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Abstract—This paper presents a low-voltage current-reuse 

chopper-stabilized frontend amplifier for fetal ECG monitoring. 

The proposed amplifier allows for individual tuning of the noise in 

each measurement channel, minimizing the total power 

consumption while satisfying all application requirements. The 

low-voltage current reuse topology exploits power optimization in 

both the current and the voltage domain, exploiting multiple 

supply voltages (0.3, 0.6 and 1.2V). The power management 

circuitry providing the different supplies is optimized for high 

efficiency (peak charge-pump efficiency = 90%).The low-voltage 

amplifier together with its power management circuitry is 

implemented in a standard 0.18µm CMOS process and 

characterized experimentally. The amplifier core achieves both 

good noise efficiency factor (NEF=1.74) and power efficiency 

factor (PEF=1.05). Experiments show that the amplifier core can 

provide a noise level of 0.34µVrms in a 0.7 to 182Hz band, 

consuming 1.17µW power. The amplifier together with its power 

management circuitry consumes 1.56 µW, achieving a PEF of 

1.41. The amplifier is also validated with adult ECG and 

pre-recorded fetal ECG measurements. 

 
Index Terms—fetal electrocardiography, frontend amplifier, 

low-voltage, low-power, current-reuse, NEF, PEF. 

I. INTRODUCTION 

IGH-RISK pregnancies are becoming more and more 

prevalent because women choose to have children at 

progressively higher age. Nowadays, over 10% of all 

pregnancies are seriously complicated [1], resulting in rising 

numbers of perinatal morbidity and mortality. Regular 

recording of the fetal electrocardiogram (fECG), which enables 

fetal heart beat rate (fHR) measurement, has been demonstrated 

to be useful for fetal health monitoring [2, 3]. To give an 

example, observing the fetal heart response to uterine 

contractions, which can be extracted from non-invasive 

measurements of the electrohysterogram (EHG), is a widely 

used procedure to recognize fetal distress [4, 5].  

State-of-the-art fetal monitoring systems [6] are larger than 

a smart phone. To improve user comfort and make 

fetal-monitoring solutions more appealing to a large public, we 

propose a patch-like wearable system which integrates 

electrodes, electronics and a coin battery, as shown in Fig. 1 (a).    
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Fig. 1 (a) The system concept and (b) the taped-out frontend amplifier chip with 

test board and experimental setup 

Ultra-low power consumption is paramount in such a 

wearable system, to enable miniature battery size and prolong 

the operational lifetime. To give an example, a 1.4V zinc-air 

button battery with a capacity of 620mAh [7] is able to provide 

about 350�W of continuous power when used for three months. 

Current biomedical monitoring systems usually include 

frontend amplifiers, a multiplexed ADC and a radio that sends 

raw data. In this case the power consumption is dominated by 

the radio. Recent advances employ on-body signal processing 

to extract the physiological information before transmission 

[8], reducing the RF transmission power to a negligible level 

and achieving a lower total consumption. Accordingly, in our 

system we envisage three amplification channels, a DSP to 

implement the fetal monitoring algorithms, power management 

circuitry and a radio - Fig. 1 (a). In this case, the system power 

consumption is usually dominated by the signal processing 

power in the DSP, while the frontend amplifier consumes the 

majority of the rest. Therefore, the power optimization on the 

analog circuitry should focus on the frontend amplifier.  

Most of the power in the amplifier is needed to keep a 

suitably low input-referred noise, ensuring fetal heart rate 

detection. Several bipolar measurement directions are typically 

needed in fetal ECG systems, because the position of the fetus 

is unknown and changes in time [9]. The total system power 

could thus be minimized by assigning dynamically most of the 

power (and thus the lowest noise level) to the measurement 

direction that captures the largest fECG signal. The noise 

specifications on all other measurement directions can then be 

relaxed, strongly decreasing the power consumption in these 

channels. A trial and error approach is used to find the 

measurement direction that yields the best signal. Meanwhile, 
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the system is still enabling on the other channels maternal ECG 

measurement (mECG—which is typically 10 to 20 times larger 

than the fECG) and fECG peak amplitude detection, to follow 

the movement of the fetus and trigger possible changes in the 

optimum measurement direction. 

Summarizing, a frontend amplifier for wearable fECG 

monitoring should have excellent power efficiency and a 

tunable noise range. Extensive circuit research in recent years 

has resulted in amplifier designs for biomedical sensing 

applications reaching a noise efficiency factor (NEF) as low as 

1.52 [10, 11]. The research towards further optimization on the 

NEF begins to saturate. However frontend amplifiers 

exploiting power optimization in both current and voltage 

domain are not fully explored yet. 

In this paper, two approaches for fECG monitoring 

amplifiers achieving state-of-the-art NEF are presented:  a 

stacked current-reuse multi-channel amplifier [12] and a low 

voltage chopper-stabilized current-reuse amplifier. The latter 

topology is implemented in a standard 0.18µm CMOS 

technology and experimentally characterized. Fig. 1 (b) shows 

a block diagram of the frontend amplifier chip, which includes 

the low-voltage amplifier and power management circuitry. 

Measurement results show that this low-voltage amplifier 

consumes 1.17µW in the core (thus excluding the power 

management circuitry), achieving an NEF of 1.74 and a power 

efficiency factor (PEF) of 1.05 in low noise configuration. In 

this work all signal processing algorithms are implemented in 

Matlab® running on a PC. 

The paper is organized as follows. In Section II the system 

for fECG monitoring is described in detail. In Section III the 

stacked current-reuse multiple-channel frontend amplifier [12] 

is described. In Section IV, the novel low-voltage frontend 

amplifier is presented and analyzed. In Section V, the two 

topologies are compared and the advantages of the low-voltage 

amplifier for a fECG system are discussed. The power 

management circuitry to perform voltage conversion is 

analyzed in Section VI. Measurement results of the low-voltage 

amplifier are presented in Section VII, and conclusions are 

drawn in Section VIII. 

II. FETAL ECG MONITORING SYSTEM 

The amplitude of the fECG strongly depends on gestational 

age, inter-electrode distance, and measurement orientation with 

respect to the moving fetal heart [9, 13]. In the last 12 weeks of 

pregnancy, when the fetus is usually head-down, the fECG 

measurement direction that offers maximum SNR is typically 

one of the three shown in Fig. 2(a) [9]. In this picture the 

electrodes defining the three bipolar fECG measurement 

directions are shown in dark and are placed at a distance of 

16cm. An additional ground electrode is introduced to connect 

the body to the electric ground and reduce power line 

interference. This 5-electrode configuration can be embedded 

in a comfortable patch. Measurements with this patch provide 

typical fECG amplitudes between 3 and 20µV and enable also 

recording of the EHG [9]. 

