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Abstract—Low-power sensing technologies have emerged for

acquiring physiologically indicative patient signals. However, to

enable devices with high clinical value, a critical requirement is the

ability to analyze the signals to extract specific medical informa-

tion. Yet given the complexities of the underlying processes, signal

analysis poses numerous challenges. Data-driven methods based

on machine learning offer distinct solutions, but unfortunately

the computations are not well supported by traditional DSP. This

paper presents a custom processor that integrates a CPU with

configurable accelerators for discriminative machine-learning

functions. A support-vector-machine accelerator realizes various

classification algorithms as well as various kernel functions and

kernel formulations, enabling range of points within an accu-

racy-versus-energy and -memory trade space. An accelerator

for embedded active learning enables prospective adaptation of

the signal models by utilizing sensed data for patient-specific

customization, while minimizing the effort from human experts.

The prototype is implemented in 130-nm CMOS and operates

from 1.2 V–0.55 V (0.7 V for SRAMs). Medical applications for

EEG-based seizure detection and ECG-based cardiac-arrhythmia

detection are demonstrated using clinical data, while consuming

273 J and 124 J per detection, respectively; this represents

62.4 and 144.7 energy reduction compared to an implemen-

tation based on the CPU. A patient-adaptive cardiac-arrhythmia

detector is also demonstrated, reducing the analysis-effort re-

quired for model customization by 20 .

Index Terms—Active learning (subject-specific adaptation),

biomedical electronics, machine learning (artificial intelligence),

medical signal processing, support vector machine (SVM).

I. INTRODUCTION

U NPRECEDENTED technologies have recently emerged

that make it possible to sense [1], [2] and acquire [3]–[5]

physiologically indicative patient signals within low-power and

small-scale devices. Although the signals, such as electrocardio-

grams (ECGs), electroencephalograms (EEGs), etc., are rele-

vant in a wide range of clinical applications, high-value medical
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Fig. 1. Challenges with physiological signal analysis. (a) High-order models
are required to distinguish targeted physiological states from background ac-
tivity. (b) The manifestation of targeted states are different from patient-to-pa-
tient. (c) Physiological changes over time (particularly following acute events)
result in signal dynamics.

devices require extracting specific medical information from

these. The devices envisioned include closed-loop therapeutic

systems, prosthetic systems, sensors for continuous medical de-

cision support, etc. [6].

The challenge is that the physiological signals available

through low-power sensors are extremely complex to analyze.

Fig. 1 illustrates the challenges. The first issue is that the

specific states of interest must be detected in the presence of

numerous background physiologic variances; for adequate

0018-9200/$31.00 © 2013 IEEE
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specificity, this implies the need for high-order signal models.

Fig. 1(a) shows EEG signals expressing the onset of a seizure;

but, also shown is normal EEG associated with sleep (known

as spindle). The two bursts resemble each other, requiring that

the physical waveforms be adequately modeled in order to

distinguish between them. While analytical representations are

emerging (e.g., that attempt to model seizure dynamics from

the neuronal-circuit level [7]), these generally do not model

the physical waveforms to the high level required for clinical

applications. The second challenge is that, across clinical

applications, the expression of the targeted states within the

signals can be highly variable from patient to patient [8]. As an

example, Fig. 1(b) shows the seizure EEG from two patients.

The two cases illustrate distinct excitations, both spectrally and

spatially over the channels, implying the need for patient-cus-

tomized models. The third challenge is that patient physiology

changes over time, particularly in response to acute events.

Fig. 1(c) shows the ECG of a patient following a myocardial

infarction (heart attack); over a period of weeks to months,

tissue in the heart muscles evolves, causing changes in the ECG

before settling with permanent pathological characteristics [9].

This implies that signal models may also need to track these

dynamics for use in chronic devices.

Data-driven approaches can be used to create models based

on physical sensor data rather than analytical methods. In

particular, powerful frameworks for data-driven and adaptive

modeling have emerged from the domain of machine learning.

