ware resources within this core are invoked according to the in-
struction executed at a specific point in time. Assume, for example,
an add instruction is executed that invokes the resourceALU and
Register. A multiply instruction uses the resourcesMultiplier and
Register. A moveinstruction might only use the resourceRegister
etc. Conversely, we can argue: during the execution of theadd in-
struction the multiplier is not used; during execution of themove
instruction neither theALU nor theMultiplier is used etc.3 In case
the processor does not feature the technique of gated clocks to shut
down all non-used resources clock cycle per clock cycle4, those
non actively used resources will still consume energy since the ac-
cording circuits continue to switch. We denote to this situation as
” the circuits are not actively used”. Accordingly, ”the circuits are
actively used” when theare invoked at that time by an instruction.
For each resourcersi of all resourcesRS within a core, we define
a utilization rate:

urs =
Nrs
act used

Ntotal

(1)

whereNrs
act used is the number of cycles resourcers is actively

used andNtotal is the number of all cycles it takes to execute the
whole application. We define the ”wasted energy” within a core
i.e. the energy that is consumed by resources during times frames
where those resources are not actively used, as

E
core
non act used =

X

rsi2RS

(1� ursi) � P
rsi
av � Tapp (2)

whereP rsi
av is the average power that is consumed by the particular

resource andTapp is the execution time of the whole application
when executed entirely by this core. Minimizing the total energy
consumption can be achieved by minimizingEcore

non act used. Our
solution is to deploy an additional core for that purpose i.e. to par-
tition the functionality that was formerly solely performed by the
original core, to a new (to be specified) application specific core
and in parts to run it on the initial core such that

NcoreX

i=1

(E
corei

non act used +E
corei

act used) � E
initial core (3)

Whenever one of the coresi; � � � ; Ncore is performing, all the other
cores are shut down (as far as they are not used, of course), thus
consumingno energy. Equation 3 is most likely fulfilled when the
individual resource utilization rate

U
core
R =

1

NR

�

X

rs2RS

ursi (4)

of each core is as high as possible (note: in the ideal case it would be
1). There,NR gives the number of all resources that are part of that
core. We use the valuesUcore

R of all participating cores (i.e. those
that are subject to partitioning) to determine whether a partition of
an application is advantageous in terms of power consumption or
not.
At this point one could argue that we better shut down the indi-
vidual resourceswithin each core rather than deploying additional
cores to minimize energy. This is because we suppose that a state–
of–the–art core based design techniques are used as described in the
introduction. This implies that the designer’s task is to compose a
system of cores they can buy from a vendor rather than modifying
a complex core like a�P core.
Hence, our methodology allows to use core-based design tech-
niques and minimizing energy consumptionwithout modifying

3These are examples for demonstration purposes only. However, this
might not apply in this simple form to a particular processor.

4This is actually the case for most today’s processors deployed in em-
bedded systems. An example is the LSI SPARCLite processor core.

complex standard cores. Whereas the previously described ba-
sic idea was formulated more general, the following implemen-
tation of our core/core partitioning algorithms5 is based on hard-
ware/software partitioning between one�P core and an application
specific core (ASIC core).
3.2 The Partitioning Process at a Glance

This section gives an overview of our low power partitioning
approach in coarse steps. It is based on the idea that an applica-
tion specific hardware (we call it in the followingASIC core) can
— under specific circumstances — achieve a higher utilization rate
Ucore
R than a standard (programmable) processor core (in the fol-

lowing we refer to it as�P core) as demonstrated in the examples
in the previous sections.

The input to the partitioning process is a behavioral description
of an application that is subject to a core/core partition between the
ASIC core and the�P core. The following descriptions refer to
the pseudo code in Fig. 16. Step 1 derives a graphG = fV; Eg
from that description. There,V is the set of all nodes (representing
operations) andE is the set of all edges connecting them.
Using this graph representation, step 2 performs a decomposition of
G in so-calledcluster. A cluster in our definition is a set of opera-
tions which represents code segments like nested loops, if-then-else
constructs, functions etc. The decomposition algorithm is not de-
scribed here because it is not key to our approach. Decomposition is
done by structural information of the initial behavioral description
solely. An important reason whether the implementation of a cluster
on an ASIC core might lead to a reduction in energy consumption is
given by the additional amount of (energy consuming) bus transfers.
This is a very important issue for high-bus traffic, data-oriented ap-
plications we are focusing on. The according calculation is done
in lines 3 and 4. Due to the importance, the separate section 3.3 is
dedicated to that issue. Line 5 performs a pre-selection of clusters
i.e. it preserves only those clusters for a possible partitioning that
are expected to yield high energy savings based on the bus traffic
calculation. Here, the designer has a possibility of interaction by
specifying different constraints like, for example, the total number
of clustersNc

