
Afzal Malik, Bill Moyer, Dan Cermak
M•CORE Technology Center, Motorola, Inc.

P.O. Box 6000, MD TX77-F51, Austin, TX 78762-6000
{malik,billm,dcermak}@lakewood.sps.mot.com

ABSTRACT
Advances in technology have allowed portable electronic

devices to become smaller and more complex, placing stringent
power and performance requirements on the device’s components.
The M•CORE M3 architecture was developed specifically for
these embedded applications. To address the growing need for
longer battery life and higher performance, an 8-Kbyte, 4-way
set-associative, unified (instruction and data) cache with pro-
grammable features was added to the M3 core. These features
allow the architecture to be optimized based on the application’s
requirements. In this paper, we focus on the features of the M340
cache sub-system and illustrate the effect on power and perfor-
mance through benchmark analysis and actual silicon measure-
ments.

A Low Power Unified Cache Architecture Providing
Power and Performance Flexibility

241

1. INTRODUCTION
The M•CORE M340 processor contains an 8-Kbyte, 4-way

set-associative, unified L1 cache with 16-byte line size, a M3 pro-
cessor core, and a Memory Management Unit (MMU). The M340
cache sub-system supports programmable modes of operation to
accommodate the varying embedded application environments in
order to improve overall cache efficiency. These modes are con-
trolled via a Cache Control Register(CACR) which allow certain
features of the cache to be enabled/disabled for power and perfor-
mance tuning.

To illustrate the effectiveness of the different features of the
cache, we have collected data from benchmark simulations and
have analyzed the various power and performance improvements.
The main contribution of this paper is an evaluation of power
consumption and performance on an actual implementation of a
1M transistor commercial low-power CPU.

The following sections describe the enhancements and eval-
uate their effect on performance and power consumption.

2. PERFORMANCE AND POWER EVAL-
UATIONS

The Powerstone benchmark suite [2] was used to evaluate
performance and power savings. It contains a collection

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ISLPED ‘00, Rapallo, Italy.
Copyright 2000 ACM 1-58113-190-9/00/0007... $5.00.

of embedded and portable applications, including paging, auto-
mobile control, signal processing, imaging, and fax applications.
These benchmarks were run on the structural gate-level verilog
model and the actual silicon (where applicable) of the M340 pro-
cessor. The simulations were performed with the cache in differ-
ent modes and the external burst memory latency of 5-1-1-1 clock
cycles.

3. CACHE WRITE MODES
The M340 cache sub-system supports two write modes:

copyback and writethrough. The M340 cache supports both meth-
ods for integration flexibility based on the given application.

The write mode for each cache access is determined via the
writethrough (WT) bit in the MMU or the Cache Write Mode
(CWM) bit in the Cache Control Register (CACR). If WT is set,
that access is forced to be a writethrough request. This allows
regions of memory to be marked as writethrough without altering
the state of the CACR. If the WT bit is clear, the state of the
CWM bit determines the write mode of operation: copyback if set
and writethrough if clear. It should be noted that all writes to the
cache are handled with a no-write-allocate policy.

Table 1: Powerstone Benchmark Suite

Benchmarks Instr Accesses Description

qurt 35273 Square Root calculation using floating point

whetstone 48741 Test for compiler optimization

crc 19896 Cyclic redundancy check

bcnt 965 Bit shifting & anding through 1K array

auto 266446 Automobile control applications

blit 14198 Graphics applications

compress 102501 A UNIX utility

des 99340 Data Encryption Standard

engine 263946 Engine control application

fir_int 115154 Integer FIR filter

g3fax 824345 Group three fax decode (single level image
decompression)

jpeg 2430577 JPEG 24-bit image decompression standard

pocsag 37112 POCSAG paging communication protocols

ucbqsort 221583 U.C.B. Quick Sort

v42 2272271 Modem encoding/decoding

242

3.1 Evaluating Cache Write Modes
Address bus utilization was used as a metric to determine the

portion of time the processor is utilizing the external bus. In a
multi-processor system in which the main memory is shared by
more than one CPU, it is desirable to minimize external bus utiliza-
tion.

As shown in Figure 1, the writethrough mode suffers more
external memory accesses than copyback. The copyback mode
allows multiple writes to the same block to be merged before being
written to external memory. Based on the configuration of the other
cache features, copyback mode can illustrate tremendous perfor-
mance improvement.

Due to the larger percentages of external bus traffic,
writethrough mode will also yield higher power consumption since
most external memories reside off-chip and suffer I/O pad and
interconnect loadings. Figure 2 shows the effect of both
writethrough and copyback modes on system power. Even though

the copyback mode causes the cache to consume a larger portion of
the overall power, the total power consumption is less for copy-
back.