These raise capabilities for overcoming the challenges men-

tioned above. The critical issue, however, is that with little

prior consideration for enabling these methods in low-power

systems, the computations involved are energy intensive. While

low-power medical processors have recently been reported,

they have either focused on traditional DSP [10], [11], or have

not enabled the programmability required across applications

and/or across patient cases while also supporting high-order

modeling and analysis frameworks [12]–[17]. We, thus, present

a flexible general-purpose processor specialized for high-order

machine-learning signal-analysis functions for a wide range

of clinical applications. The processor includes a CPU for

programmable computations as well as configurable ma-

chine-learning accelerators to support various kernels (details

are described in Section III). The design features the following

advances:

� A flexible accelerator is integrated with a general-pur-

pose CPU. The CPU enables programmable feature

extraction for a range of physiological signals and clin-

ical applications, and the accelerator, through hardware

configurability, enables a large space of algorithmic-per-

formance versus energy- and memory-usage tradeoffs.

� Dynamic model adaptations are enabled in the back-

ground through a hardware accelerator for embedded

active learning. This enables scalable patient-model cus-

tomization by minimizing the burden on human experts.

An in-place algorithm for active learning enables hardware

sharing for kernel functions by minimizing the overhead

of context switches in the presence of real-time detection.

� Medical applications and algorithms are developed and

demonstrated (using clinical datasets), showing the use of

the processor for continuous, patient-adaptive monitoring

within a network (via a Bluetooth radio interface).

The paper is structured as follows. Section II analyzes the

structure and energy of machine-learning algorithms. We focus

primarily on data-driven classification in order to identify an

architecture that exploits hardware specialization to addresses

the energy-efficiency and computational-flexibility needs.

Section III discusses the microarchitecture and circuit details

of the processor, providing extended details of the design in

[18]. Section IV presents the measurement results as well as

application demonstrations using real medical data. Finally,

Section V provides conclusions.

II. ANALYSIS FOR A HARDWARE-SPECIALIZED PROCESSOR

Given the range of machine-learning frameworks for mod-

eling and analysis, this section considers their suitability in med-

ical applications. Specifically, the issues of constructing models

from medical data and enabling algorithms for clinical appli-

cations are considered. This motivates our focus on discrimi-

native frameworks. This section then analyzes the energy and

computational programmability required in discriminative al-

gorithms. As a kernel, we focus on support vector machines

(SVMs) [19] which are a data-driven classification framework.

We notice that the algorithms offer structure that substantially

separates the need for energy efficiency from the need for com-

putational flexibility; this suggests an accelerator-based archi-

tecture for processor specialization. Given the importance of

adapting the models for patient-specific and temporal variabil-

ities, the related challenges are described, motivating the need

for hardware support of embedded active learning in the classi-

fication algorithms.

A. Discriminative versus Generative Frameworks

Broadly, two categories of machine-learning frameworks

exist: discriminative and generative. The key difference is that,

by observing a signal, discriminative frameworks attempt to

model a specific target variable associated with a process,

whereas generative frameworks attempt to model the under-

lying process more broadly, potentially making numerous

variables accessible within an algorithm. The challenge with

generative frameworks is that substantial training data can be

needed to create adequate models [20]; this is of particular

concern when models are being dynamically constructed and

rapid convergence is desired (as in the clinical applications

considered in this work). Limited medical data, especially for

rare pathophysiologic events, thus makes embedded generative

models potentially less viable. On the other hand, the focus

on specific variables makes algorithms using and constructing

discriminative models potentially more robust. In fact, many

medical devices being considered today are interested in

decoding targeted states for specific actuation-control and

prosthetic functions [6]; these can be well addressed by dis-

criminative frameworks. This work thus focuses on enabling

various discriminative algorithms along with algorithms for

adaptive model construction.
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Fig. 2. (a) SVM framework in an EEG-based seizure-detection example. The trainer generates a classifier model from previous observations. Real-time detection
occurs in two steps: feature extraction and classification. (b) SVMs form a decision boundary from support vectors, which are sampled from the edge of the data
distributions (only the principal components are shown).

