
Journal of Signal and Information Processing, 2012, 3, 293-307 

http://dx.doi.org/10.4236/jsip.2012.33039 Published Online August 2012 (http://www.SciRP.org/journal/jsip) 
293

A Low Sample Size Estimator for K Distributed Noise 

Eduardo X. Alban
1
, Mario E. Magaña

2*
, Harry Skinner

1
 

 

1Intel Corporation, Hillsboro, USA; 2School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, 

USA. 

Email: eduardo.x.alban@intel.com, *magana@eecs.orst.edu, harry.g.skinner@intel.com 
 

Received May19th, 2012; revised June 20th, 2012; accepted June 30th, 2012 

ABSTRACT 

In this paper, we derive a new method for estimating the parameters of the K distribution when a limited number of 

samples are available. The method is based on an approximation of the Bessel function of the second kind that reduces 

the complexity of the estimation formulas in comparison to those used by the maximum likelihood algorithm. The pro- 

posed method has better performance in comparison with existing methods of the same complexity giving a lower mean 

squared error when the number of samples used for the estimation is relatively low.  
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1. Introduction 

The estimation of the parameters of a distribution with a 

limited number of samples available is usually a chal- 

lenging task. A reduced number of samples constrains 

the use of the method of moments (MoM) which despite 

having low complexity has relatively low performance 

due to its high dependency on the sample size. Prior in [1] 

presented a study of the minimum number of samples 

required for the estimation of the K distribution parame- 

ters estimators using moments. Estimators with smaller 

variance based also on moments are usually preferred, 

though the one based on the maximum likelihood (ML) 

method is generally the method of choice. Despite the 

fact that ML estimators are optimal, in some cases they 

require either the evaluation of uncommon functions or 

the solution of non-linear equations when no closed-form 

expressions of them exist. 

The K distribution is one of those distributions for 

which closed-form expressions for all of its ML parame- 

ters estimators are not known. The distribution is well 

known in the radar and sonar community where it has 

been used to model sea clutter, reverberation and land 

clutter in synthetic aperture radar ([2-5]). It was intro- 

duced by Jakeman and Pusey in [3] for the estimation of 

the magnitude of scattered radiation. Its extension to a 

zero-mean symmetric distribution defined over positive 

and negative values, i.e. double-sided, can easily follow 

from their derivation [6] and it is given by  
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with 1, 0b    . Furthermore, it has been shown that 

the distribution is generated by X Y Z  where Y is a 

zero mean Gaussian random variable with variance b
2 

and Z is gamma distributed with parameters  1, 2   

[5]. 

Different types of estimators for the K distribution 

have been proposed that try to overcome the high vari- 

ance of the MoM and the difficulty in finding ML esti- 

mates. Iskander et al. in [7] propose the use of fractional 

moments which they show produce estimates with lower 

variance than the MoM. The authors in [8] and [9] pro- 

pose the use of logarithmic estimators. ML estimates for 

a limited range of   were presented by Raghavan in 

[10] based on an approximation of the K distribution us- 

ing the Gamma distribution. Abraham and Lyons in [11] 

rely on the MoM with bootstrap to find a better estima- 

tor for the shape parameter. The same authors in [12] 

present an estimator of the shape parameter applied to 

sonar using a Bayesian adaptation of the MoM with ana- 

lytical approximations using the gamma distribution 

(Bayes-MoM-AA), using the bootstrap techniques (BB) 

and a mixed one with their corresponding performances 

and trade offs. 

Different extensions of the K distribution have been 

proposed on the literature which have resulted on more 

tractable expressions for the parameter estimators. Hruska 

et al. in [13] present estimators for the Homo-dyned K 

distribution based on the different moments of the distri- 

bution. Iskander and Zoubir in [14] introduce a general- 

ized version of the distribution that the authors named as 

the Generalized Bessel K distribution (GBK) thanks to 

which in [7] they were able to find a ML closed-form  *Corresponding author. 
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expression for the parameter b of the K distribution in 

terms of  . The distribution results from a generalized 

Gamma random variable with scale parameter that is also 

generalized Gamma distributed. The probability density 

function (pdf) is given by  
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. It is understood that  

1 2 , ,GBK
f x f x c   . The double-sided K dis- 

tribution can be derived from the GBK as  
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Other methods rely heavily on numerical methods to 

find the parameters estimates. They make use of iterative 

methods such as the Expectation-Maximization as in [15] 

and [16], 2-D maximizations as in [17], neural networks 

as in [8] and [18] or non-linear techniques, among others. 

