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Abstract-The advent of microelectrode arrays allowing 
for the simultaneous recording of 100 or more neurons is 
leading to significant advances in science and medicine. 
However, the amount of data generated by these arrays 
presents a technical challenge if these systems are ever to be 
fully implanted for neuroprosthetic applications. \Ve have 
developed an algorithm to perform real-time data reduction by 
detecting action potentials, or "spikes," embedded in a noisy 
signal. This algorithm is simple enough to be implemented in a 
mixed-signal integrated circuit consuming less than 60 J.1W of 
power. Experimental results from a chip shuw that the circuit 
is able to adaptively set a spike detection threshold above the 
background noise level of a signal. 
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I. INTRODUCTION 

There is an increasing need in science and medicine for 
technologies that allow for the simultaneous recording of 
action potentials, or "spikes," from populations of tens or 
hundreds of neurons. Recent advances in microelcctrode 
array technology have allowed researchers perform up to 
100 parallel extracellular recordings in close proximity [I], 
[2]. However, the electronic circuitry necessary to amplify 
and process the signals from 100 or more electrodes is still 
too bulky and power hungry for implantation with the 
electrode array. 

While recent advances have been made in the design of 
low-power neural signal amplifiers [3]-[5], little has been 
done to address the inevitable data bottleneck that comes 
with a muItielcctrode recording system. Consider the case 
of a I DO-channel neural recording system where each 
channel is amplified and then passed to an analog-to-digital 
converter that digitizes each channel at 30 kSamples/sec 
with a resolution of 10 bits. The data rate of this 100-
channel system is 30 Mbit/sec. This data must be delivered 
transcutaneously to an external receiver via an RF or optical 
link. Transmitting data at this rate would likely require a 
transmitter that dissipates power at a level unsafe for small 
implants, since small levels of chronic heat dissipation (80 
mW Icm2

) can lead to tissue damage [6]. 
When one considers the nature of typical neural signals, 

it is clear that far too much information is being transmitted 
in the above example. For many scientific and 
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neuroprosthetic applications, the only relevant information 
is the presence and timing of action potentials. Cortical 
neurons exhibit firing rates around 10Hz, and in a 100-
channel system, the "address" of each spike can be encoded 
in a 7-bit number representing its electrode of origin. If we 
transmit an address only when a spike occurs, our data rate 
can be reduced to an average of 7 kbitlsec, which could 
easily be transmitted from an implanted low-power RF 
transmitter operating at a moderate carrier frequency. 

The remaining problem is how to perform this data 
reduction from a noisy analog waveform to identified spikes 
in a small, low-power device. The amplitude of spikes 
recorded extracellularly can vary widely from one electrode 
to the next depending on the relative position and orientation 
of the recording site and the axon carrying the impulse. 
Additionally, background noise caused by distant neural 
activity, electrode noise, and electronic noise in the 
preamplifier can vary with time, temperature, and electrode 
position. 

In this paper, we present an algorithm for the automatic 
detection of spikes in a noisy waveforms by adapting a 
threshold that stays above the background noise level. We 
implement this algorithm as a low-power CMOS integrated 
circuit and report on its perfonnance. 

II. ADAPTIVE SPIKE DETECTION ALGORITHM 

For the development of our adaptive spike detection 
algorithm, we assumed the input signal to be a linear 
combination of bandlimited Gaussian noise and transient 
action potential signals having a duration of approximately 
1.0 msec. We assume that the signal from the extracellular 
recording electrode has been high-pass filtered by a 
preamplifier so that low-frequency local field potentials 
(LFPs) in the 0.1-30 Hz range have been attenuated. (It is 
common practice to use a low-frequency cut-off between 
100 Hz and 300 Hz for spike recordings.) 

We define a spike detector as a system that produces a 
logical "true" output when a spike is present and produces a 
logical "false" output when a spike is not present. The goal 
of our spike-detection algorithm is to adaptively set a 
detection threshold that is low enough to capture action 
potentials, but high enough to reject occasional peaks in the 
background noise. We are assuming Gaussian' background 
noise having a mean of zero. (Since the signal has been 
high-pass filtered, any dc offset has been removed.) 
Therefore the noise is entirely described by its rms value, 
which is equivalent to its standard deviation, a. 
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Fig. I. (a) lfGaussian noise is passed through a comparator having a 
threshold sct to the nns value of the noise (10), the resulting digital signal 

(b) made up oro's and I 's has adc level (dotted linc) of 0.159. 
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Fig. 2. Block diagram of the adaptive spike detection algorithm. 