B. Energy Analysis

The SVM is a supervised machine-learning framework for

discriminative classification that has gained popularity due to

its computational efficiency and robustness [19]. Supervised

machine-learning implies that a human expert must be involved

during a training phase to provide classification labels for

training data. The data and labels are then used to construct

a classification model. The involvement of a human expert is

the typical protocol accepted for training medical devices [8],

[21], [22]. Fig. 2(a) shows the two aspects involved, namely

infrequent training and real-time detection. Detection occurs

continuously on the sensed data, making its energy the primary

concern. The processor presented in this work thus focuses

primarily on detection, as well as continuous sensor-data ac-

quisition for offline model adaptations. In a typical medical

algorithm, detection can be further divided into two aspects:

feature extraction and classification. Feature extraction is an

important step that improves detection by explicitly repre-

senting the input signal by the biomarkers of the medical

variable of interest [20]. It is thus closely tied to the application

and the medical signals involved. Fig. 2(b) shows the details of

SVM classification. Labeled feature vectors derived from the

training data are plotted (in the figure, dimensionality reduction

via principal component analysis is employed only to enable

visualization). The SVM selects a reduced number of training

feature vectors, called the support vectors, from the edges of

the class-data distributions in order to represent an optimal

decision boundary for classification (i.e., that maximizes the

geometric distance to the support vectors). The corresponding

classification function is then given by the following (where

is the real-time feature vector being classified, is a

support vector, is a kernel transformation used to enhance

the decision-boundary flexibility, and and are modeling

parameters):

(1)

In order to direct our hardware specialization efforts,

the real-time execution energy of several medical applica-

tions has been profiled. The typical result is represented

by the measurements shown in Fig. 3, which correspond

to an ECG-based cardiac-arrhythmia detection application

(profiled on an MSP430 processor). The challenge is that,
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Fig. 3. Performance and energy of representative machine-learning algorithm
(ECG-based cardiac arrhythmia detection using real medical data from [34]).
(a) High-order models are required to achieve high accuracy, but for strong clas-
sification kernels (i.e., RBF kernel is used in example shown). (b) The classi-
fication energy scales with the model complexity (note, while the performance
appears to saturate at for the data shown, additional support
vectors may be selected by the training algorithm, which optimizes an objective
function to derive the decision boundary).

although the data-driven classification framework enables

construction of high-order models, the energy to apply those

models dominates for strong classifiers. Fig. 3(a) shows that

a large number of support vectors is required to yield high

performance [sensitivity represents the true-positive rate

(i.e., )

while specificity represents the true-negative rate (i.e.,

)]; how-

ever, Fig. 3(b) shows that, using a strong classification kernel

(a radial-basis function (RBF) kernel is used in the example

shown), energy scales proportionally, making it dominate by

orders of magnitude over feature extraction (a similar result

is observed for EEG-based seizure detection, with the energy

also dominating over instrumentation and digitization [23]). A

key insight, however, is that feature-extraction computations

require flexibility, since they are closely tied to the application,

as discussed above. On the other hand classification with

high-order models requires computational efficiency, but the

computations can be substantially fixed due to the kernels

involved (Section III-B discusses important configurability

requirements for classification). The separation of flexibility

and efficiency requirements implies that an accelerator-based

architecture can significantly reduce energy while enabling a

broad range of clinical applications.

C. Active Learning for Model Adaptation

A key benefit of an efficient data-driven modeling framework

for medical sensor applications is that with patient-specific data

being acquired continuously by the sensors, patient customiza-

tion of the embedded models is possible. The challenge is that in

a supervised-learning framework, patient-by-patient customiza-

tion requires effort from experts, limiting its scalability. Active

learning is an approach wherein the most informative instances

are chosen from a training pool to reduce the labeling effort

[24], [25]. Active learning has recently shown to enable effi-

cient model customization with minimal labeling effort from

human experts in clinical applications including arrhythmia de-

tection [26] and seizure detection [27]. In the processor pre-

sented, we incorporate support for a modified active-learning

framework wherein data can instead be continuously assessed

as it is being sensed to downselect to a highly reduced set of

Fig. 4. Processor architecture with machine-learning accelerators.

Fig. 5. SVMA is configurable via memory-mapped registers to enable various
classifier structures and kernels. The FSM controls the configurable data path
unit (DPU) to realize the computations.

optimal instances which can then be sent to clinical experts to

enable scalable customization over a network. Section III-C de-

scribes the hardware support for this.

III. PROCESSOR ARCHITECTURE AND CIRCUITS

Fig. 4 shows an architecture block diagram of the processor.