max to be pre-selected. Please note that it is necessary
to reduce the number of all clusters since the following steps 6 to
12 are performed forall remaining clusters.
In line 7 a loop is started for allsets of resourceswhere the set
of different resource setsRS is specified by the designer. The de-
signer tells the partitioning algorithm how much hardware (#ALUs,
#multipliers, #shifters,� � �,) they are willing to spend for the imple-
mentation of an ASIC core. The different sets specified are based
on reference designs i.e. similar designs from past projects. Due to
our design praxis 3 to 5 sets are given, depending on the complex-
ity of an application. Afterwards, in line 8 a simple list schedule is
performed on the current cluster in order to prepare the following
step. That step is one major part of the work presented here: the
computation ofUcore

R (line 9). There it is tested whether a candi-
date cluster can yield a better utilization rate on an ASIC core or on
a�P core. Due to the complexity of calculatingUcore

R , a detailed
description is given the a separate section 3.4. In case a better uti-
lization rate is possible, a rough estimation on expected energy sav-
ings is performed (lines 11 and 12). Note that the energy estimate
of the ASIC core is based on the utilization rate. For each resource
rsi of the whole sets of resourcesRS (as discussed above), an av-
erage power consumptionP rsi

av is assumed7. Nrsi
cyc is the number

of cycles resourcersi is actively used whereasT rsi
cyc gives the min-

imum cycle time the resource can run at. The energy consumed by
the�P core is obtained by using our instruction set energy simu-
lation tool (it will be explained in some more detail in section 3.5).
The objective functionOF of the partitioning process is defined as
a superposition of the normalized total energy consumption and ad-
ditional hardware effort we have to spend. Please note thatErest

5Please note that we sometimes use the termcore/core partitioningand
sometimes the termhardware/software partitioning. Through our defini-
tion, both terms have the same meaning. But according to the specific con-
text the one or the other term is actually used.

6Please note that we do not use ”f” and ”g” to indicate the scope of
validity of an If statement or a loop. Rather than that we indicate it by
aligning to columns accordingly.

7The according data is derived by means of the CMOS6 library that is
used later on for gate-level energy calculation as well.
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The Low Power Partition Process
1) Build a graphG = fV; Eg
2) C = decompose into cluster(fV;Eg)
3) For All clusterci 2 C
4) calculate:Eci

Trans;�Pcore$ASICcore

5) C = pre� select(C;N
ci
max)

6) For All cluster ci 2 C
7) For All rsi 2 RS
8) do list schedule(ci; rsi)
9) If (Ucore

R > Ucore
�P )

10) Then
11) Ecore

R = Ucore
R �

P
rsi2RS

(P
rsi
av �N

rsi
cyc � T

rsi
cyc )

12) Ecore
�P = Ecore

�P;initial �Ecore
�P;ci

13) OF = F �
Ecore

R
+Ecore

�P
+Erest

E0
+ : : :

14) Synthesize a core with a min. OF value

15) Estimate energy (gate-level) and comp. energy savings

Figure 1: Pseudo code of our partitioning algorithm

gives the energy consumption of all other cores (instruction cache,
data cache, main memory, bus).E0 is provided for the purpose
of normalization only. Finally,F is a factor given by the designer
to balance the objective function between energy consumption and
possible other design constraints.F is heavily dependent on the de-
sign constraints as well as on the application itself. For the partition
that yields the best value of the objective function, the steps in lines
14 and 15 are executed: the synthesis and the following gate-level
energy estimation. These two steps are described during introduc-
tion of the whole design flow in section 3.5.

As already mentioned, the following two sections 3.3 and 3.4 are
dedicated to a closer description of the pre-selection criteria for a
cluster andUcore

R , respectively.

3.3 Determining the Pre-Selection Criteria of a
Cluster

The pre-selection algorithm of clusters is based on an estima-
tion for energy consumption of clusters due the additional traffic
via the bus architecture. When a hardware/software partition of an
application between a�P core and an ASIC core is deployed, the
following additional bus traffic — based on the architecture shown
in Fig. 2 a) where two cores communicate via a shared memory —
is implied:

a)

Main
Memory

uP
core

ASIC
core

...