The algorithm for fECG monitoring described in [14] 

consists of three steps: maternal ECG (mECG) peak detection,  

 
Fig. 2 (a) Electrode grid for fECG measurement and (b) combination of 

algorithms used for fECG measurement 

accurate mECG estimation/removal, and fECG peak detection, 

as shown in Fig. 2(b) with continuous lines. The computational 

complexity of the algorithm is usually dominated by the mECG 

waveform estimation. In [14], a dynamic mECG template is 

matched to the time stamps of each wave provided by the first 

step. This approach minimizes the residual maternal 

component after mECG removal, enabling an accurate 

extraction of the fECG, but is computationally intensive (10 

times more complex than the mECG peak detection). 

Alternatively, the simple algorithm described in [15] can be 

used just to evaluate the amplitude of the fECG signal. In this 

algorithm the QRS-waves in the mECG are simply blanked 

after peak detection, as shown in Fig. 2(b) with dashed lines, 

leaving a subset of fECG peaks from which the fECG 

amplitude can still be estimated. This simple algorithm 

consumes only 10% of the computational power needed for the 

complex algorithm in [14]. 

To minimize computational power while maintaining fECG 

signal quality, we propose to run the complex algorithm [14] 

only on the channel with the best signal quality. The largest 

frontend current will also be assigned to this channel, to 

minimize added electronic noise. At the same time the simple 

algorithm [15] runs on the other two channels, to monitor the 

fECG amplitude, helping to choose the optimal measurement 

direction. Frontend power will be kept in these channels to a 

much lower level, which is still sufficient to keep a meaningful 

evaluation of the fECG amplitude. In this way, almost 2/3 of the 

total system power can be saved [16, 17]. The system 

dynamically assigns the complex algorithm and minimum 

frontend noise (by increasing the biasing current of the 

amplifier) to the channel with highest signal quality, 

monitoring the signal quality available in the other channels 

with the low-complexity algorithm [15] to follow the fetal 

movements.  

In the analog frontend the equivalent input noise level for 

the best channel is chosen to be 0.3�Vrms, ensuring sufficient 

SNR to run the high-accuracy algorithm. For the other two 

channels the allowed input noise can be increased to 1.0�Vrms.  

III. STACKED MULTIPLE-CHANNEL FRONTEND AMPLIFIER  

The frontend amplifier defines the noise level of biomedical 

acquisition systems. It usually applies a capacitive feedback as 

shown in Fig. 4(a) to define an accurate gain without 

introducing noise due to the feedback components [18]. Power 

optimization of the frontend amplifier in the current domain to 

improve the efficiency becomes increasingly difficult [10, 11], 

while optimization in the voltage domain can still achieve  
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Fig. 3 (a) The proposed mid-rail current sink/source (MCS), (b) connection of 

two differential pairs and (c) split of the NMOS [12] 

 
  Fig. 4 Proposed current reuse folded-cascode amplifier with MCS [12] 

Table I Transistors sizing for the folded-cascode amplifier with MCS  

Transistors M1a,b M7a,b M8a,b M9a,b  M10a,b 

W/L (μm/ μm) 600/0.3 240/0.3 10/1 20/1 2/6 

Transistors M2a,b M3a,b M4a,b M5a,b    M6a,b 

W/L (μm/ μm) 240/0.3 600/0.3 20/1 10/1 1/6 

Transistors  MMSCP (p-transistor in MSC)   MMSCN (n-transistor in MSC) 

W/L (μm/ μm)    12/0.5     6/0.5 

significant savings. This is because the input and output signal 

swings of the frontend amplifier are small, allowing for an 

aggressive reduction of the supply voltage. For this reason, 

more than one amplifier can be stacked between the rails, 

enabling reuse of the current among different channels, as 

further described in this Section. 

A. Current reuse with mid-rail current sink/source 

A mid-rail current sink/source (MCS) enabling 

current-reuse among different channels is proposed in Fig. 3 (a) 

to provide a power efficient frontend system with a single 

power supply. The MCS consists of an NMOS and a PMOS 

transistor with their sources connected. The gate voltages are 

provided by the biasing branch on the left side.  

All transistors (N and PMOS) in the MCS and in the 

amplifiers that are discussed in following sections are biased in 

weak inversion. To ensure that these transistors are also in 

saturation, the minimum VDS (VDS.min), for both N and PMOS, 

should be larger than 4 times the thermal voltage, i.e. about 

100mV. Therefore, the voltage across the MCS (VMCS) should 

be sufficiently high (VMCS≥2VDS.min). The voltage at B2 is kept 

equal to the one at B1 by amplifier A1, which is implemented by 

a simple differential pair with active load.  

The MCS features high impedance at both output terminals 

(drains). Therefore, it allows for connection of two independent 

differential pairs at both outputs as shown in Fig. 3 (b): an 

NMOS pair on the top and a PMOS pair at the bottom, which 

are driven separately by two different inputs. Based on this 

technique, a stacked amplifier with current reuse technique for 

fECG monitoring applications can be proposed.      

B. Stacked current-reuse folded-cascode topology  

A stacked current-reuse folded-cascode amplifier topology 

exploiting a MCS [12] is shown in Fig. 4 (b). The transistor 

dimensions are given in Table I. Compared with a conventional 

folded-cascode topology, the current source transistors M3a,b 

and M7a,b are driven together with the input pairs M1a,b and M2a,b 

to reuse the current and thus double the effective gm. Still as 

shown in Fig. 4 (b), the input stages of two folded-cascode 

amplifiers can share the same bias current and the same MCS, 

taking advantage of the limited supply voltage needed for the 

input stage in fECG applications.  

Summarizing, in the current domain, the current through the 

MCS is reused four times and, therefore, the equivalent NEF 

for one channel is reduced to half of the one for a single 

differential pair (NEF0 in eq.1). More in detail, the voltage 

noise for one channel is reduced to 1/�2 of the original value 

because M3a,b and M7a,b are driven together with the input pairs. 