Since the M340 does not provide hardware support for moni-
toring cache coherency in multi-master environments (i.e. cache
snooping), writethrough mode would provide more efficient sys-
tem coherency management. The copyback mode would require
flushing of the dirty entries in the cache potentially causing more
external bus activity depending on the flushing frequency and
cache configuration.

4. WAY MANAGEMENT
Way management refers to the ability to control accesses to

individual ways of the cache for power and performance tuning.
The M340 cache incorporates enable bits that can be controlled via
the CACR. There are 8 bits total, 4 for instruction way enabling
(WIE bits) and 4 for data way enabling (WDE bits). Since the
M340 cache is a unified data/instruction cache, each way can be
enabled or disabled for instruction and/or data access.

When cleared, these bits allow locking at the way level as

opposed to other techniques such as line locking [3] or half-cache
locking [1]. Way level locking reduces the control logic area and
complexity and still allows way control flexibility.

4.1 Evaluating Way Management
To study the effect that the locking policy has on performance

and power for a given set of applications, each benchmark was run
for each way combination1. Figure 3 depicts the following three
configurations: All Ways Enabled for data and instruction
accesses, One Way Enabled for data and instruction accesses
(effectively a one-way direct-mapped cache) and “Optimal” Way
configuration for the given benchmark (Optimal Way corresponds
to the configuration that yielded the least power consumption from
the system perspective). Two graphs are shown to illustrate these
results. Each graph has been normalized to the “All Ways Enabled”
case.

As shown in Figure 3, smaller programs will consume less
total power since fewer ways can be enabled without suffering the
penalty of conflict misses. Fewer ways enabled equates to lower
access power in the arrays. Consequently, larger programs benefit
from having more ways enabled to avoid numerous conflict misses
that result in more high-power external memory accesses.

The advantage of way management in the M340 is that the

au
to

bc
nt bl
it

co
m

pr
es

s
cr

c
de

s
en

gi
ne

fir
_i

nt
g3

fa
x

jp
eg

po
cs

ag
qu

rt
uc

bq
so

rt
v4

2
w

he
ts

to
ne

0.0

20.0

40.0

60.0

80.0

Figure 1: Address Bus Utilization

Writethrough Mode
Copyback Mode

Pe
rc

en
t B

us
 U

til
iz

at
io

n
(%

)

Writethrough

Copyback

0.0 0.5 1.0

Core Cache I/O

Figure 2: Write Mode Power Chart

1 Cache control register was configured with all features disabled
excluding way configuration.

Figure 3: Way Management Power Graph

au
to

bc
nt bl
it

co
m

pr
es

s
cr

c
de

s
en

gi
ne

fir
_i

nt
g3

fa
x

jp
eg

po
cs

ag
qu

rt
uc

bq
so

rt
v4

2
w

he
ts

to
ne

0.0

0.5

1.0

1.5 Optimal Way Config
One I/D Way (same)

To
ta

l P
ow

er
 C

on
su

m
pt

io
n

(1
10

0
00

11
)

(1
11

0
00

11
)

(1
11

0
00

01
)

(1
11

1
10

00
)

(1
00

0
10

00
)

(1
11

0
00

01
)

(1
00

0
10

00
)

(1
11

0
00

01
)

(1
11

1
10

00
)

(1
11

0
00

11
)

(1
00

0
00

01
)

(1
00

0
11

11
)

(1
00

0
00

01
)

(1
11

1
00

01
)

(1
00

0
01

11
)

(WDE WIE)

au
to

bc
nt bl
it

co
m

pr
es

s
cr

c
de

s
en

gi
ne

fir
_i

nt
g3

fa
x

jp
eg

po
cs

ag
qu

rt
uc

bq
so

rt
v4

2
w

he
ts

to
ne

0.0

0.5

1.0

1.5

Optimal Way Config
One I/D Way (same)

Figure 4: Way Management Performance Graph

C
yc

le
 C

ou
nt

(1
10

0
00

11
)

(1
11

0
00

01
)

(N
o

Ef
fe

ct
)

(1
11

1
11

11
)

(1
10

0
00

11
)

(1
11

0
00

01
)

(N
o

Ef
fe

ct
)

(1
10

0
00

11
)

(1
11

1
11

11
)

(1
11

1
10

00
)

(N
o

Ef
fe

ct
)

(1
11

0
00

01
)

(N
o

Ef
fe

ct
)

(1
11

1
00

01
)

(0
00

1
11

10
)

(WDE WIE)

243

optimal way configuration can be chosen for a given application.
There are numerous factors that are used to determine the optimal
configuration for a given application. However, there is one that
seems to provide the biggest impact on power and performance:
instruction to data conflict miss rate. Code segments that have pre-
dictable instruction and data access patterns provide the best
opportunity for way optimization.