...

...

Bus

a)
b)

c)d)

b)

cluster

cluster

cluster

. . .
. . .

} ic

predC

ic

succC

ic

1−ic

1+ic

}
}

Figure 2: a) Bus transfer scheme b) nomenclature of algorithm to
estimate those transfers; a cluster can either be mapped to ”�P
Core” or to ”ASIC Core”

a) When the�P core arrives at a point where it ”calls” the

ASIC core, then it is depositing data or references to that
data in the memory such that it can be accessed by the
ASIC core for subsequent use.

b) Once the ASIC core starts it’s operation it will access
i.e. download the data or references to it from the mem-
ory.

c) After the ASIC core has finished it’s job some data might
be used by the�P core to continue execution. Therefore
the ASIC core is depositing the according data or refer-
ences to it in the main memory.

d) Finally, the�P core reads data back from the memory.

The amount of transfers described in b) and c) occur in any case,
no matter whether there is a�P core/ASIC core partitioning or
not. Hence, we do not account for those in the following algorithm
that is supposed to be the calculation of anadditional (i.e. due to
partitioning only) energy effort that would have to be spend. So,
the pseudo code in Fig. 1 shows the algorithm that calculates the
according necessary part of energy consumption due to core/core
partitioning.

Computing the energy related to additional bus transfers

1) Number of bus transfers between�P core and memory
N
ci
Trans;�Pcore!mem = jgen

�
C
ci
pred

�
\ use [ci] j

2) Take into consideration synergetic effects:
If

(implemented in ASIC core(ci�1)))
Then

N
ci
Trans;�Pcore!mem = T

ci
Trans;�Pcore!mem �

jgen [ci�1] \ use [ci] j

3) Number of bus transfers betw. ASIC core and memory
N
ci
Trans;ASICcore!mem = jgen [ci] \ use [C

ci
succ] j

4) Take into consideration synergetic effects:
If

(implemented in ASIC core(ci+1)
Then

NTrans;ASICcore!mem = NTrans;ASICcore!mem �

jgen [ci] \ use [ci+1] j

5) Total energy:

E
ci
Trans;�Pcore$ASICcore = (N

ci
Trans;�Pcore!mem +

N
ci
Trans;ASICcore!mem)�

Ebus read=write

Figure 3: Pseudo code of the algorithm to calculate energy of bus-
transfer in order to determine the pre-selection of cluster

The algorithm is based on the conventions shown in Fig. 2 b).
There, each node represents a cluster. The arcs are indicating the
direction of the control flow. The current cluster is denoted asci
whereas the previous one is drawn asci�1 and the succeeding one
is given asci+1. Furthermore, we defineCci

pred to representall clus-
ters precedingci Similarly,Cci

succ combinesall clusters succeeding
ci. Step 1 computes the number of all transfers from the�P core
to the memory. Apparently, only data has to be transferred that is
generated8 in all clusters preceding the current oneandthat isused
in the current one (i.e. that one that is supposed to be implemented
on the ASIC core). Step 2 tests whether the preceding cluster might
probably be already part of the ASIC core such that the estimation
can take that into account accordingly. The estimation of commu-

8We usegen [� � �] anduse [� � �] as it is defined in [16].
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nication effort for the ASIC core (steps 3 and 4) follows the same
principle as described steps 1 and 2. Finally, the total amount of en-
ergy due to core/core partitioning is calculated in 5) using an energy
amountEbus read=write for a bus access9.

3.4 Determining the Utilization Rate
Now, since a scheduling has been performed, we can compute

the resource utilization rateUcore
R of a core. The following def-

initions hold: CS is the set of all control steps (result of the list
schedule) andcsi is the denotation of one individual control step
within CS. Furthermore,Oc is the set of all operations within a
clusterc whereasoi;c is an operation withinOc that is scheduled
into control stepi. An operation can be be mapped to one of the
D resource types inRS = frs1; : : : ; rsDg.10. Please note that
each type� of a resourcers — or short,rs� — can have several
instances. With these definitions we can discuss the algorithm in
Fig. 4 that is given in pseudo code.