At the same time, the current consumed per channel is reduced 

to half because the MCS enables sharing the same bias for two 

channels. One should observe that the current in the output 

stage is typically just 5% of the one in the input stage of 

folded-cascode amplifiers for biomedical applications, and thus 

it will not substantially deteriorate the NEF. The NEF of each 

channel in the stacked current-reuse topology can thus be 

calculated to be: 

������	
�� = �����2 � 2 ∙ �����/2��� ∙ �� ∙ 4�� ∙ �� =�����2 ������������1��������� 
As all transistors in this design are in weak inversion and the 

thresholds for P and N type are similar in absolute value 

(��300mV), the gate-source bias voltage VGS is basically the 

same for all transistors. Therefore, in the voltage domain, the 

minimal supply voltage of the proposed amplifier is 

4VGS+2VDS.min
1, as shown in Fig. 4 (b). In comparison, the 

current reuse amplifier [11] shown on the left in Fig. 4 (c) needs 

a minimal supply voltage of 2VGS+2VDS.min (the voltage across 

the current source and current sink is also equal to one VDS.min in 

its implementation) but provides only one channel rather than 

two. Considering that two channels with identical noise level 

will be provided, the power consumption of these topologies 

can be compared in Eq. (2), neglecting the current in the second 

stage of the amplifier in Fig. 4 (c) and the current in the output 

stage of the stacked current-ruse folded-cascode amplifier in 

Fig.4 (b). !"#$.&#�!��'�� =� � ∙ �4�($ + 2�*$�2� ∙ �2�($ + 2�*$� = 2�($ + �*$2�($ + 2�*$ ��������������2� 
 

1  VGS3+VGS2+VMSC.min+VGS1+ VGS7 = 4VGS+2VDS.min 
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Fig. 5 (a) Proposed low-voltage amplifier and (b) The amplifier with feedback 
network and DC servo loop 

Table II Transistor sizing for the low voltage amplifier core 

Transistors M1a,b M7a,b M8a,b M9a,b M10a,b 

W/L (μm/ μm) 500/0.5 200/0.5 10/0.5 20/0.5 2/12 

In this formula !"#$.&# is the consumption of the amplifier with 

MCS and �!��'��  the power needed for the amplifier in Fig. 

4(c). Plugging in eq. 2 the actual values of the bias voltages VGS 

and VDS, a 20% reduction in power can be estimated for the 

amplifier with MCS compared to the current-reuse solution of 

Fig. 4 (c).  

Finally, the NMOS transistor in the MCS can be split in 2 

identical ones as shown in Fig. 3 (c), providing two channels 

above the MCS, each with half current (in this case there are 

two copies of the  amplifier in the dashed block in Fig. 4 (b)). 

This configuration provides one low-noise amplifier (below the 

MCS) and two low-power amplifiers (above the MCS), each 

using half of the current consumed in low-noise amplifier. A 

more detailed discussion on this topology can be found in [12]. 

C. Drawbacks of the stacked multiple-channel amplifier  

The proposed stacked current-reuse amplifier can provide 

three channels with excellent power efficiency. As discussed in 

Section II, for fECG one amplifier with a noise level of 

0.3�Vrms and two amplifiers with a noise level of 1�Vrms should 

be provided. Assuming the same NEF, the current consumed in 

the low power amplifier should be 10% of that in the low noise 

amplifier [19]. However, the current in the two low power 

amplifiers (above MSC) is always 50% of that in the low noise 

amplifier, hence the noise levels of the three channels cannot be 

tuned individually. This results in unnecessary high power 

consumption at system level. 

IV. LOW VOLTAGE FRONTEND AMPLIFIER  

According to the discussion in Section III.C, an amplifier 

with high power efficiency which allows for individual tuning 

of the noise level [13, 20] in each channel would be the most 

suitable choice for our fECG application. Therefore, a novel 

low-voltage current-reuse folded-cascode topology is 

suggested. 

A. Low voltage current-reuse folded-cascode topology   

The proposed low-voltage current-reuse folded-cascode 

topology is shown in Fig. 5 (a). The transistor dimensions are 

given in Table II. Current reuse is still exploited as the NMOS 

and PMOS pairs are driven together. The MCS is not used: 

instead, power management circuitry including charge pumps 

and LDOs (low dropout regulators) is employed to scale down 

aggressively the supply voltage VDD1 for the input stage of the 

folded-cascode amplifier, saving power. In order to further 

reduce the supply voltage in the input stage, the biasing voltage 

of the NMOS pair M7a,b and the PMOS pair  M1a,b are provided 

separately. This measure reduces the theoretical value of the 

minimum supply voltage for the input stage from 2VGS +VDS.min
2 

to 3VDS.min
3. Besides, the bulk terminals of both PMOS input 

transistor M1a,b are connected to ground to reduce VTH, avoiding 

the need for a negative voltage to bias their gates. As a result, 

VDD1 can be as low as 0.3V. The simulated value of leakage 

current from the PMOS wells is negligible, being below 10pA.  

Since the biasing voltages of the NMOS pair M7a,b and the 

PMOS pair M1a,b are provided separately, two capacitive 

feedback networks (with C1=48pF, C2=1.06pF, Cm=2pF) are 

required in close loop configuration, as shown in Fig 5 (b). The 

common mode feedback circuit is implemented with two 

pseudo-resistors made with PMOS transistors in series as 

shown in Fig 5 (a), which provides 10GOhm simulated 

resistance. The supply voltage of the amplifier is designed at 

0.3V for the input stage (VDD1) and 0.6V for the output stage 

(VDD2). For these supply voltages the maximum simulated 

output swing of the amplifier reaches 530mV. A 1.2V supply is 

used for the amplifier in the DC servo loop to enable there a 

large output swing and decrease the size of Cm as discussed in 

Section IV.B. The power management circuitry that performs 

voltage conversion will be discussed in Section VI. 

Compared with the two-stage amplifier in Fig. 6 (a) [11], 

the proposed low-voltage current-reuse amplifier has only one 

dominant pole at the output, providing good stability when used 

in close loop. The two stage amplifier with two poles is usually 

compensated by exploiting Miller effect, which makes the pole 

at the first stage dominant [10]. This may result in an increase 

in current needed in the second stage to provide enough phase 

margin. Compared to the telescopic amplifier with current 

reuse in Fig. 6 (b) [10, 20], this topology allows 3VDS.min supply 

on the main current path, which is typically 50% of the 

minimum supply (2VGS+2VDS.min) required by the telescopic 

topology. The noise tuning is realized by changing the bias 

current of the input stage of the proposed amplifier. 