These methods are robust albeit computationally expen- 

sive, which make real time applications infeasible. 

In this paper we derive an estimator that retains the 

simplicity of the method of moments with comparable 

computational requirements but has better performance 

when a small number of samples are available. The me- 

thod is compared with other methods of the same com-

plexity through simulations.   

The rest of the paper is organized as follows: In Sec- 

tion 2 we review some of the existing estimation me- 

thods. In Section 3, the derivation of the new estimation 

method is presented. Section 4 presents simulation re- 

sults. Finally, Section 5 presents some conclusions. 

2. Parameter Estimation Review 

In this section we briefly review some of the estimators 

that have been proposed for the K distribution, which 

will be compared with our proposed method in a later 

section. Specifically, we proceed to find the estimators 

for the two parameters   and b that define the double- 

sided distribution. 

2.1. Method of Moments 

The method of moments (MoM) computes the parame- 

ters of a distribution by finding expressions in terms of 

its moments. The moments are then replaced by their 

corresponding empirical ones computed from the sample 

set. 

The moments of a K distributed random variable X are 

defined as  and they are computed as fol- 

lows:  
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We notice that whenever k is an odd integer  

0k
E X     and when k is an even integer the moments 

are given by  
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Then, it follows that the second moment (the variance 

for zero-mean distributions) is given by  
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and the fourth moment by  

 

 
  

4 4

4

4

5
2 2

2
,

π 1

12 1 1 1 .

b

b






 

     
 
 

   

1

 

Thus, the kurtosis which is defined as 2

2 4 2    is 

given by  
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It follows that the estimators of   and b are found to 

be  
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respectively, where 2̂  is the second empirical moment 

of the data and ̂  is the empirical kurtosis. 

The estimators are computationally inexpensive and 

easy to implement but they depend heavily on the num- 

ber of samples available. A small sample set causes the 

variance of the estimator to increase to levels that make 

the estimation unreliable as it is seen on Figure 1. The 

figure shows MoM estimates and their variances for pa- 

rameters 0.5   and 0.02b   over 5000 independent 

trials as a function of the sample size. 

2.2. Fractional Moments 

Iskander in [19] noticed that fractional moments produce 

estimates with lower variances. His method proposes the 

se of the ratio:  u 
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Figure 1. Parameter estimation (MoM)   = 0.5, b = 0.02. 
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which in the case of the type of K distribution studied 

here comes with the restriction . Replacing the 

expression with the moments formula given in (4), ap- 

plying the properties of the gamma function and after 

some simplifications, we find that the expression for the 

double-sided K distribution turns out to be  
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which is independent of b. Then, the parameter   can 

be easily estimated using the corresponding empirical 

ratio, namely  
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The value of b can be estimated using the empirical 

second moment or any other moment since they establish 

a relation between b and  . 

2.3.  log
rX X  Estimation 

Blacknell and Tough in [9] proposed an estimator of   

based on  logr
X X  which gives a comparable accu- 

racy with the fractional moments estimators among oth- 

ers. They noticed that setting  leads to simple ex- 

pressions for the estimator of 

1r 
  of the one-sided K dis- 

tribution. We proceed with the derivation of the estimate 

that corresponds to the double-sided K distribution. This 

derivation follows the one given in [9], though in this 

case it is easily seen that setting  gives an estimate 

that does not have 

2r 
  as an argument of any    ,     

or any other exotic function. We also notice that the dis- 

tribution is zero-mean and symmetric around the mean, 

therefore it makes sense to work with the absolute values 

since the logarithm of negatives values is not defined. 