Computing Ucore
R andGEQRS

1) InitializeGlob RSList[][][]
2) For All csi 2 CS
3) InitializeLoc RSList[][]
4) For All oi;c 2 Oc

5) Build upSortedRSList[]
6) rs� := SortedRSList[0]
7) For All elements2 SortedRSList[]
8) rs� := current resource type ofSortedRSList[]
9) If #(rs�)rs�2Glob RS List[csi][][] >

10) #(rs�)rs�2Loc RS List[][]
11) Then
12) Update #(rs�) in Loc RSList[rs�][]

13) continue with 4)

14) Update #(rs�) in Loc RSList[rs�][]

15) UpdateGlob RSList[csi][][] with Loc RSList[][]

16) InitializeGEQRS

17) For All rs� 2 Glob RSList[][][]

18) GEQRS := GEQRS +#(rs�)�GEQ(rs�)

19) For All csi 2 CS

20) For All rsi 2 RS

21) For All instancesis

22) If (Glob RSList[csi][rsi][ is]== 1)

23) Then (util[rsi][is] = util[rsi][is] + #ex cycs)

24) U
core
R = 1

Nc
cyc

�
P

rsi2RS
( 1

Nis

�
P

is
)ur[rsi][is]

Figure 4: Pseudo code of our algorithm to compute the utilization
rateUcore

R and the hardware effortGEQRS of a cluster

At the beginning aglobal resource list GlobRSList[][][] is de-
fined. The first index indicates the control stepcsi, the second
stands for the resource typers� while the third is reserved for a
specific instance of that resource type. An entry can be either a ”1”
or a ”0”. For example,Glob RSList[34][5][2]=1 means that during
control step 34 instance ”2” of resource type ”5” is used. Accord-
ingly, ”0” means that is not used. The encoding of the existence
of a module type is accomplished by providing or not providing an
entry in Glob RSList[][][] 11. Line 2 starts a loop for all control
stepscsi and in line 3 a local resource listLoc RSList[][] is ini-
tialized. It has the same structure as the global resource list except
that it is used within one control step only. Line 4 starts a loop
for all operators within a control step. A sorted resource list is de-

9Please note thatread andwrite operations imply different amounts of
energy. Due to lack of space a detailed description ofEbus read=write is
not given here.
10Examples for a resource type are anALU, ashifter, amultiplier etc.
11This is possible since the implementation ofGlob RSList[][][] is a

chained list.

fined in line 5. It contains all resources that could execute operator
oi;c. It is sorted according to the increasing size of a resource12.
An initial resource is selected in line 6. In the following lines 9 to
13 all possible resource types are tested whether they are instanti-
ated in a previous control step. If this is true, that resource type is
assigned to the current operator, an according entry is made in the
local resource list and a new operator is chosen. In the other case
the searching process through the local resource list continues until
an already instantiated instance is found that is not used during the
current control step. In case the search did not succeed, the first13

resource is assigned to the current operator and an according en-
try is made (line14). When all operators within a control step have
been taken care of, the global resource list is enhanced by that many
instances of a resource as indicated by the local resource list (line
15).

As a result, the global resource list contains the assignment of
all operators to resources for all control steps. We can use this in-
formation to compute the according hardware effortGEQcore

R in
lines 16 to 18 where#(rs�) gives the number of resources of type
� andGEQ(rs�) is the hardware effort (i.e.gate equivalents) of
an according resource type.
The final computation of theutilization rateis performed in line 24.
Before, in lines 19 to 23 a list is created that gives information about
how often each instance of each resource is used within all control
steps. Note that#ex cycs � #ex times is the number of cycles
it takes to execute an operation on that resource multiplied by the
number of times the according control step is actually invoked.14

Finally, we can computeUcore
R in line 24. Please note thatNc

cyc is
the number of cycles it takes to execute the whole cluster.
As a summary, in this section we have computedUcore

R that gives
the average utilization rate of all resources deployed within a candi-
date core. As we have seen in section 3.2,Ucore

R is actually used to
determine whether this might lead to an advantageous implementa-
tion of a core in terms of energy consumption or not.
Also note that all resources contribute toUcore

R in the same way,
no matter whether they are large or small (i.e. though they may
actually consume more or less energy). This is because our exper-
iments have shown that an according distinction does not result in
better partitions though the individual values ofUcore

R aredifferent.
Reason is that therelativevalues ofUcore

R of different clusters are
actually responsible for deciding on an energy efficient core/core
partition.