 
2 VGS1+ VGS7+VDS.min=2VGS+VDS.min 
3 VDS1+ VDS7+VDS.min =3VDS.min 
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Fig. 6 (a) The two stage topology with current-reuse and (b) the telescopic 

topology with current-reuse 

 
Fig. 7 Amplifier in the DC servo loop 

B. DC servo-loop  

Chopper stabilization is used in the low-voltage amplifier to 

cancel offset and 1/f noise. Chopping is preferred to 

auto-zeroing as it avoids noise aliasing [21]. The choppers are 

implemented by transmission gates. Clock feed-through 

appears at the chopping frequency, but being this outside the 

signal band, it can be easily filtered out. A DC servo loop is 

needed to create a high pass filter that cancels the modulated 

electrode DC offset and part of the motion artifacts, to prevent 

saturation of the amplifier [18]. The relation between the 

maximum DC offset (VDEO) that can be cancelled and the 

voltage swing of the amplifier in DC servo loop can be 

expressed as VDEO·C1= Vint.·Cm, where Vint is output voltage of 

the integrator in the DC servo loop, C1 is the input capacitor and 

Cm is the capacitor connected to the servo loop as shown in Fig. 

5(b). The ratio Cm/C1 should be made large to provide sufficient 

VDEO cancellation (e.g. 50mV). However, the general input 

referred noise of the amplifier increases with the ratio Cm/C1 as 

shown in Eq. (3). Therefore a relatively high supply voltage 

(1.2V) is chosen for the amplifier in the DC servo loop in order 

to increase Vint. In this way the ratio Cm/C1 can be kept less than 

1/20, avoiding any significant increase of the input referred 

noise level, according to the equation:  

+,-.-�,��. = /01 + 0. + 0�01 2. ∙ +��3.-�,��. ���������������������������3� 
The schematic of the amplifier in DC servo loop is shown in 

Fig 7. Since the output common mode voltage of the main 

amplifier is 0.3V, a PMOS input pair is used. The first stage and 

the second stage use both diode-connected loads. Their outputs 

drive a push-pull output stage to achieve rail to rail output 

swing and increase Vint. The amplifier has only one dominant 

pole at the output stage. The common mode feedback (CMFB) 

is applied to the output stage. The current ratio between the 

CMFB branch and the main branch is 1:3 (Fig. 7), to reduce the 

gain of the open loop transfer function of the CMFB and 

improve stability, while keeping the current consumption low. 

The amplifier in the CMFB is implemented with a differential 

pair with active load and the resistors are implemented with 

PMOS transistors as discussed in section IV. A. The whole 

servo-loop amplifier consumes only 150nA. 

V. COMPARISON OF THE TWO PROPOSED TOPOLOGIES   

The proposed low-voltage amplifier topology suits the 

fECG application better than the stacked current-reuse 

amplifier since it allows individual tuning of the noise in each 

channel of the system. The NEF is widely used for comparison 

of the power efficiency of frontend amplifiers, however only 

the current consumption is considered in this figure of merit. A 

power efficiency factor (PEF) that also includes the supply 

voltage VDD is introduced as PEF= NEF
2
·VDD to allow better 

comparison of power efficiency for amplifiers with different 

supply voltages [22]. For an amplifier with multiple supply 

voltage we suggest to calculate the PEF as in eq. (4), where Itot 

is the total current consumption used to calculate the NEF, and 

Ptot is the total power consumption of the circuit considered. 

!�� = ���. ∙ !������� ����������������������������������4� 
According to the approach discussed in Section II, for the 

fECG system should be provided one channel with 0.3µVrms 

noise level and two channels with 1.0µVrms noise. The power 

efficiency of the proposed low-voltage topology and the 

stacked current-reuse topology can then be compared in Table 

III based on simulation results. In this Table the core power per 

channel is the power consumed by the close loop amplifier 

(including DC servo) tuned to the specified channel noise level, 

and results in a core NEF/PEF per channel. The core power of 

all channels is the total power consumed by the two closed-loop 

amplifiers in low-power mode and the one in low-noise mode. 

The total power for all channels is the total power of the three 

amplifiers together with the power management circuitry. 

As it can be seen in Table III, the stacked current-reuse 

amplifier achieves a better NEF than the low-voltage topology 

in both modes, because the current is reused four times. 

However, the low-voltage current-reuse topology achieves 

lower PEF in low-noise mode because of its lower supply 

voltage (0.3V) in the input stage compared to the 1.0V supply 

needed for the stacked current-reuse amplifier. 

When providing three channels with the different noise 

specifications described above, the total core power of the 

low-voltage amplifiers is less than 50% of the core power 

consumed by the stacked multiple channel amplifier. This is 

because the proposed topology allows individual tuning of the 

noise level in each channel, while the stacked multiple-channel 

topology fixes the relation between the noise level in the 

low-noise channel and that in the low-power channels. When 

the power consumed in the power management circuitry is 

included in the simulation of the low-voltage amplifiers and 

one LDO (1.2 to 1.0V) is included for the multiple-channel 

amplifier, the simulated total power of the fECG system based 

on the low-voltage amplifiers is still 37% lower than the one 

exploiting the stacked multiple-channel amplifier.  
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Fig. 8 Scheme of the power management circuitry 

VI. POWER MANAGEMENT CIRCUITRY   

A. The power management system   

The power management circuitry performs on chip all 

voltage conversions needed for the proposed low-voltage 

current-reuse amplifier including the DC-servo loop. The 

design goal is to maximize power efficiency. According to the 

block diagram in Fig. 8, the circuitry includes two 1/2 

step-down charge pumps (CP1, 2) and three LDOs. Three 

supply voltages are generated for the frontend amplifier (input 

and output stage of the folded-cascode gain stage) and the 

DC-servo amplifier. A minimum input supply voltage of 1.4V 

is required to allow enough dropout voltage in the LDOs. 

B. Charge pumps& LDOs   

The power efficiency of charge pumps is analyzed and 

optimized. There are three main contributions to the losses in a 

charge pump [23]: (1) charge redistribution losses (PRL) that are 

inversely proportional to the switching frequency fsw; (2) 

conduction losses from the switches (PCL) that are frequency 

independent; (3) switching losses from switches, switch drivers 

and from the parasitic capacitance at the bottom plate of the 

capacitors (PSL) that are proportional to fsw. A modified version 

of the model in [24], which includes also the switching losses 

PSL and models all power losses by the output impedance Ro 

(Fig. 9(a)), is used to optimize the power efficiency of the 

charge pumps. The qualitative behavior of Ro for varying 

switching frequency is plotted in Fig. 9 (a) (black curve). Due 

to the sum of the different loss contributions, the minimum Ro 

(and thus the optimal efficiency of the charge pump) can be  

 

 
Fig. 9 (a) the model of a charge pump and its output resistance Ro and (b) the 

schematic of the chosen ladder charge pump with Cf =100pF and C0=25pF 

expected at medium frequencies, where the conduction loss is 

dominant. As shown in Fig. 9 (b), a two-phase implementation 

of a simple parallel-series topology including two flying 

capacitors (Cf) is chosen for its good efficiency and low ripple 

in this region [25]. 