Now,  
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Setting r = 2 in the previous results we evaluate the 

following expression:  
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The estimate ̂  is obtained by replacing the expected 

values by their corresponding empirical estimates. 

2.4. Maximum Likelihood Estimation 

Maximum Likelihood (ML) estimation is one of the most 

reliable estimator even when only a limited number of 

samples exist. Also, the ML estimator is asymptotically 

unbiased and it attains the Cramer-Rao lower bound as- 

ymptotically better than any other unbiased estimator. 

Though the ML estimator performs better than other 

methods, its high complexity prevents its use when li- 

mited computational capabilities are available.  

The ML estimator results from the maximization of 

the likelihood or the log-likelihood function, whichever 

gives a more tractable expression. In the case of the K 

distribution the log-likelihood l is preferred and it is 

given by  
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The parameters estimators are obtained by maximizing 

the log-likelihood function, but it is evident from its 

partial derivatives  

 

1 2 3 2

2
1

1 2

3 2

,
2

i i

N
i

i i

l
N

b b

x x
K K

bx

b x
K

b

 





 





 


    

    
      

    


b








  (14) 

and  
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that finding closed-form solutions for both parameters is 

a difficult task. In fact, closed-form expressions cannot 

be directly obtained from them [7,9,10,15,17]. 

Iskander et al. in [7] derived a closed-form expression 

for one of the parameters by first finding an expression 

for the parameter   from the generalized Bessel K dis- 

tribution  
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where     is the digamma function. The parameter b 

of the double-sided K distribution can easily be obtained 

following the relationship given in (3). Replacing the 

corresponding values    1 2, , , 1 2, 1, 2 , 2c b     , it 

follows that  
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which turns out to be a non-linear function of  . The 

authors also found from the maximization of the likely- 

hood function that  
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for the generalized Gamma distribution. The maximum 

likelihood estimates can then be found using the expres- 

sions just presented and the equivalence in (3) for the 

double-sided K distribution. Although there exists a 

closed-form expression for one of the parameters, we are 

still required to use computationally intensive methods to 

find both parameters estimates. 

In [7] the maximum likelihood estimates are found 

using a cubic spline interpolation. In [15] the iterative 

method known as the Expectation-Maximization is em- 

ployed. Finally in [8] and [20] neural networks are used. 

This has lead us to investigate a new estimate that retains 

the simplicity of the estimators previously presented 

which yields accurate estimates when we only have ac- 

cess to small sample sets of the process.  

2.5. Cramer-Rao Lower Bound 

The Cramer-Rao lower bound (CRLB) gives a bound on 
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the performance of an estimator. Specifically, it tells us 

about the minimum value that the variance of an unbi- 

ased estimator can achieve. In other words,  

   CRB ,var              (20) 

where   is the estimator. 

The CRLB is given by  
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where  is the log-likelihood function. Deriving a 

closed-form expression of the CRLB for the K distribu- 

tion would be a daunting task but for specific parameters 

of the distribution. Kay and Hu in [21] have also pro- 

posed a method to compute the bound using the charac- 

teristic equation. For the purpose of comparing the dif- 

ferent estimation methods we proceed to evaluate the 

CRLB numerically. 
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3. New Estimator 

We propose an approximate method that leads us to a 

more tractable expression for the estimation of the K dis- 

tribution parameters. This approximation turns out to 

have better performance than others for a low number of 

samples. 

We now proceed to derive estimators that have as a 

starting point an expression found in [7] that results from 

the maximization of the log-likelihood of the GBK dis- 

tribution. The authors found that maximizing the log- 

likelihood gives the following expression:  

   
1 1 1

1
log log ,

N N N
i i

i i

i i i

x x
x x N

N   

   
    

   
      (22) 

where  

 
2 1 2 1

2 1

2 2

1 1

2

2 2

.

2

c c

i i

i
i c

i

x x
K K

x
x

x
K

   

 

 





   



      
               

  
     

   

(23) 

Since standalone expressions derived from the previ- 

ous equations are not known, using numerical methods as 

in [7] are the only methods to find the estimators. 