While the accelerators address the energy-intensive modeling

and classification computations, the CPU provides top-level

configuration (of the accelerators) as well as programmable

feature-extraction computations. This enables support over a

wide range of applications. The machine-learning accelerators

include a support vector machine accelerator (SVMA) and an

active-learning data selection (ALDS) accelerator. The SVMA

can be configured for various classification algorithms via var-

ious energy-scalable kernels. The ALDS enables background

support for embedded active learning of signal models by

optimizing interactions with remote clinical experts. Both the

SVMA and the ALDS require computations over vectors in

a kernel-transformed space (as described below). They thus

share a specialized data-path unit (DPU) and CORDIC engine;

an arbiter controls access to these modules during real-time

operation. Aside from computational blocks, the architecture

includes a radio interface (with 8-kB local buffer) to enable

control of an off-chip Bluetooth module that establishes a
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Fig. 6. The choice of specific kernel function strongly impacts the classification energy and memory requirements. For the polynomial kernel, the alternate for-
mulation, which achieves linearization by transforming vectors to matrices, is also shown [23].

communication link with gateway devices (e.g., smart phone),

so that the monitoring and model-adaptation processes can

occur interactively with clinical experts over a wide-area

network. The architecture also includes a power-management

unit (PMU) that enables idle-mode clock gating of all shaded

blocks through software, as well as memory-management units

(MMU1, MMU2) that enable background control for contin-

uous data logging and updates to the adaptive models. The

subsections below describe the roles and details of the various

blocks.

A. Programmable CPU

The CPU is based on an MSP430-compatible instruction set

and has 16 kB of program memory and 16 kB of data memory.

User programs are loaded to the program memory (PMEM)

through a dedicated programming interface, and are executed

upon upload. The peripherals, including all accelerators, are ac-

cessed through a specialized peripherals interface via memory-

mapped status and configuration registers. The eight general-

purpose I/O (GPIO) are treated as a peripheral and serve as

the interface to sensor data in a typical application. A periph-

eral timer and multiplier unit are included to facilitate the pro-

grammable feature-extraction computations.

B. Configurable Support Vector Machine Accelerator (SVMA)

Fig. 5 shows the modules involved in computing SVM

classification. The SVMA is a finite state machine that provides

operands and model data to the DPU (by controlling the SV

memory interface). Kernel functions, thus computed, can be

configured via memory-mapped control registers. The SVMA

enables programmable partitioning of the local 32-kB SV

memory to instantiate multiple classifiers with various kernel

functions (as described below). The classifier instances can also

be combined in structured ways to realize various multi-class

algorithms [28] and ensemble classifiers (e.g., classifier trees

and adaptive boosting, wherein multiple weak classifiers are

combined to form a strong classifier [29]). As an example,

multiple models can be loaded into the SV memory, and,

through memory-mapped control registers, the user program

can initiate classifier-kernel computations corresponding to

each model. The computational outputs from each classifier

can then be retrieved from memory-mapped data registers

and combined within the user program to synthesize the final

decision function and algorithm.

An important aspect with data-driven methods is that the

performance of various kernel functions depends strongly on

the characteristics of the application data. This has critical

implications since the choice of kernel functions substantially

affects the computational energy and memory requirements.

It is thus necessary to enable SVMA configurability both

over the kernel functions, and over different formulations

for some kernel functions, so that various points within a

performance-versus-energy/-memory space are supported as

preferred across different applications. As an example, Fig. 6

considers a seizure-detection application, showing the effective

decision boundary realized by SVM kernels involving three

different transformation functions [linear, polynomial, ra-

dial-basis function (RBF)]. While the kernels yield increasing

levels of strength (i.e., flexibility), the actual strength required

depends on how the data is distributed in the feature space;

for instance, in the case shown, the polynomial kernel yields

comparable separability to the RBF kernel (and in fact linear

kernels are found to be sufficient for some cases of patient data

[23]). However, as shown by the measured energy for each

kernel (from simulation of the CPU), the required energy varies

by orders of magnitude.