The power efficiency of the charge pump is maximized 

following a suitable optimization procedure, which exploits the 

proposed model of all losses (based on [24]). First, the 

maximum total on-chip capacitance Ctot= Co+2Cf is fixed 

because of the limited chip area. Second, the maximum allowed 

amplitude of the output voltage ripple Vrp is specified. 

Accordingly, the minimum fsw can be obtained based on Ctot, Vrp 

and the load current: fsw = Iload/(2Ctot·Vrp). In order to reduce the 

conduction losses, the width of the switches should be 

increased, reducing the on-resistance. As shown by the dashed 

curve in Fig. 9(a), this will result in the increase of the 

switching losses, since the capacitance of the switches 

increases with their width, and a decrease of the conduction  

Table III Simulated current consumption of the frontend system 

                               Topology  
                                 & mode 
Performances 

Low-voltage current-reuse amplifier Stacked multiple-channel amplifier 

Low-noise channel Low-power channels Low-noise channel Low-power channels 

Current Supply Current Supply Current Supply Current Supply 

Input stage 3.1µA 0.3V   0.35�A 0.3V   3.1�A 1.0V 1.55�A 1.0V 

Output stage 50nA 0.6 V   50nA 0.6 V   50nA 1.0V 50nA 1.0V 

DC-servo amplifier 150nA 1.2 V   150nA 1.2 V   150n 1.0V 150nA 1.0V 

Noise level (0.5~180Hz band)† 0.32�Vrms 1.0�Vrms 0.32�Vrms 0.47�Vrms 

NEF of channel  1.66 2.12 1.17 1.24 

Core power per channel 1.14µW 0.31µW 1.65µW 0.98µW 

Core PEF per channel 0.95 2.79 1.37 1.54 

Core power of all channels* 1.76µW  3.60µW 

Total power for all channels 2.72µW 4.32µW 

* includes one low-noise channel and two low-power channels    †Corner simulations predict a max.5%variation of the input noise 
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Fig. 10 Die-photo of the prototype amplifier 

     
Fig. 11 Measured AC transfer of the amplifier       

   
Fig. 12 Measured output spectrum of the amplifier for a 2.3 mV 45Hz signal 

   

   
Fig. 13 (a) Output noise spectrum in low-noise mode (fchop=4kHz) (b) Output 

noise spectrum in low-power mode (fchop=400Hz) 

losses. The minimum loss is achieved when the corner 

frequency between conduction and switching losses equals to 

the minimum fsw calculated before. In this implementation, the 

fsw is generated off-chip. A Matlab® model is implemented to 

verify the calculation results. The LDOs are designed for 

minimum voltage dropout and minimum current consumption 

in the loop amplifier. 

VII. MEASUREMENT AND BENCHMARKING 

The proposed low-voltage amplifier is implemented in a 

standard 0.18µm CMOS process together with the power 

management circuitry. The amplifier, the feedback capacitors, 

the DC servo loop, the charge pumps, LDOs and buffers to 

drive the off-chip load are shown in the die-photo (Fig. 10). 

These buffers are implemented using an amplifier (differential 

pair with active load) in unity gain feedback configuration. 

These buffers limit the signal bandwidth to the desired value by 

appropriate off-chip loading. The chip occupies an area of 1.6 

mm2. The performance of this design is verified by suitable 

measurements. 

A. Electric characterization 

Fig. 11 shows the measured AC transfer of the amplifier 

obtained with an Agilent 35670A signal analyzer. The small 

signal gain is 33dB (45V/V). The -3dB bandwidth is 

0.7~182Hz. The linearity is tested by a 45Hz sinusoidal signal 

with 2.3mV amplitude, to obtain a 1% total harmonic distortion 

(THD) at the output. This test signal is generated by an Agilent 

33250A function generator, which has a measured noise floor 

of 500nV/ �Hz . The chip output is acquired with an 

Agilent54642D oscilloscope and processed using Matlab® to 

apply a second-order 50Hz notch filter and obtain the output 

spectrum shown in Fig. 12. The second and third harmonics are 

respectively 41dB and 50dB lower than the fundamental. Fig. 

13 shows the output noise spectrum measured with an Agilent 

35670A signal analyzer.  

The noise performance of the amplifier is measured for two 

power settings. In the low-noise high-power mode, the 

chopping frequency is 4kHz and an output noise floor of 

1.1µV/�Hz  is measured, corresponding to an input-referred 

noise floor of 24.4nV/�Hz. This results in a Vrms of 0.34µV in 

the signal band. In the high-noise low-power mode, the 

chopping frequency is 400Hz and an output noise floor of 

3.3µV/�Hz  is measured, corresponding to an input-referred 

noise floor of 73.3 nV/�Hz. This results in a Vrms of 1.01µV in 

the signal band. It can be observed that the 1/f noise component 

is effectively removed by the chopper-stabilization. Some 

50Hz interference can be observed in the noise spectra. The 

amplifier core consumes 1.17µW (NEF=1.74, PEF=1.05) and 

0.30µW (NEF=2.04, PEF=2.50) for the two settings, while the 

whole circuit including power management consumes 1.56µW 

(PEF=1.41) and 0.52µW (PEF=4.33) in the two modes. 

    The charge pumps are measured at 5µA current load, which 

is the total current consumption of the three amplification 

channels (one in low-noise mode and two in low-power mode). 

The efficiencies of CP1 and the cascaded CP1/CP2 are plotted 

in Fig. 14 (a) as a function of the switching frequency. The 

graph follows a concave shape, as it would be expected looking 

at the convex shape of the output resistance Ro (Fig. 9 (a)). At 

low frequencies PRL dominates, and the efficiency increases 

with fsw; at high frequency PSL dominates, and the efficiency  
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Fig. 14 The efficiency of charge pumps for different switching frequencies (a) 

and load conditions at a constant fsw=100kHz (b) 

 
Fig. 15 Measured adult ECG signal output with Ag/AgCl electrode 

 

 

 
Fig. 16 (a) Original pre-measured signal (b) Measured signal with amplifier in 

low-noise mode and (c) its zoom-in (d) fECG waveform after mECG removal 

 

 

   
Fig. 17 (a) Measured signal with amplifier in low-noise mode (b) Zoom in of 

the signal (c) Waveform after running the simple algorithm 

decreases with fsw; as foreseen in the design phase, the 
efficiency reaches a maximum around 100kHz, where the 
PCLdominates. In Fig 15 (b), the measured efficiency of the 
charge pumps at different load conditions is plotted at the 
chosen fsw=100 kHz. Peak efficiencies are 90% for CP1 and 
83% for the cascaded CP1/CP2. The overall efficiency of the 
power management circuit supplying one low noise and two 
low power channels is measured to be 68.1%. This figure is 
calculated as the total output power divided by the input power 
including the LDOs. 