We notice that the presence of the modified Bessel 

function of the second kind,  adds complexity to 

the derivation of estimators. Thus, it is more convenient 

to express  in terms of well known functions 

since it eases the burden of finding the estimators. 

 gK 

 gK 

Now, it follows that for a large argument the modified 

Bessel function K can be approximated by [22]  

π
,

2

ix

i b
i

i

x b
K e x

b x


 
 

 


where the approximation corresponds to an equality 

regardless of its argument when 
1

2
   . 

An expression for the estimator of b for the double- 

sided distribution can be obtained by first using the 

equivalence defined in (3) and the approximation (24) in 

(23). It follows that  

 
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1 2
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K

b
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e

x

x

b

 



 



 



   
   

   
 
 
 









    (25) 

Now, let  1

N i

ii

x
x f

b

 
 
 

   then  

 
1 1

,
N N

i i

i
i i

ix x x
x f f

b b b 

   
   

   
        (26) 

holds whenever  f   is a monotonic function. Then, 

assuming that only a small fraction of the data does not 

satisfy the condition ix b  and using (25) on (22) we 

have that  

 
1 1

1
log log ,

2 2

N N
i i

i
i i

x x
x N

b N b 

    
          

   

1 1

1
log log ,

2 2

N N
i i i

i i

x x x
N

b b N b 

    
          

   

which holds since the log function is monotonic. 

It is now easy to show in a few steps that the estimator 

of b is given by  

   
1 1

1 1ˆ log log .
N N

i i l

i l

b x x x
N N 

   
 

      (27) 

The expression for  just derived does not depend on b̂

 , it is computationally inexpensive and it can be im- 

plemented using a fairly simple architecture. 

The parameter   can be easily estimated from any of 

the moments and the estimate of b just derived. One of 

the options is to use the second moment as follows:  

2

2

ˆ
ˆ 1.

b̂

                   (28) 

b          (24) 

The estimators assume that the ix ’s values that are 
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larger than b outnumber those that are not, because this 

ensures that the actual value of the K function is mostly 

dominated by the approximation (24). On the one hand, 

if b is infinitesimally small the condition is easily met 

since almost all ix  are larger than it. On the other hand, 

if b is large, our estimators still perform well whenever N 

is small since only a fraction of the ix ’s would be 

smaller than b and the approximation holds. 

Estimator Bias 

The bias of the estimator is given by  ˆ ˆbias b E b b    . 

Now,  
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Then, the bias is given by  

   
 

 

   

3 21ˆbias 1 2log 2
π 1
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     (29) 

The asymptotic bias can be computed from the previ- 

ous expression as  

   
 

 

   

3 2ˆlim bias 2 log 2
π 1

3 2 1 1 ,

N
b b




   



  
 

 


     


      (30) 

where it can be easily seen that  ˆlim bias 0N b   only  

when 0  . Therefore, the estimator just derived is not 

unbiased or asymptotically unbiased, except for 0  . 

The accuracy of the estimator can be improved by sub- 

tracting the bias from the estimator. However, by doing 

so we end up with the same situation as before, even 

though without the modified Bessel function of the sec- 

ond kind. This is because the bias of b depends on the 

value of  . Therefore, in order to find the estimates we 

will need an iterative process to find the values which 

increases the computational requirements of the estima- 

tors. 

In the next section the performance of this estimator 

and the ones described on the previous section are quan- 

tified. 

4. Simulation Results 

A series of Monte Carlo simulations were carried out to 

evaluate the performance of the estimators. The estima- 

tion methods were applied over 5000 realizations of a K 

distributed process and their performances were analyzed 

using as a measure the mean-square error. For compare- 

son, a maximum likelihood was computed using a one- 

dimensional search for the parameter   with (17) sub- 

stituting the corresponding value in (19). Also, the Cra- 

mer-Rao lower bound (CRLB) was evaluated numeri-

cally to compare it with the others estimators. 