Similarly, alternate formulations of the kernel functions are

also beneficial for enabling different energy trade-offs. In [23],

a formulation is presented for polynomial kernels that explicitly

overcomes energy scaling with respect to the number of support

vectors. This is achieved by transforming feature vectors into

matrices in order to linearize quadratic polynomials, thus en-

abling a factorization that permits precomputation over all the

support vectors. Though substantial energy savings are demon-

strated, particularly for medical applications, the transformation

from vectors tomatrices exacerbates energy scaling with respect

to the feature-vector dimensionality [23]. Consequently, the op-

timal choice of formulation once again depends on the appli-

cation characteristics, further underscoring the need for config-

urability in the SVMA. Table I shows simulation results of the

SVMA (for two representative applications), sampling the scal-

ability range in performance versus cycle count and memory
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Fig. 7. Batch data (a) without diversity metric, leading to clustered selections, and (b) with diversity metric, leading to coverage over large regions of the feature
space.

TABLE I
SIMULATED SVMA CYCLE-COUNT/MEMORY REQUIREMENTS AND
PERFORMANCE BASED ON REAL PATIENT DATA (FROM [34]),

SHOWING THE SCALABILITY ACHIEVED

that is enabled by incorporating configurability in the kernel

functions and kernel-function formulations (for polynomial ker-

nels). The amount of support-vector memory required is also

reported to highlight the memory-usage dependence on the ker-

nels. The DPU circuit required to support this range of config-

urability is discussed in Section III-D.

C. Active-Learning Data Selection (ALDS) Accelerator

Active learning involves selecting the optimal data instances

in a training pool in order to reduce the analysis and labeling

effort required by an expert during supervised model construc-

tion. For medical-sensor applications, we modify the concept to

improve the scalability of model customization during dynamic

model adaptation. Our approach enables algorithms wherein a

seed model constructed offline from population-level patient-

generic data is initially used by the processor. The processor

then assess the sensed data to choose the optimal instances to

send to clinical experts [26]. In this process, a pool size is spec-

ified by a user-defined epoch of sensed data, and the batch size,

which we aim to make much smaller, is defined as the number

of selected instances from within the epoch. The batch data is

transmitted to a clinical expert, who assigns training labels to

construct a refined model. This is then sent back to be uploaded

onto the device. This process occurs over the network through

the use of a dedicated hardware interface to an off-chip Blue-

tooth radio (which can communicate with gateway devices for

wide-area-network connectivity). The process then iterates to

achieve a desired level of model convergence.

The key aspect of the embedded active-learning approach

is continuous assessment of the sensed data. The processor

incorporates hardware support to compute two primary metrics

for data assessment; due to the large number of CPU cycles that

these would require (see below), an accelerator is integrated

for background computation. The two metrics are the marginal

distance and the diversity of the data instances. Since

in an SVM, feature vectors near the decision boundary are

most likely to form the support vectors, the marginal distance

is used to represent the proximity of data to the current decision

boundary (in the kernel-transformed feature space). This is

equivalent to the magnitude of the SVM decision function;

in algorithms where classification is simultaneously being

performed on the sensed data, this metric is readily available.

In addition to a marginal-distance metric, the diversity metric

has recently been shown to substantially improve model con-

vergence [30]. It aims to choose batch data that explicitly

covers large regions of the feature space. For illustration, Fig. 7

considers data from a seizure-detection application, showing

the initial SVM decision boundary as well as the distribution of

pool data and batch data, selected using an -only [Fig. 7(a)]

as well as an -and- [Fig. 7(b)] criterion.

The challenge with the diversity metric is that pool data under

consideration must be assessed with respect to other instance in

the selected batch. The number of compute cycles required thus

scales with both the pool and batch sizes, which can be very high

if large pools are desired (to maximize data reduction) and large

batches are desired (to amortize communication and analysis/la-

beling overheads). Fig. 8(a) shows simulation results measuring

the number of compute cycles required if the CPU were used.

This motivates the dedicated ALDS accelerator to enable back-

ground computations for active learning. Fig. 8(b) shows the

computational flow of the ALDS. While comes directly from

the SVM computation, is computed iteratively over the data in

the pool and the selected batch data. requires the kernel-trans-

formed computation shown in Fig. 8(b). The overall score for

selecting a data instance is then derived by combining and
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Fig. 8. (a) Simulation of batch-selection algorithm on CPU, illustrating the need for background computation via an accelerator, and (b) ALDS accelerator com-
putation flow.