If we can measure the rms level (J of the background 
noise, we can set a threshold to some positive multiple of a 
and reject all but a vanishingly small fraction of the 
background noise. For example, with a threshold of 5a, the 
probability of Gaussian noise triggering the spike detector is 
approximately 3xlO·7 

To develop a method for measuring cr, we observe that 
if a threshold is set at a, the probability of Gaussian noise 
exceeding this threshold is 0.159. Fig. lea) shows a noise 
waveform and a threshold level of 1 a. After comparing the 
noise with this threshold, we get a digital waveform having 
a duty cycle (i.e., the fraction of time the waveform is high) 
of 0.159 [see Fig. l(b)). The duty cycle is proportional to 
the de level of this digital waveform, and we can use this 
signal as feedback to servo a reference voltage to the 1 a 
level of the waveform. 

Fig. 2 shows a block diagram of the proposed adaptive 
spike detection algorithm. Comparator A is used in a 
feedback loop (with a gain of K) that servos the duty cycle 
of its output to 0.159, thus setting Via to the rms level of the 
input waveform. This voltage is then amplified by a 
constant N typically having a value of five or greater. The 
resulting voltage VNa is used as the threshold level for 
Comparator B. Thus, the circuit performs spike detection 

using a specified multiple of the background noise rms 
value. 

The presence of spikes in the waveform will lead to 
errors in OUf estimate of the noise rms level since the V1<J 

feedback loop does not distinguish between spikes and 
background noise. However, ifthe spikes are approximately 
ac balanced (as most biphasic spike waveforms are) and 
occur relatively infrequently, they should have little effect 
on the rms noise estimate. In cortical neurons, for example, 
firing rates around to Hz are common, and action potentials 
recorded extracellularly have a duration of approximately 1 
msec, so spikes are present only about 1 % of the time . 
Nevertheless, a more precise analysis of this source of error 
should be undertaken in the future. 

We expect this algorithm to work well for background 
noise which is not precisdy Gaussian, although this has not 
yet been tested. By selecting N to be sufficiently large, a 
conservative threshold can be set for noise that deviates 
from a true Gaussian distribution. 

1lI. CIRCUIT IMPLEMENTATION 

We implemented the adaptive spike detection algorithm 
in a CMOS integrated circuit with the goal of minimizing 
power consumption and chip area. We used a 
commercially-available 1.5-flm 2-metal, 2-poly CMOS 
process available through MOSIS. The circuit was 
completely integrated, using no off-chip components. 

A schematic of the adaptive spike detection circuit is 
shown in Fig. 3. Comparators A and B are implemented 
using standard regenerative latch-and-hold topologies [7]. 
The duty cycle of comparator A is calculated using an 
operational transconductance amplifier (OT A) to realize a 
gm-C low-pass filter. By biasing this OTA in the 
subthreshold region, cutoff frequencies below 1 Hz may be 
achieved [8]. The high-fi'equency oscillations of the digital 
waveform are attenuated leaving only the dc level, which is 
proportional to the duty cycle of the waveform. By taking a 
"running average" of the duty cycle using this leaky 
integrator, the circuit is able 10 adapt to time-varying levels 
of background noise. The time constant of this filter sets the 
adaptation time constant. 

An nMOS differential pair is used to compare the output 
of the low-pass filter to the reference voltage Vdutv 0:: 

0.159VDD, which corresponds to a low-pass filter output 
indicating Comparator A is operating at the I a threshold 
level. Current from one leg of the differential pair is 
mirrored using a pMOS current mirror and driven into two 
resistors in series. These resistors convert the current into 
two voltages: Via = IR and V'a = SIR. To save chip area, 
these resistors were implemented as nMOS transistors 
operating in the deep triode (linear) region. By sizing the 
transistors appropriately, a drain-to-source resistance R of 
approximately to kQ was obtained. 
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Fig. 3. Schematic of the adaptive spike detection circuit. 

Since latch-and-hold comparators were used, a clock 
signal must be provided to trigger comparisons and then 
reset the comparators. We used a clock frequency of 6 kHz, 
corresponding to a period of 0.167 msec. This sub
millisecond period ensures that the circuit will not miss a 
spike. 