We first analyze the performance of the estimators in 

terms of the number of samples available. The analyses 

are constrained to take on parameters with small values, 

3   and 10b   which does not limit its applicability 

since most of the known processes fall within those 

ranges. Figures 2 and 3 show some of the results for a K 

distributed random process with parameters 0.5  , 

0.02b   and 0.2  

0

, . Comparing with the 

other methods, our estimator outperforms them whenever 

N is small, 

0.8b 

50N   for the cases shown here. We no- 

tice that when N is large, the performance of our estima- 

tor does not improve as the other methods do, being out- 

performed by them. This is not an unexpected result 

since our estimator is based on an approximation that 

does not guarantee the asymptotic unbiasedness of the 

estimator for all values of  . We also notice that for 

small N our estimator performs similar to the maximum 

likelihood estimator with some values giving a slightly 

better performance due to the inaccuracies of the one- 

dimensional search that depends on the choices of the 

grid spacing. 

The behavior of the estimators in terms of   for the 

range −1 to 1.5 is also analyzed. We present here simula- 

tion results with 0.02b   and N = 32, 64, 128, 256, 512. 

Figures 4, 5 and 6 show the estimators when N = 32, 64, 

128. The results confirm that our estimators are more 

consistent and perform better than the others except for 

0.5   , where the fractional MoM and the logx x  

perform slightly better. The simulations show that our 

method performs quite well for parameters 10b   and 

3  . This does not limit the scope of the estimator 

since there is a wide range of K distributed processes 

with parameters inside that range. The proposed estima- 

tor together with the maximum likelihood estimator 

(MLE) are the ones whose mean-squared error is closer    
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Figure 2. MSE estimators comparison:   = 0.5, b = 0.02. (a) Estimators of b; (b) Estimators of  . 
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Figure 3. MSE estimators comparison:   = −0.2, b = 0.8. (a) Estimators of b; (b) Estimators of  . 
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Figure 4. MSE estimator comparison: N = 32, b = 0.02. (a) Estimators of b; (b) Estimators of  . 
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Figure 5. MSE estimator comparison: N = 64, b = 0.02. (a) Estimators of b; (b) Estimators of  . 
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Figure 6. MSE estimator comparison: N = 128, b = 0.02. (a) Estimators of b; (b) Estimators of  .  
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to the CRLB when N is small. In general, the MLE is 

closer to the CRLB for all values of N. 

The performance of the other estimators improves as 

the number of samples available for the estimation in- 

creases, as it is seen on Figure 7 for N = 256. Specially 

the logX X  outperforms the rest but for some values 

in which our estimators still outperform them. 

In [9], it was argued that the estimator based on 

log
r

x x  comes as a natural limit of the fractional mo- 

ments estimator of [19], this turns out to be true when the 

number of samples N is large, where how large N should 

be depends on the parameters   and b, but not when N 

is small as it is shown in the figures. The results confirm 

that the proposed estimator outperforms other estimators 

that are comparable in terms of complexity and computa- 

tional requirements. 

5. Computational Complexity 

In this section we present an analysis of the computa- 

tional complexities of the estimators presented in the 

previous sections. Specifically, we focus on the analysis 

for the estimators of the parameter   referring to the 

expressions given in (6), (9), (12), (17), (18), (19), (27) 

and (28). 

The evaluation of the estimators is straight forward 

except in the case of the MLE estimator which, as we 

mentioned before, needs to be evaluated through a one- 

dimensional search. We use an iterative method to solve 

the one-dimensional search where a set of values is ap- 

plied to the respective equations until the one that better 

satisfies the equations is found. Specifically, the MLE 

estimator is computed with the following algorithm:  

For each V   

 
 1

1
1

1 12
exp log

2 2

N

ii
b x
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


  
 
 
 

   
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1
log log

2

N Ni i

ii i

x x
q x

b N b

    
         
 

1 2





 

If q ≈ 0 then 

Return   

end if 

end for 

where V is the set of all points that form the grid over 

which the one-dimensional search is done and    is 

equal to (19). Let V  be the average number of itera- 

tions the algorithm needs to compute the estimate 

N

 , 

then the number of operations is given by V iN N  

where i  is the number of operations per iteration. The 

value of  depends on the grid size and its spacing. 

