
MAX -PLANCK -INSTITUT ..
FUR

INFORMATIK

A Lower Bound for Linear Approximate

Compaction

s. Chaudhuri

MPI-I-93-146 Oktober 1993

o

mPD
__________ IN F 0 R M AT I K ________ _

Im Stadtwald

66123 Saarbrücken

Germany

A Lower Bound for Linear Approximate

Compaction

s. Chaudhuri

MPI-I-93-146 Oktober 1993

A Lower Bound for Linear Approximate Compaction

Shiva Chaudhuri

Max-Planck-Institut für Informatik

Im Stadtwald

6600 Saarbrücken

Germany

E-mail: shiva@mpi-sb.mpg.de

Abstract

The A-approximate compaction problem is: given an input array of n values, each either 0 or 1,

place each value in an output array so that all the l' s are in the first (1 + A) k array locations,

where k is the number of 1 's in the input. A is an accuracy parameter. This problem is of

fundamental importance in parallel computation because ofits applications to processor allocation

and approzimate counting. When A is a constant, the problem is called Linear Approximate

Compaction (LAG). On the GRGW PRAMmodel, there is an algorithm that solves approzimate

compaction in O((loglog n)3) time for A = log{ogn l using (logl:gn)3 processors. Our main result

shows that this is dose to the best possible. Specifically, we prove that LA G requires O(1og log n)

time using O(n) processors. We also give a tradeoff between A and the processing time. For

€ < 1, and A = n~, the time required is n(1og ~).

1 Introduction

A universal paradigm in parallel computing is the method of breaking up a task at hand into

a number of smaller subtasks and doing the subtasks in parallel. Once the subtasks have been

done, the results can be combined to accomplish the original task. A situation often encountered

by algorithm designers is that for any instance of the original task, most of the arising subtasks

can be done quickly, only a few are hard. An effective technique in this situation is to solve the

easy subtasks quickly, then reallocate all the processors to the few remaining subtasks, making a

substantial number of processors available to work on each subtask. Even though these subtasks

are hard, it is possible to use the processor advantage to finish them quickly.

The efficiency of this method hinges entirely on how weIl the processors can be reallocated,

making processor allocation a problem of fundamental importance. In most algorithms, the re

allocation of processors is done by solving the compaction problem, defined as follows:

Compaction:

Input: al, ... ,an , a.E {O,l}

Output: bl , ... , bn such that if the input had k l's, then for 1 < J < k, bj

j > k, bj = O.

1 and for

This problem is applied to processor allocation in the obvious wayj the 1 's in the input represent

the subtasks that are hard. Once they have been compacted into the initial array positions, the

ava.ilable processors may be distributed evenly among them.

By solving compaction, one may also count the number of l's in the input. This yields appli

cations of compaction to counting problems, computation of threshold functions and computing

parity. Thus, compaction has been extensively studied in parallel computation, especially in

the context of CRCW PRAMs [19, 7, 17, 16]. Cole and Vishkin give analgorithm to solve

compaction in O(log nllog log n) time using an optimal number of processors on the ARBI

TRARY model [6]. On the other hand, MAJORITY re duces to compaction. Hence, compaction

requires O(log nj log log n) time, using a polynomial number of processors on the PRIORITY

model. This follows from the lower bound of Beame and Hästad [1]. Thus it would seem that

this method cannot yield better results for the problems it is applied to. (Henceforth, unless

otherwise mentioned, all the upper bounds are for the ARBITRARY model and alliower bounds

for the PRIORITY model. See [13] for descriptions of models of CRCW PRAMs.)

However, it has been observed that for the application of processor allocation, it is suffieient

to solve compaction approximately [15, 10]. The same i$ often true when one is interested in

counting the number of l's [12, 4]. This leads to the following definition:

A-Approximate Compaction:

Input: al, ... , an, ai E {O, I}
Output: bI, . .. ,bn such that if the input had k 1 's, then for some 8 S;;; {I, ... , min{(l + A)k, n}},

with 181 ;:: k, bj ;:: 1 {::::::> j E 8. (In other words, all the 1 's in the input are compacted into k

distinct locations among the first (1 + A)k locations.)

Once agam, the application to processor allocation is obviousj the available processors are dis

tributed evenly among the first (1 + A)k array locations. HAis a constant, for example, the

number ofprocessors allocated to each non-zero location is within a constant factor of the opti

mal number. The parameter Ais called the padding factor. For constant A, the problem is called

Linear Approximate Compaction (LAC).

Matias and Vishkingave randomized algorithms to solve LAC in O(log'" n) time with n proces

sors [15]. Mackenzie gave an O(log'" n) lower boundfor this problem [14]. Thus the randomized

complexity of LAC is known.