Fig. 9. Weighted metrics are stored as 15 b, and the MSB bit is used to indicate previously selected data points to be skipped in subsequent iterations.

using programmable weights ( and ). After computing

the scores associated with data instances, the ALDS scans the

memory space to find the minimum score, thus selecting an in-

stance for batch data. The ALDS uses the most-recently selected

data instance (feature vector ) to calculate for every re-

maining instance in the pool .

Details of the implementation are shown in Fig. 9. The ALDS

calculates weighted scores and stores them in the SV memory.

The in-place implementation exploits the fact that the computed

metrics ( and ), weights ( and ), and, therefore, the

combined scores are all positive. The reduced precision thus re-

quired allows the MSB of the corresponding memory location

to be used as a marker to indicate selected batch instances. The

marked instances are then omitted by the ALDS during subse-

quent iterations where further instances are selected. Following

each iteration, the selected instance is marked by its MSB, and

its index is written to memory space dedicated for pointers to

the selected batch data.

Since the DPU and CORDIC (described below) are special-

ized for the kernel computations and transformations required

over feature vectors, they are reused by the SVMA and ALDS

(i.e., for computing ). However, since ALDS computations

occur in the background while SVMA computations are re-

quired for real-time sensor-data analysis, the ALDS computa-

tion flow in Fig. 8(b) can be interrupted (under the control of

the arbiter in Fig. 4).

Fig. 10. DPU employs two-stage pipeline to reduce glitch propagation, simu-
lations show the energy benefit of the pipeline architecture.

D. Data-Path Unit (DPU)

Fig. 10 shows the details of the DPU. The DPU performs

the arithmetic required over feature vectors for the SVMA and

ALDS modules. The element-wise operands as well as SVM-

model parameters ( , and ) are applied in a specialized

two-stage pipeline. Flip-flop insertion in the pipeline mitigates

active-glitching and leakage energy (i.e., by reducing the crit-

ical-path delay [31]). The results from transistor-level simula-
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Fig. 11. (a) In-line truncation of shifting prevents overflow yielding comparable performance to a floating-point implementation. (b) 16-b support-vector precision
minimizes memory requirements and classification error.

Fig. 12. Computation of the decision function with the RBF kernel. Accumulation over each support vector and accumulation over all support vectors is achieved
in registers at the second stage of the pipeline.

tions are shown, illustrating the glitching that would otherwise

propagate through the stages; simulations estimate that 35% en-

ergy savings (at V) are achieved by eliminating

glitch propagation.

To minimize energy, fixed-point computations are used for

the various kernel functions and model data supported. How-

ever, we found that optimizing the computational precision and

avoiding computational overflow posed a critical challenge.

To overcome this, the DPU employs variable truncation via an

in-line SHIFT module. This enables any Q-format to balance

the precision and dynamic-range requirements. A barrel shifter

in the SHIFT module enables truncation of intermediate results

for decision-function computations over large support-vector

sets and large feature-vector dimensionalities. Bit-true simu-

lations (results shown in Fig. 11(a)) indicate that this enables

performance near that of a floating-point implementation;

without this, simulations exhibit computational overflow even

with small vector dimensionalities and sets. Another factor is

the precision of the support vectors; this critically impacts both

the computational hardware, but also the required size of the

Fig. 13. Computation of the decision function with linear and polynomial ker-
nels.

local SV memory. Fig. 11(b) shows analysis from simulation,

sweeping the support-vector bit precision in order to char-

acterize the RMS error of the classification kernel function.
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Fig. 14. CORDIC implementation (left) and the resulting region of convergence with and without scaling (right).

Fig. 15. Die photo and prototype IC summary.

Fig. 16. (a) EEG-based seizure detection extracts the energy from eight different frequency bins from each EEG channel in a 2-s epoch, and three epochs are
combined to form a feature vector. (b) ECG-based arrhythmia detection samples 18 data points in each ECG beat along with the R-to-R information. Feature
extraction runs on CPU and the SVMA executes SVM classification.