Limiting the range of values where to search would 

greatly reduce the grid size, otherwise, V  could be too 

large to be implemented on real time applications. 

N

NV

N

Table 1 summarizes the number of operations that 

each estimation method requires. In the case of the MLE 

estimator the table shows the number of operations per 

iteration. In the following analysis we ignore the com- 

plexity that the evaluation of the digamma function, ex- 

ponential function and the square root requires since if 

they are evaluated in an estimator, they are only done 

once. In the case of the absolute value, the implementa- 

tion only requires a check on the sign so overall in com- 

parison with operations such as multiplications and addi- 

tions its contribution to the computational complexity 

can be ignored. We also notice that any quantity raised to 

the second power is simply a multiplication with itself. 

Therefore the analysis reduces to the quantification of 

additions, multiplications, divisions, the evaluation of 

logarithm and the modified Bessel function of the second 

kind  K  . 

The modified Bessel function of the second kind is 

given by  

     
 

π
2 sin π

,
I z I

K


 
 

 
z          (31) 

where  I z  can be expressed as [23]  

   
 

 
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2

1 1

2
1 .

1

m

m k

z z
I z

k k



  



 

 
  
    


2

     (32) 

The evaluation of  K   can be conducted using a 

forward recurrence following the method described in 

[23], but for the matter of quantifying its computational 

complexity we truncate the infinite series (32) to some 

sN  that defines the accuracy of the computed value. 

Then, the truncated series is given by  

   
 

 
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2

=1 =1

2 2
1 .

1

BN m

m k

z z
I z

k k



  

 
  
    

      (33) 

The number of operations that contributes largely to 

the evaluation of  K   using the truncated series is 

shown in Table 2. 

Now, we can quantify the complexity of the estimators 

in terms of basic operations such as additions , 

multiplications , divisions  as it is summarize in 

Table 3. 


 

The highest complexity is due to the number of multi-

plications and divisions. Therefore we quantified the 

computational complexity in terms of both operations. In 

terms of multiplications, the complexity for the MLE is 

given by   max ,VN N N s  and for the rest of the 

estimators including the new method is given by  N . 

In terms of divisions, the complexity of the MLE is    
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Figure 7. MSE estimator comparison: N = 256, b = 0.02. (a) Estimators of b; (b) Estimators of  . 
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Table 1. Number of operations of estimators. 

Number of Operations 
Operation 

Moments Fractional logr
X X  MLE per iter. New 

Addition 2 1N   3 5N   3 4N   6 3N   3 1N   

Mult. 2 1N   3 2N   2N   2N 4  1N   

Division 3 6 5 2 4N   3 

Log   N 2 1N   N 

 K      3N   

Abs   N N N 

Exponent    1  

  1 1 1   

Digamma    1  

 
Table 2. Number of operations of a truncated modified 

Bessel function of the second kind. 

Operation Number of Operations 

Addition 4 1
s

N   

Multiplication 2 5
s

N   

Division 2 6
s

N   

 
Table 3. Complexity of estimators. 

Algorithm Number of Operations Complexity ( ), 

MoM    2 1 2 1 3N N          , 1N   

Fractional Mo.    3 5 3 2 6N N          , 1N   

logr
X X     3 4 2 5N N          , 1N   

MLE 

 
 
  

6 3 2

2 6

2 6

V s

s

s

N N N

N N

N N

 

  

  







   max ,
V

N N N s

New Method    3 1 1 3N N          , 1N   

 

 max ,VN N N
 1

s  and for the new and other estima- 

tors is . 

The new method has been proved to have a computa- 

tional complexity that is comparable with estimators 

based on moments but low in comparison with the MLE. 

6. Conclusion 

In this paper we have derived a new estimation method 

for the K distribution. The method provides an improved 

performance over existing techniques when only a li- 

mited number of samples is available. It has been shown 

through Monte Carlo simulations that the method pro- 

duces estimates with smaller variance than others while 

maintaining their simplicity and computational require- 

ments low. The performance of the proposed estimator is 

comparable to the maximum-likelihood without the com- 

plexity that this one requires. 
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