B. Biologic measurements  

The proposed low-voltage amplifier is validated measuring 

an adult ECG in lab environment with commercial Ag/AgCl 

wet electrodes. With two electrodes placed at only 3cm distance 

on the chest, an output ECG signal of 45-50mVpp 

(corresponding to an input amplitude of ~1mVpp) is recorded 

with the proposed amplifier in low-power mode. The result in 

Fig. 15 shows a clean ECG waveform.  

The amplifier is also verified with pre-recorded signals 

measured in the 26th week of pregnancy with the electrode 

configuration of Fig. 2(a). This signal is replayed by an Agilent 

arbitrary waveform generator 33250A and suitably attenuated 

to obtain the correct signal amplitude at the input of the chip. In 

this signal, the maternal ECG (mECG) has 80µVpp amplitude, 

and the fECG amplitude is 5µVpp. as shown in Fig. 16 (a). An 

off-chip amplifier INA217 is used to provide 20dB additional 

gain, the signal is then digitalized with an oscilloscope and 

processed on a PC using Matlab®. This INA minimizes the



 

 

 

9 

Table IV Benchmarking of the proposed low-voltage amplifier with other works 

 [22] [26] [20] [27] [28] 
[29] 

[30] 
This work 

BPA2 BPA3 Mode1 Mode2 

Year 2013 2013 2014 2011 2012 2012 2013 2014 

Technology 0.18µm 0.13µm 0.35µm 0.5µm 0.18µm 0.5µm 0.13µm 0.18 µm 0.18 µm 

Supply [V] 0.45 1.5 2.5 2.0 1.0 1.0 1.0 1.0*/1.2** 0.3,0.6,1.2*/ 1.4** 

Gain [dB] 52 40.9 40.7 50 34/40 36 40 54.8 33 

THD  

@input amplitude 

0.53% 

2mV 

1% 

8.25mV 

1% 

2.5mV 
N.A. N.A. 

7.1% 

0.5mV 

1% 

0.5mV 

1% 

1.6mV 

1% 

2.3mV 

Bandwidth [Hz] 1-10k 45-20k 0.5-1k 0.2-170 0.2-5.8k 0.3-4.7k 0.1 -10.5k 0.4-5.1k 0.7-182 

Noise BW [Hz] 1-10k N/A 0.05 -200k 0.2-400 0.2-10k 0.3-4.7k 0.1 -10.5k 0.4-10k 0.7-182 

Noise [µVrms] 3.2 3.06 2.8 1.7 5.71 3.6 2.2 4.0 0.34 1.01 

NEF 1.57 1.64 2.01 4.0 2.59 1.9 2.9 1.9 1.74 2.04 

PEF 1.12* 4.03 10.1 32 6.7 3.6 8.4 3.6* 1.05*/1.41** 2.50*/4.33** 

Power [µW] 0.73* 3.9 0.86 3.0 0.8 0.8 12.1 0.8*/1.0** 1.17*/1.56** 0.30*/ 0.52** 

CMRR [dB] 73 78 >70 >105 >60 N/A 80 >60 >70 

PSRR [dB] N/A 80 >70 N/A >70 5.5 >80 >70 >70*** 

Noise Tuning No No Yes No No No No No Yes 

        * excluding the power management circuitry  

        ** including power management circuitry 

        ***measured with the LDO 

impact of oscilloscope noise on the measurement. The resulting 

signals (input referred) are shown in Fig. 16 and Fig. 17. The 

positions of the detected mECG and fECG peaks are annotated.   

The waveforms in Fig 16 (b) and (c) are measured with the 

amplifier in low-noise mode (0.34µVrms noise): the fECG peaks 

are well preserved. The waveform obtained after running the 

high-accuracy mECG removal algorithm [14] on the signal in 

Fig. 16 (c) is shown in Fig. 16 (d). The fECG peaks and the fHR 

are well detected.  

The waveforms in Fig. 17 (a) and (b) are measured with the 

amplifier in low-power (1.01µVrms noise) mode. In this case 

higher noise is visible. The waveform obtained after running the 

simple algorithm [15] (which blanks the mECG QRS waves) on 

the signal in Fig. 17 (b) is shown in Fig. 17 (c). It can be 

observed that the last peak is missing since it overlaps the QRS 

region of a mECG signal. However, the fECG amplitude can 

still be estimated from Fig. 17 (c) knowing the position of the 

fECG peaks which is determined by observing the low-noise 

channel. 

C. Benchmarking  

The proposed low-voltage current-reuse folded-cascode 

amplifier together with power management circuitry is 

compared to previous related works in Table IV. The supply 

voltage of this amplifier is the lowest for the amplifier core 

(0.3V and 0.6V). In spite of the aggressive supply scaling, the 

measured input amplitude for which a 1% THD is achieved 

(2.3mV), is similar to the one reported by other designs with 

comparable gain and 1V supply [29]. The bandwidth and noise 

level suits well the fetal monitoring application. The PSRR and 

CMRR are well in line with other works. The gain of this work 

only includes the preamplifier, and it can be easily increased by  

 

 

changing the feedback ratio or including a second stage 

amplifier with little power penalty. The noise level of the 

low-voltage amplifier can be tuned from 0.34µVrms, (1.17µW 

power), to 1.01µVrms, (0.30µW power), by changing the bias 

current in the input stage. The measured NEF of 1.74 is among 

the lowest published, the core PEF of 1.05 improves previous 

achievements [22], and the PEF including the power 

management circuitry is 1.41. 

VIII. CONCLUSION 

A low-voltage chopper-stabilized amplifier is presented in 

this paper as a further improvement on the stacked multiple- 

channel frontend discussed in [12]. The low-voltage amplifier 

allows for individual tuning of the noise level in each channel. 