Analysis was performed over several applications, with the re-

sults from a seizure detector shown; 16-b precision was chosen

for the support vectors since this yields sufficient accuracy,

while beyond this the accuracy tends to saturate.

The various computational paths through which the DPU

implements the selectable kernel functions and formulations

are shown in Figs. 12 and 13. The RBF kernel computation in

Fig. 12 primarily requires three computations: subtract-square

accumulation, exponentiation, and weighted summation over

the support vectors. The subtract-square accumulation is ex-

ecuted at through the path in Panel 1; the elements

in vectors and are sequentially loaded by the SVMA
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Fig. 17. Active learning block diagram (left) and demonstration setup (right).

and applied to the SUB and MULT modules to calculate the

squared distance between the vectors. The ADD/SUB module

is then used to accumulate the result in . The accumulation

process proceeds, controlled by the SVMA, over all dimensions

of the vectors. Following this, exponentiation is implemented

via the CORDIC (described in Section III-E), and the result, as

part of a weighted summation over the support vectors (with

coefficients ), is stored in Result via the paths shown in

Panel 2. Following summation over all support vectors, Result

gives the final classification output. Similarly, for polynomial

and linear kernels, the primary computations are dot-product

and weighted summation over the support vectors. These are

computed through the paths shown in Fig. 13 at and

Result, respectively. Unlike the RBF kernel, polynomial and

linear kernels, do not required the SUB module (i.e., since

dot-products, rather than vector distances, are computed).

E. CORDIC

An embedded CORDIC engine is used for hardware-efficient

computation of the exponentiation function required in the RBF

kernel. The limitation with conventional CORDIC architectures

is a narrow range of convergence, as shown in Fig. 14. To extend

the range, we employ a pre-scale and post-scale scheme via the

computation flow shown [32]. The pre-scale represents the ar-

gument as a quotient (Q) and a remainder (D), which explicitly

lies within the convergence range. The post-scale then derives

the correct value through simple shifting operations. As shown,

the effective convergence range is thus substantially increased

with minimal hardware complexity.

IV. MEASUREMENT AND DEMONSTRATION

The processor is implemented in 130-nm LP CMOS from

IBM (die photo shown in Fig. 15). It operates from 1.2–0.55 V

(0.7 V for SRAMs), and themeasured energy/cycle for the CPU,

SVMA, and ALDS modules (including their SRAMs) is pro-

vided in the summary table shown. The processor enables al-

gorithms employing high-order data-driven signal models and

patient-adaptive capabilities, and it can be used for a range of

biomedical sensor applications thanks to programmable feature

extraction (supported by the CPU) and configurable classifica-

tion and modeling kernels (supported by the accelerators).

We have implemented and tested several medical-sensor ap-

plications including a seizure detector (based on the 18-channel

EEG algorithm in [8]), an arrhythmia detector (based on the

Fig. 18. Active learning performance measured from the chip showing the ben-
efit of the ALDS approach.

single-channel ECG algorithm in [33]), and a patient-adaptive

arrhythmia detector (based on the single-channel ECG features

suggested in [33]). All tests are performed using clinical patient

data from the CHB-MIT and MIT-BIH databases [34], [35],

with expert-annotated EEG and ECG recordings, respectively.

A. EEG-Based Seizure Detection

Fig. 16(a) shows a block diagram of the seizure-detection

application. The CPU performs feature extraction according to

user software, and the SVMAperforms classification configured

by user software. The EEG signals are acquired from various

scalp locations. Each EEG channel is downsampled by a factor

of four using a decimation filter, and the band-limited signal

components in eight different bins (centered at 0, 3, 6, 9, 12, 15,
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Fig. 19. Cycle count and energy savings for (a) seizure detection and (b) arrhythmia detection.

18, and 21 Hz) are extracted using bandpass FIR filters. The en-

ergy of each component is then accumulated in a 2-s window.

This gives eight features per channel. The features from three

consecutive windows are then combined to capture transitional

variances of the EEG. The final resulting feature vector thus

has a dimensionality of 8 3 N (where N corresponds to the

number of EEG channels).

B. ECG-Based Arrhythmia Detection

Fig. 16(b) shows the block diagram of the ECG-based ar-

rhythmia-detection application. As in seizure detection, feature

extraction occurs on the CPU, and classification occurs in the

SVMA. The algorithm uses morphology features of the ECG.