3.5 Design Flow
The whole design flow of our low power partitioning methodol-

ogy is introduced through Fig. 5. Please note that those parts that
are surrounded by dashed lines are either a mixture of standard in-
house and commercial tools (as it is the case for the block ”HW
Synthesis”) or that it refers to work that has already been published
elsewhere15 (as it is the case for the block we call in this paper
”Core Energy Estimation”). All other parts are those that are new
and subject to explanation in this paper.
The design flow starts with the box ”Application” where an appli-
cation in a behavioral description is given. This might be a self-
coded application or an IP core16 purchased from a vendor. Then
the application is divided into clusters as described section 3.2 after
an internal graph representation has been build up. Preferred clus-
ters are pre-selected by the criteria that is described in section 3.3.
Next step is a list schedule that is performed for each remaining
cluster.17 such that the utilization rateUR

core using the algorithm in
section 3.4 can be computed. Those cluster(s) that yield a higher
utilization rate compared to the implementation of a�P coreand
that yield the highest core of the objective function, are provided
to the hardware synthesis flow. This block starts with a behavioral

12This is for the computation of the hardware effort of the final core only.
13Note that the list is sorted. So, the first resource means the smallest and

therefore the most energy efficient one.
14We obtain#ex times through profiling and#ex cycs through the

CMOS6 technology library.
15Please note that we cannot give a reference here.
16IP stands forIntellectual Property.
17Please note that the flow in Fig. 5 is simplified i.e. it does not feature all

arcs representing the loops in the according algorithms.
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Figure 5: Design flow of our low–power hardware/software partitioning methodology

compilation tool, followed by an RTL simulator18 to retrieve the
number of cycles it needs to execute the cluster, an RTL logic syn-
thesis tool using a CMOS6 library and finally the gate-level sim-
ulation tool with attached switching energy calculation. Note that
these steps, especially the last one, are the most time-consuming
ones. Hence, our partitioning algorithm has to reduce the number
of clusters to those that are most likely to gain an energy saving.
The other application parts that are intended to run on the�P are
fed into the ”Core Energy Estimation” block. An instruction set
simulator tool (ISS) is used in the next step. Attached to the ISS is
the facility to calculate the energy consumption depending on the
instruction executed at a point in time (the same methodology as
in [12] is used). Analytical models for main memory energy con-
sumption and caches are fed with the output of a cache profiler that
itself is preceded by a trace tool (both: [17]).
Finally, the total energy consumption is calculated and it is tested
whether the total system energy consumption could be reduced or
not. If ”not” then the whole procedure can be repeated and the de-
signer will make use of his/her interaction possibilities to provide
the partitioning algorithms with different parameters. Please note
that the designer does have manifold possibilities of interaction like
defining several sets of resources, defining constraints like the total
number of clusters to be selected or to modify the objective function
according to the peculiarities of an application.

4 Conducted Experiments and Results
The experiments are based on our energy instruction simulation

tool for a SPARCLite�P core, analytical models for main mem-
ory, instruction cache and data cache based on parameters (feature
sizes, capacitances) of a0:8� CMOS process. We investigated
the following DSP–oriented applications: an algorithm for com-
puting 3D vectors of a motion picture (”3d”), an MPEGII encoder
(”MPG”), a complex chroma–key algorithm (”ckey”), a smoothing
algorithm for digital images (”digs”), an engine control algorithm

18In order to keep the Fig. 5 of the design flow as clear as possible we did
not draw the inputs of input stimuli pattern at various points in the design
flow.

(”engine”) and a trick animation algorithm (”trick”). The applica-
tions range in size from about 5kB to 230kB of C code. Two rows
are dedicated to each application: the initial (non-partitioned) ”I”
implementation and the partitioned ”P” implementation. In each
case the contribution of each involved core in terms of energy con-
sumption is given. It is an important feature of our approach that
all system components are taken into consideration to estimate en-
ergy savings. This is because a differently partitioned system might
have different access patterns to caches and main memory, thus re-
sulting in different energy consumptions of those cores (compare
according rows of columns ”i-cache”, ” d-cache” and ”mem”). The
sole energy estimation of the�P core and the ASIC core would
not be sufficient since the energy consumption of the other cores
in some cases drops dramatically as well (see for example the en-
ergy of the i-cache consumed by the ”trick” application that drops
from 5:58mJ to 12:59�J). In one case (”ckey”) which was in fact
the less memory-intensive one, the contribution to total energy con-
sumption could be neglected.