IV. RESULTS 

A. Comparator Precision 

Before testing the adaptive spike detector, we first 
characterized the comparators independently. A significant 
source of error in CMOS integrated circuits is device 
mismatch [9]. Two transistors fabricated side-by-side with 
identical dimensions will not behave identically due to 

random variations in size and implanted charge introduced 
in the fabrication process. In our circuit, device mismatch 
affects the precision of our comparators. Ideally, the output 
of a comparator should switch when the difference between 
the two input voltages crosses zero. Real comparators 
exhibit an small offset voltage that varies from one circuit to 
the next across a chip. 

We measured the input-referred offset voltage of 20 
fabricated comparators to assess the minimum resolution at 
which these circuits could reliably operate. The measured 
input-referred offset voltage of20 comparators (four each on 
five separate chips) varied from -0.45 mY to +3.35 mY. 
The mean offset voltage was +1.75 mY, and the standard 
deviation was 1.12 mY. 
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Fig. 4. Measured output of adaptive spike detection chip for input 
amplitude of70 mY. 

Neural signals recorded extracellularly typically have 
rms noise levels in the range of5-10 ~V [10], so clearly the 
signal from the recording electrode must be amplified before 
this spike detection circuit. In a complete system, a low
noise preamplifier would also bandlimit the signal 
appropriately to remove LFPs. W'C have previously 
designed low-noise, power-efficient CMOS preamplifiers 
for neural recording applications [3], but we do not include a 
preamplifier in the circuit reported here. To overcome the 
comparator offsets, a preamplifier with a gain of at least 103 

(60 dB) should be used. 

B. Adaptive Spike Detector 

We tested the adaptive spike detector using a synthetic 
wavefonn programmed into an arbitrary wavefonn 
generator (Agilent 33120A). The test waveform consisted 
of three "typical" extracellular action potentials embedded 
in a background of Gaussian noise, and represented the 
output from a preamplifier in a complete neural recording 
system. The waveform was bandlimited at 7.5 kHz using a 
3-pole low-pass filter. The first 10 msec of the test 
waveform is shown as the input waveform in Fig. 4. The 
rest of the waveform consisted only of noise. The waveform 
was 80 msec in length and was played in a loop so the burst 
of three spikes appeared periodically at a rate of 12.5 Hz. 

We applied this waveform to the input of the adaptive 
spike detector. The amplitude of the waveform was set so 
that the largest spike had an amplitude of 70 m V and the 
background noise had an rms value of5.5 mY. (Assuming a 
preamplifier with a gain of 60 dB, this corresponds to a 
spike amplitude of70 ~V and a noise rms value of 5.5 ~V at 
the electrode.) Fig. 4 shows the input waveform along with 
the value of Vju and the output of Comparator B. The 
adaptive spike detector successfully sets the threshold to an 
appropriate level to detect spikes but reject noise. 
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Fig. 5. Output of adaptive spike detection chip with amplitude of23 mY. 
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Fig. 6. Output of adaptive spike detection chip with amplitude of 116 mY. 

- input 
100 - - threshold . 

- output 

'> 50 
.s 
" E 
~ 
;; 
'5 
.~ -50 

-100 

0 4 6 8 10 
time {msec] 

Fig. 7. Output of adaptive spike detection chip with input of noise only. 

The amplitude of the input waveform (largest spike) 
was varied from 23 mV to 116 mV (and the rms noise level 
varied from 1.8 mV to 9.2 mY). Figs. 5 and 6 show the 
results of two of these experiments. The circuit functions 

correctly as the amplitude of the background noise changes 
by a factor of five. Fig. 7 shows the response of the circuit 
to a waveform containing only noise and no spikes. The 
algorithm succeeds in rejecting the noise completely despite 
occasional peaks in the Gaussian waveform. (In Figs. 4-7, 
the 0-5V digital output voltage is scaled down for clarity.) 

The circuit consumes 0.094 mm' of chip area in a 1.5-
J..lffi process~ and its power consumption is 57 J..lW when run 
from a 5 V power supply. The two comparators consume 
91 % of this power, so future work will focus on reducing 
their power dissipation. 

V. CONCLUSION 

We have presented a novel algorithm and circuit for the 
automatic detection of spikes in neural recordings. Our 
circuit waS completely integrated in a commercially
available CMOS process. The small size and low power 
operation of this circuit make it compatible with fully
implanted multi-electrode applications. Although it detects 
spikes successfully, this circuit is incapable of 
distinguishing between spikes of different shapes, and thus 
cannot be lIsed for spike sorting. It may be possible to 
develop more sophisticated circuits that would report certain 
characteristics of detected spikes and allow for spike sorting. 
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