Two windows are defined for each beat segment, corresponding

to 1) 50 ms to 100 ms, and 2) 150 ms to 500 ms, with

respect to the R-peak in the ECG QRS complex. Ten evenly

spaced samples (S1–S10) are extracted from the first window,

and eight evenly spaced samples (S11–S18) are extracted from

the second window, giving 18 samples from each ECG beat seg-

ment. Additionally, three R-peak-to-R-peak measures are used

to form the final feature vector. Pre-RR measures the R-to-R

distance between the current beat and the previous beat, while

post-RR measures the R-to-R distance between the current beat

and the next beat. Local-RR is the average R-to-R distance of

10 local ECG beats.

C. Patient-Adaptive Arrhythmia Detection

The block diagram of the patient-adaptive arrhythmia-detec-

tion application is shown in Fig. 17 along with the test setup.

The same features as shown in Fig. 16(b) are used. The adap-

tive detector is seeded with a population-level patient-generic

model derived from the collective records gathered retrospec-

tively from multiple patients. The algorithm then continuously

selects batch data from incoming patient-specific ECG sensing

(as described in Section III-C) and transmits these to a base sta-

tion. A new model is then generated and provided back to the

device for upload. This process continues iteratively until model

convergence is achieved. To permit lab demonstration, a batch

size of 5 is selected from a pool of 100, yielding 20 data re-

duction; however, in practice much larger pools would be used

for greater data reduction.

In the test setup, the prototype PCB consists of the prototype

IC and a Bluetooth module. The IC’s radio interface controls

the Bluetooth module to communicate with a PC base station,

which functions as a clinical server. The FPGA board shown is

used to drive and acquires data from the prototype IC. This test

setup was in fact used for all three application demonstrations.

Fig. 18 shows measured results from the application. As

shown, active learning gives substantial performance improve-

ment, iteratively achieved over the patient-generic model. The

results from a random-learner are also shown, which does not

use the computed metrics but rather selects batch data randomly

from the incoming sensor data. The superior performance of

the active learner highlights the benefit of the ALDS approach.

D. Application Energy Measurements

To demonstrate the energy and cycle-count savings within ap-

plications, we utilize the RBF kernel. Although the SVMA can

be configured to support various other kernels as preferred, the

RBF is an energy-limiting kernel and is most general due to the

high-level of flexibility it provides. Fig. 19 shows the measured

cycle counts and energy for the applications, comparing the case

without using the accelerators (i.e., CPU-only) to the case using

the accelerators. The accelerators reduce the total cycle counts

by 36.3 and 68.3 for the seizure and arrhythmia detectors,

respectively. This allows real-time operation by the processor at

a reduce (without the accelerators, the applications cannot

run in real time even at full 1.2 V ). The resulting energy

savings are 62.4 and 144.7 , with a total energy per classi-

fication of 273 J (@0.85 V, 2 MHz) and 124 J (@0.75 V,

1.5 MHz), respectively.

V. CONCLUSION

Low-power physiological-signal recording technologies

have emerged for advanced medical applications enabled by

low-power devices. For many envisioned applications, how-

ever, it is critical to extract clinically valuable outputs from the

acquired physiological signals. The challenge is that analyzing

physiological signals requires high-order model due to the com-

plex nature of the underlying processes, and patient-specific

models are often needed since the manifestations of targeted

states are highly variable. Machine learning offers promising

tools to address both challenges, but the computations involved

are not well handled by traditional DSP, and thus the high-order

models required for accurate analysis dominate energy con-

sumption.

In this work, we propose a biomedical processor with con-

figurable machine-learning accelerators for low-energy and

real-time detection algorithms. Supporting various classifica-

tion kernel functions, a configurable SVMA module enables

a wide tradeoff space for classification energy and memory
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usage versus performance. An ALDS module enables online

active learning to minimize the burden on clinical experts for

patient-specific model adaptation.

The proposed architecture reduces the energy of two repre-

sentative applications (i.e., EEG-based seizure detection and

ECG-based arrhythmia detection) by 62 and 145 . This en-

ables W-level power consumption and real-time execution of

the applications.
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