The rightmost four columns give the execution time before
and after the partitioning. This is of paramount importance: we
achieved high energy savings butnot at the cost of performance
(except for one case). Instead, energy savings are achieved at ad-
ditional hardware costs for the ASIC core through our selective al-
gorithms described in section 3. The largest (but still small) ad-
ditional hardware effort accounted for slightly less than 16k cells.
But in that case (digs”) a large energy saving of about 94% could
be achieved. Due to todays design constraints in embedded high-
performance applications, a loss in performance through energy
savings is in the majority of cases not accepted by designers. On
the other side a (low) additional hardware effort of 16k cells is not a
real constraint since state–of–the–art systems on a chip have about
10Mio. transistors19.
Fig.6 visualizes the results by giving the percentage of energy sav-

19Please note that due to the currently deployed technology of0:18� an
even higher transistor count would be possible. But due to the current”de-
sign gap”(therefore see also [1], a maximum is currently about 10Mio. tran-
sistors on a chip (not including main memory).
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Energy Exec. Time [cycles]App.
i-cache d-cache mem �P core ASIC core total Sav% �P core ASIC core total Chg%

3d
I 116.93uJ 14.26uJ 29.71uJ 566.78uJ n/a 727.68�J

-35.21
39,712 n/a 39,712

-17.29
P 0.2627�J 0.1227�J 0.2626�J 0.4705mJ 0.3078�J 471.46�J 32,689 154 32,843

MPG
I 44.79mJ 17.98mJ 2.305mJ 74.32mJ n/a 140.92mJ

-43.20
5,167,958 n/a 5,167,958

-52.90
P 35.36mJ 13,14mJ 2.941mJ 27.14mJ 1.462mJ 80.04mJ 1,696,771 737,154 2,433,925

ckey
I 0.0 0.0 0.0 329.99mJ n/a 329.99mJ

-76.81
169,511,665 n/a 169,511,665

-74.98
P 0.0 0.0 0.0 53.042mJ 23.468mJ 76.51mJ 30,258,256 12,144,420 42,402,676

digs
I 11.69mJ 5.123mJ 0.493mJ 52.70mJ n/a 70.00mJ

-94.12
3,706,291 n/a 3,706,291

-42.64
P 14.27�J 2.039�J 20.43�J 46,78�J 4.03mJ 4.11mJ 6,347 2,119,750 2,126,097

eng.
I 117.55�J 33.50�J 33.77�J 270.10�J n/a 454.92�J

-31.27
68,534 n/a 68,534

-24.26
P 84.90�J 26.62�J 21.89�J 167.86�J 1.408�J 312.68�J 51,311 599 51,910

trick
I 5.58mJ 410.40�J 264.91�J 18.54mJ n/a 24.79mJ

-94.79
1,489,000 n/a 1,489,000

69.64
P 12.59�J 3.677�J 71.70�J 181.01�J 1.023�J 1291.98�J 11,658 2,514,300 2,525,958

Table 1: Results in terms of energy dissipation and execution time for both, initial (I) and partitioned (P) design.

ings and the related changes in execution time of a specific applica-
tion. As seen, we achieved high energy savings between about 35%
and 94% while the decrease in execution time (i.e. faster) ranges
between about 17% and 75%. It shows that our approach is es-
pecially tailored for energy minimization and improvement of ex-
ecution time is only a side effect. Note, that our algorithms could
not found an appropriate cluster of the application ”trick” yielding
energy savingsand a reduction of execution time. A closer inves-
tigation revealed that this application did not feature small clusters
with a highUR

core. But our algorithm rejects clusters that would re-
sult in a unacceptable high hardware effort (due to factor ”F”, line
13 in Fig. 1).
As a result of our approach we can summarize that our approach
achieved tremendous energy savings for DSP–oriented application
with a small hardware overhead and in most cases even reduced
execution time (i.e. increased performance).
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Figure 6: Results: achieved energy savings and change of total ex-
ecution time

5 Conclusion
In this paper we have presented a novel low power partitioning

approach for core-based systems that is very comprehensive since
it takes into consideration awholesystem consisting of a�P core,
an ASIC core, caches and main memory. In addition, an important
advantage against other low power system-level design approaches
is that we can achieve tremendous energy savings of up to 94% at
relatively low additional (hardware) costs. This has been possible
since our methodology uses the idea of evaluation a utilization rate
UR
core at the operator-level, thus allowing to select efficient clusters.

Furthermore, our methodology is tailored especially to computation
and memory intensive applications like those found in economi-
cally interesting mobile devices like cell phones, digital cameras
etc.
Further work will concentrate on deriving low-power methods for
control-dominated systems.
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