Figure 4 shows the performance versus way configuration.
Fewer enabled ways equate to more conflict misses which result in
higher latencies due to increased external memory accesses. The
Optimal Way selection (the configuration that provided the fewest
number of execution cycles), however, showed significant
improvement over the All Ways Enabled case for the larger bench-
marks. Again, the way organization will vary depending on the
code structure. Applications can achieve even greater performance
improvements through compiler optimization that utilizes way
manipulation.

5. Store Buffer and Push Buffers
M340 is equipped with an eight word (32 bytes) deep store

buffer and a four word (16 bytes) deep push buffer. Store and push
buffers increase the overall system performance by reducing the
latency for requests made by the core.

5.1 Store Buffer
The store buffer contains a FIFO that can defer pending write

misses or writes marked as writethrough. When enabled, store
operations which miss (writethrough or copyback) in the cache or
which are marked as writethrough are placed in the store buffer,
and the core access is terminated. This allows the core to be decou-
pled from the effect of the external memory latency.

For systems that require copyback operations or systems that
can trade-off performance for power efficiency, the store buffer
and corresponding control logic can be gated off by disabling the
store buffer bit in the CACR.

5.2 Push Buffer
The push buffer reduces latency for requested data on a cache

miss by temporarily holding displaced dirty data while the new
data is fetched from the memory. Once the line-fill from external
memory completes (i.e. all four words of the cache line are written
into the cache), the cache controller can generate the appropriate
line-write bus transaction to write the contents of the push buffer
into memory.

Similar to the store buffer, the push buffer and corresponding
control logic can be turned off via the push buffer bit in the CACR.
This feature helps to save power consumption in systems that
require writethrough only transactions or those systems that can
trade-off performance for power savings.

5.3 Evaluating the Store and Push Buffers
The impact of store buffer and push buffer on performance

and power is shown in Figure 5. The external memory latency used
in the buffer performance evaluation was 5 for the writes from the
store buffer and 5-1-1-1 (burst write) from the push buffer.

The increase in performance for the store buffer enabled case
illustrated in Figure 5 is attributed to the external memory write
access latencies seen by the core. This performance improvement
is most evident in applications that exhibit a large number of
sequential write accesses such as the auto benchmark.

The push buffer provides a boost in performance for applica-
tions that suffer a large number of conflict misses (v42, jpeg, and
compress) on lines that have been marked dirty. This buffer allows

the push latency penalty to be transparent to the core. As shown in
Figure 5, the push buffer can provide a significant performance
improvement for the appropriate application. The benchmarks that
illustrated little to no improvement from the push buffer support
can utilize the enable bit to help conserve power.

Figure 5 also illustrates the total increase in power dissipation
incurred by enabling the store and push buffers. The store buffer
and push buffer can be disabled by clearing the respective enable
bit in the CACR. Due to efficient clock gating techniques[2], the
power contributions from the buffers and corresponding control
logic are negligible when the buffers are disabled.

6. CONCLUSION
Many solutions have been proposed that increase perfor-

mance or power efficiency. The M•CORE M340 provides user
programmability for power and performance tuning. Two write
modes (writethrough and copyback) are supported with store and
push buffer enhancement options, and way management control
for instruction versus data caching policy adjustment and for data
preservation. Each of the enhancements show performance and/or
power consumption improvements depending on the configuration.
The programmable nature of the M340 cache promotes user pro-
gramming flexibility and easier design trade-off manipulation. The
programmable features of the cache discussed in this paper can be
configured for optimal performance/power consumption based on
the application through appropriate benchmark analysis.

7. REFERENCES
[1] J. Circello et al., “The Superscalar Architecture of the MC

68060”. IEEE Micro, Vol. 15, No. 2, April 1995, pp. 10-21.
[2] J. Scott, L. Lee, J. Arends, B. Moyer, “Designing the Low-

Power M•CORE Architecture,” Proc. Int’l. Symp. on Com-
puter Architecture Power Driven Microarchitecture Work-
shop, Barcelona, Spain, July 1998, pp. 145-150.

[3] K. Suzuki, T. Arai, N. Kouhei, and I. Kuroda, “V830R/AV:
Embedded Multimedia Superscalar RISC Processor”. IEEE
Micro, Vol. 18, No. 2, April 1998, pp. 36-47.

[4] M•CORE M340 Reference Manual, Motorola, Inc., 2000.,

Figure 5: Buffer Power Increase and Perfor-
mance Improvement

au
to

bc
nt bl
it

co
m

pr
es

s
cr

c
de

s
en

gi
ne

fir
_i

nt
g3

_f
ax

jp
eg

po
cs

ag
qu

rt
uc

bq
so

rt
v4

2
w

he
ts

to
ne

0.0

20.0

40.0

60.0

Pe
rc

en
t I

nc
re

as
e

(%
)

Push Buffer Performance
Store Buffer Performance

Push Buffer Power
Store Buffer Power

M•CORE is a trademark of Motorola, Inc.