Therefore it achieves lower power consumption in a fetal ECG 

system than the stacked multiple-channel amplifier. The 

proposed low-voltage current-reuse folded-cascode topology 

enables a supply voltage of 0.3V in the input stage and 0.6V in 

the output stage, resulting in significant reduction of the power 

consumption. The aggressively scaled supply in the input stage 

is made possible using a suitable bias for the input devices, 

together with bulk biasing of the PMOS devices and a modified 

DC servo-loop. The power management circuitry performing 

on-chip voltage conversion is designed and optimized for high 

efficiency. The measured power consumption of the amplifier 

in low noise mode is 1.17µW for the core and 1.56µW 

including the power management circuitry, corresponding to a 

PEF of 1.05 and 1.41, respectively. The amplifier is validated 

with on-body adult ECG measurements and with a 

pre-measured mECG+fECG signal. 
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Editors' Comments to the Authors: 

 

Associate Editor 

Comments to the Author: 

The paper is suggested for publication, however, there are still some comments 

raised by the reviewers. Please address them adequately, and within two weeks, in 

a final round of minor revision. 

 

Thanks a lot for your recommendation. We response to every comment raised by the reviews in the 
following text. 
 

Reviewers' Comments to the Authors: 

 

Reviewer: 1 

 

Comments to the Author 

Thank you very much for your detailed response. The manuscript and its strength 

have been improved significantly. A couple of very minor things need to be added 

in the text. These are things you have addressed in your response but you haven't 

included in the manuscript, unless I missed them, in which case I apologize. I 

refer below to Reviewer 1 comments, as numbered in your response. 

 

In 6: Please mention in the text that the algorithms are currently implemented in 

Matlab on a PC and refer the reader to Fig. 1(b). 

 

Thank you. We added a sentence to clarify this at the end of the paragraph in section I where Fig. 1(b) 
is introduced (second page, mid of left column): 
“In this work all signal processing algorithms are implemented in Matlab® running on a PC.” 
 

In 16: Mention at that point in the manuscript that a detailed discussion of this 

circuit is presented at your ISCAS paper. 

 
We added one sentence to point out this at the end of section III.B: 
“A more detailed discussion on this topology can be found in [12].” 

In 21. Add in the main text what you say in your response in (1) regarding 

alternatives for noise reduction and reference the classic Enz and Temes paper 

from the IEEE Proceedings, which covers most techniques. Add in the text also 

what you mention in (2) regarding the buffer used with the load for low pass 

filtering. Mention briefly what the topology of the circuit is (is it a simple 

transcoductor? have you linearized this?, What is the value of the load 

capacitance and transcondunctance setting the 182Hz cut-off? (that is if it is a 

gm-c filter)). The DC servo loop details are already in the text and (3) is 

perfectly fine. 

 

(1) The chopping technique is indeed widely used for 1/f noise cancellation in biomedical 
amplifiers for its advantage (no noise aliasing) over auto-zero technique. Therefore we 
explained it briefly this reason and referred to the suggested paper at the beginning of IV.B: 
“Chopper stabilization is used in the low-voltage amplifier to cancel offset and 1/f noise. Chopping is 
preferred to auto-zeroing as it avoids noise aliasing [21].” 



(2) The buffer is implemented with a differential pair with active load, closed in unity gain feedback. 
The linearity is improved by the unity gain connection. At a cut off frequency of 182Hz, the gm is 
~12µS and the load capacitor is 10nF off-chip. We added one sentence to explain the buffer at the 
beginning of section VII: 
“These buffers are implemented using an amplifier (differential pair with active load) in unity gain 
feedback configuration. The buffers limit the signal bandwidth to the desired value by appropriate off-
chip loading.” 
 

In 23: Please mention in the text if you don't already do so, that fsw is 

generated off-chip. 

 

This information is added to the text in section VI: 
“In this implementation, the fsw is generated off-chip.” 
 

One last thing, are any other resistors implemented with pseudo-resistors (e.g. 

the CMFB of Fig. 7)? If yes, just highlight it in the text. Also briefly mention 

in the text what is the topology of the CMFB amp of Fig. 7 (I guess it is a 

simple differential pair with active load). 

 

Indeed the resistors in Fig. 7 are also implemented with pseudo-resistors. The topology of the amplifier 
there is indeed implemented with differential pair with active load. The above information is added to 
the text at the end of section IV: 
“The amplifier in the CMFB is implemented with a differential pair with active load and the resistors 
are implemented with PMOS transistors as discussed in section IV.A.”   
 

References [6] and [7] may not be the appropriate IEEE way to reference websites. 

Please amend accordingly if this is the case. In [1] you are missing a dot after 

2010. In [8] and [14] there may be a space missing between "no." and "1" and 

"no." and "3," respectively. In [3], [19], [20], [21], [27], [28] and [29] you 

refer to "no." as "issue:". Please change this to be consistent with the IEEE 

style and the rest of your references. You are missing dots after pp in 

references [12] and [13]. 

 

Thank you very much for pointing out this problem. We modified all website references to be 
consistent with IEEE style. 
 

Once again thank you for revising the document.  

 

Reviewer: 2 

 

Comments to the Author 

The authors have addressed most issues properly and improved the writing. A few 

more comments. 

 

1. The 0.07% THD is given under 1 mV input, which corresponds with 45-50 mV 

output. This is much less than the maximum 530 mV. The paper should provide the 

THD under 530 mV output, or maximum output for 1% THD. Does 1% THD occur at 530 

mV? 

 



Thanks for your comments. As you suggest we did a new measurement, which shows that with 2.3mV 
input (~100mV output), the THD is 1%. We updated Fig. 12 and table IV accordingly. The text in 
sections VII A and C has also been modified to discuss this new result: 
“The linearity is tested by a 45Hz sinusoidal signal with 2.3mV amplitude, to obtain a 1% total 
harmonic distortion (THD) at the output”. 
“The second and third harmonics are respectively 41dB and 50dB lower than the fundamental. “ 
“In spite of the aggressive supply scaling, the measured input amplitude for which a 1% THD is 
achieved (2.3mV), is similar to the one reported by other designs with comparable gain and 1V supply 
[29].” 
 
2. Since the PSRR is measured with the LDO, it does not show the performance of 

the amplifier. Please mark it in Table IV. 

We added a comment to Table IV:  ***measured with the LDO 

 

3. The conclusion on page 9 line 50 is incorrect. PEF 1.05/1.41 does not include 

the charge pump and the LDO. 

 

The PEF 1.05 does not include the charge pump and LDO, the number 1.41 does include the charge 
pump and LDO. This has also been indicated in Table IV. 
 

