

Introduction

- Approximate computing has emerged as a potential solution for the design of energy-efficient digital systems. Applications such as multimedia, recognition and data mining are inherently error-tolerant and do not require a perfect accuracy in computation.
- A fast approximate adder that can process data in parallel is designed by cutting the carry propagation chain. A novel approximate multiplier design is proposed using a newly designed approximate adder.
- A simple tree of the approximate adders is used for partial product accumulation and the error signals are used to compensate the error for obtaining a better accuracy.
- Compared to the Wallace multiplier, a 16-bit approximate multiplier implemented in a 28nm CMOS process shows a reduction in delay and power of 20% and up to 69%, respectively.
- When applied in image processing applications, the approximate multiplier achieves similar performance as accurate multipliers with high PSNRs ($\approx 50 \text{ dB}$)

Proposed Approximate Adder

- □ The proposed adder produces an error when the carry propagation chain (CPC) is cut; otherwise it is correct.
- Consider the case when a CPC is formed at the *i*th bit when $A_{i-1} = B_{i-1} = 1$ and $A_i \oplus B_i = 1$. An accurate adder propagates the carry to higher bits, i.e., $C_i =$ $C_{i+1} = 1$, whereas the approximate adder only propagates the carry to its nearest neighbor, i.e., $C'_i = 1$, $C'_{i+1} = 0$. Meanwhile, it generates an approximate sum $S'_i = 1$ and an error signal $E_i = 1$.
- Equivalently, the carry at the (i + 1)th bit is divided to an approximate sum and an error (which is used for error reduction), i.e., $C_{i+1} = S'_i + E_i$. Thus the proposed adder cuts the CPCs that are longer than two bits. Error reduction is based on the following relationship (S:
- accurate sum, S': approximate sum, and E: error). S = S' + E
- Summary: The carry signal only propagates one bit higher in any situation in this approximate adder. The proposed *n*-bit adder performs a bit-wise, parallel processing. It is even faster than a traditional full adder.

Fig. 2 An approximate adder

A Low-Power, High-Performance Approximate Multiplier with Configurable Partial Error Recovery

Cong Liu¹, Jie Han¹, Fabrizio Lombardi²

¹Dept. Electrical and Computer Engineering, Univ. of Alberta, Edmonton, Canada, ²Dept. of Electrical and Computer Engineering, Northeastern Univ., Boston, USA

Proposed Approximate Multiplier

- Partial product accumulation Each approximate adder can accumulate two rows of partial products into one row.
- □ Error accumulation
- Errors can occur at each bit of the tree. The errors are "sparse," i.e., it's very rare to have multiple errors at the same position.
- At each bit, the errors are accumulated by OR operations, which are approximate with an acceptable accuracy.
- □ Error reduction
- The accumulated error vector is added back to the result using an accurate adder.
- Different number of MSBs of the error signals can be used according to different accuracy requirements.

Delay

- Delay Estimation
- Using a linear delay model, the delays of a full adder and an approximate adder are 3 and 2 "gate delays."
- The delay of the partial product accumulation tree is estimated based on the linear model. There are approximately log₂n layers in the approximate adder and $\log_{1.5} n$ layers in the Wallace tree.

 $D_{approx} = (2\lceil \log_2 n \rceil + 1)\tau_g$ $D_{wallace} = 3 \lfloor \log_{1.5} n \rfloor \tau_g$

Table 1. Delay comparison between the approximate and Wallace multipliers

Multiplier Size	8	16	32	64	2 ^{<i>k</i>}
Approximate	7	9	11	13	2k + 1
Wallace	12	18	24	30	5 <i>k</i>

Experimental Results

• 16×16 approximate and Wallace multipliers are implemented in both FPGA and STM 28nm process.

- In the FPGA implementation, the proposed design reduces delay by 36.4%.
- In the ASIC implementation, the proposed design reduces delay by 20%.

	A i+1—
	Bi+1
	<u>Ci+1</u>
	Ai —
	Di
•	In the

reduces dynamic power by 44.3%. • In the ASIC implementation, the proposed design reduces power by 48-69% @ 0.1, 0.25 and 1 GHz.

Fig. 3 The proposed multiplier

Power Consumption

Fig. 5 Power consumption of 8×8 (top) and 16×16 (bottom) multipliers

Acknowledgements

□ Metrics • Error rate (ER) (MRED)

- multiplier.
- recovery.

Accuracy Evaluation

• Relative error distance (RED) and mean relative error distance

 $RED = \frac{|M' - M|}{|M' - M|}$

M -Accurate multiplication result

M'-Approximate multiplication result

• Low ER and MRED are achieved if a proper number of bits for error reduction is used.

Fig. 6 ER and MRED of an 8×8 approximate multiplier

Image smoothing application

Fig. 7 Image smoothing results using an approximate multiplier (left) and an accurate multiplier (right)

Conclusion

A novel approximate multiplier design is proposed using a newly designed approximate adder.

On a statistical basis the proposed multiplier has a very small error distance and thus a high accuracy.

The proposed design has a shorter critical path delay and a significantly lower power consumption compared to an exact Wallace

Current work investigates a new error accumulation scheme with higher accuracy and an accurate operation mode with full error

References

[1] Han and Orshansky, 2013, IEEE ETS. [2] Kulkarni et al., 2011, IEEE Intl. Conf. on VLSI Design, pp. 346–351. [3] Kyaw et al., 2010, IEEE Intl. Conf. Electron Devices and Solid-State Circuits (EDSSC), pp. 1–4. [4] Bickerstaff *et al.*, IEEE Symp. on Computer Arithmetic, pp. 33–39.