4. The authors mentioned the reason for using PMOS input pair in Fig 7 is because 

of the input common mode of 0.3 V. This is not very clear. As discussed, the 

threshold for N/P are almost the same.  

 

The supply voltage of the amplifier in Fig. 7 is 1.2V. At a 0.3V input common mode voltage, a PMOS 
pair allows more headroom (0.3V to 1.2V supply) for the VGS of the differential pair and the VDS of the 
current source than a NMOS pair (which would only allow 0.3V to ground). 
 

5. Page 2 line 25: "the core" (the part excluding power management) is vague and 

remains unclear until very late of the paper. Consider explaining the "core" 

explicitly. Also please check the remaining uses in the paper. 

 

We added an explanation the very first time that we mentioned the word “core” in the sixth paragraph 
of the main text (Section I): 
“Measurement results show that this low-voltage amplifier consumes 1.17µW in the core (thus 
excluding the power management circuitry), achieving an NEF of 1.74 and a power efficiency factor 
(PEF) of 1.05 in low noise configuration.” 
 

6. Page 2 line 55: the sentence is incomplete. 

 

This sentence is modified as follows: 
“This 5-electrode configuration can be embedded in a comfortable patch. Measurements with this 
patch provide typical fECG amplitudes between 3 and 20µV and enable also recording of the EHG [9].” 
 

7. Page 7 line 34: the sentence "The noise performance of ... " fits better in 

the beginning of the next paragraph. 

 

Thank you very much. We moved the sentence to the beginning of next paragraph. 
 

 



Reviewer: 3 

 

Comments to the Author 

The authors have carefully considered the comments made in the first review. Most 

issues have been fully satisfactory solved.  

There are only a few very minor points left, which are listed below with respect 

to the comments from the first review and the authors’ replies. 

 

Reviewer’s comment: 

Abstract + a few times in the manuscript: 

Frequently, expressions like “individual tuning of the noise” are found. Although 

it is clear what is meant, the expression sounds a little confusing, as power / 

voltage / current are tuned resulting in related noise levels.  

Maybe, a better way to express this can be found. 

Authors’ reply: 

The first time we mention noise tuning we, at the end of Section II, we added 

“The system will dynamically assign the complex algorithm and minimum frontend 

noise (by increasing the biasing current of the amplifier) to the channel with 

highest signal quality, monitoring the signal quality available in the other 

channels with the low complexity algorithm [15] to follow the fetal movements.” 

At the end of Section IV.A, we added “The noise tuning is realized by changing 

the bias current of the input stage of the proposed amplifier.” 

Reviewer’s new comment: 

It is proposed to use present tense instead of future, i.e. “The system 

dynamically assigns …“ instead of “The system will dynamically assign …” 

 

Thank you very much for your comments. We changed the sentence as suggested. 
 

Reviewer’s comment: 

Page 2, column 1, line 31: 

“… as shown in Fig. 1(b) with gray lines”. 

These lines do not appear in my paper, but that may be a pdf artifact. Please 

check. 

Authors’ reply: 

Thanks, indeed there was a problem. It is fixed now. 

Reviewer’s new comment: 

As the meaning of these lines (now black) is clear without extra comments, maybe 

you can shorten the sentence and simply write “… as shown in Fig. 1(b)”. 

 

We say now “continuous lines” instead of “black lines”. Later in this section, we use the dashed lines in 
the same Fig. 1(b) to visualize the simple algorithm (reference [15]). We thus think that it is wise to 
keep a difference between continuous and dashed lines. 
 

Reviewer’s comment: 

Page 3, column 1, line 13: 

Please explain “effective gm”. 

Authors’ reply: 

The effective gm is the trans-conductance from the input voltage to total output 

current in small signal model. 

Reviewer’s new comment: 

gm is clear. But why “effective”? 

 



Effective gm means that both the gm of the NOMS pair and PMOS pair are included. This, in our view, is 
a widely used term in literature.  
 

Reviewer’s comment: 

Page 7, column 1, line 13: 

Why is the characterization done at 5 µA? This condition differs from the 

operating conditions of your circuits (cf. Table I), so that this does not seem 

to be a really appropriate condition to evaluate the related circuits in the 

context of a system view. 

Thus, if that comment applies, please provide comparisons and related data in 

forthcoming figures etc. at more representative conditions. If the comment does 

not apply, please explain and clarify. 

Authors’ reply: 

The final system should include three amplifiers for three measurement channels. 

The total current including three amplifiers and the LDOs can reach a maximum of 

4.6 μA. Though this chip only includes one amplifier channel, we designed the 

charge pumps for the total foreseen load. 

Reviewer’s new comment: 

Understood. However, please provide this information also explicitly in the 

manuscript! 

 

According to this suggestion, we provided this information in Section VII.A: 
“The charge pumps are measured at 5µA current load, which is the total current consumption of the 
three amplification channels (one in low noise mode and two in low power mode).” 
 

Reviewer: 4 

 

Comments to the Author 

Thanks a lot to authors for cleaning my concerns. I agree that the THD @ input = 

1 mV is pretty good.  

 

1- If THD in table IV was calculated from the Fig. 12, there is some 

inconsistence. From Fig. 12, ignoring other higher harmonics,  the two harmonics, 

-67 dB and -74 dB, contribute about 0.05%, right? Do I miss something? Please 

double check it. 

 

2- If PMOS is used as something like a resistor, its nonlinearity would go to 

worse quickly after the voltage across it is larger than the certain range. 2003-

Harrison-JSSC paper shows that. It is better to test THD with a larger output 

amplitude. Or, it can argue that the tested signal maximum amplitude is smaller 

than 1 mV. 

 

Thanks a lot. Indeed, your remark 1 is correct, thank you for pointing this out , we address this issue in 
our answer. For remark 2, we did a new measurement at larger output voltage, as suggested. The 
measurement shows that with 2.3mV input amplitude (~100mV output), the THD is 1%. We updated 
Fig. 12 and table IV to include this new measurement. We also modified the text in section VII. A and C 
to describe this new result: 
“The linearity is tested by a 45Hz sinusoidal signal with 2.3mV amplitude, to obtain a 1% total 
harmonic distortion (THD) at the output.” 
“The second and third harmonics are respectively 41dB and 50dB lower than the fundamental”.  



“In spite of the aggressive supply scaling, the measured input amplitude for which a 1% THD is 
achieved (2.3mV), is similar to the one reported by other designs with comparable gain and 1V supply 
[29].” 
 