In the deterministic case, until recently, no algorithms that ran in o(log n /log log n) time were

known. The only lower bounds known were for very small values of A, i.e. A ~ n- f [20]. These

bounds can be obtained by a reduction from MAJORITY. However, this method does not yield

good bounds for larger values of A. For instance, when A > -1 1
1 ,there is no obvious lower - og ogn

bound for it. Recently, Hagerup gave an algorithm that solves this problem in O((log log n)3)

time for A = log;o n' using (log1:gn)3 processors [10]. This shows that it is strictly easier than exact
compaction. In ttis paper, we show that this result is elose to the best possible. Specifically, we

prove that LAC requires O(loglogn) time using O(n) processors. The lower bound is robust, in

that it holds for nonuniform algorithms as weIl. It has been observed that there is an n-processor

nonuniform algorithm for LAC that runs in time O(1oglogn) [11]. To improve the lower bound,

therefore, requires explicit use of the uniformity of. the algorithm.

We actually prove a. general tradeoff between A and the time required. It is natural to expect

that the sm aller the padding factor, the harder it is to solve the problem. This is re:flected in

the tradeoff. For A ~ 1, we show that A-approximate compaction requires n(1og(lo~~~~»)) time.

Ragde showed that for A = k3
, A-Approximate Oompaction can be solved in constant time with

n processors [17]. Hagerup extendedthis by giving a constant time algorithm for A = k~ for any

e > 0, where the constant depends upon f [8]. Our tradeoff shows thai when e < 1 and A = n~,

the time required is n(1og ~), for sufficiently large n. Thus as e ~ 0, the time required grows to

infinity.

The techniques used in this paper are based on the small-domain lower bound methods of

Ohaudhuri and Radhakrishnan [5]. These methods are quite general. A large portion of the

proof is applicable to any PRAM algorithm, and only a sniall portion utilizes the properties

special to LAO. Thus, the techniques used may be of independent interest.

2 Preliminaries

2.1 The Model

In this section we give a detailed definition of the lower bound model. The reader willing to

make commonsense assumptions about the model is encouraged to use this section as a reference

to clarify issues that may anse when studying the proofs.

The model under consideration is sometimes referred to as the "Ideal" or "Fu.ll-information"

PRAM. It has P = P(n) processors Pl,'" ,pp, and a shared memory consisting of an infinite

number of cells. Each cell is capable of holding words of arbitrary length. Each processor has a

private memory of infinite size. Initially, the private memory is blank. Processors are allowed to

simultaneously read and write memory cellsj write con:flicts are resolved using the PRIORITY

rule [13]. Under this rule, when several processors simultaneously write to acelI, the processor

with the smallest index succeeds in writing to the cello Each processor has a program, i.e. a

sequence of instructions that it executes. The program may vary depending on the index of the

processor and on the problemsize, n . We do not require the program to be parameterized by n,

thus nonuniform algorithms are permitted.

Initially the input is assumed to be in the first n cellsof shared memory, the output is to be

written into these n cells.

The machine operates in synchronous steps, each step consisting of a read phase, a compute

phase and a write phase. During the read phase, each processor may select a cell and read its

contents. During the compute phase each processor may perform an arbitrary computation,

referring an arbitrary number of times to its private memory. The only restriction is that it is

not permitted to access the shared memory. During the write phase, each processor may select

a cell and write to it.

The time taken by a computation is defined to be the number of steps taken during the

computation.

The action of a processor at any given time is completely determined by the history of the

processor through the computation. Since a processor may perform any computation in the

compute phase, we' mayas weIl assume that it keeps a complete record of whatever it rea.ds in

the shared memory in its private memory. This allows us to make the following definition:

Definition: The state of a processor, at time t is defined to be its program, and everything that

is written in its private memory at time t.
We ma.y now assume that the action of a processor at time t depends only on its state at time t.

For any computation, each processor has exactly one initial state (since its private memory has

nothing written in it.

Since there is no restriction on the wordsize or on the compute phase, whenever a processor

writes, it mayas well write the entire history of its computatiön; hence the name Full-information

PRAM. Lower bounds on thls model depend crucially on limiting the amount of information that

processors can communicate to each other through the shared memory. Proving lower bounds

on this model gives insight into the intrinsic difficulty of solving problems in parallel.

2.2 Partial Inputs and the Computation Graph

In the following, A will be an algorithm solving linear approximate compaction. For inputs of

size n, let A use P(n) processors and take k(n) steps. We will use P and k for P(n) and k(n)

respectively, !rom now on.

A partial input is an element of {O, 1, * }n. For a partial input b, we denote by X(b) the set of

inputs consistent with b. That is, X(b) = {z E {O, 1}n : for i = 1, ... , n, bi i= * ~ bi = Zi}. For

partial inputs a and b, we say ais arefinement of b, and write a :::; b, if X(a) ~ X(b) .

For a given partial input b, consider a processor p at time t. The set of inputs consistent with

b defines a set of states that p may be in, on inputs consistent with b. This set of states, in turn,

defines the possible actions of p at time t, in particular, it defines the set of memory locations

that p may read !rom, or write to. This gives us a way to identify (and consequently, limit) the

amount of information that p may read !rom, or write to, theshared memory. We formalize

this by modelling the computation of A on a graph. Let b be a partial input of size n. The

computation graph of A on b, G(b), is defined as follows.

V(G(b)) = {(c, i) : c is a cell of memory and ° :::; i :::; k}.

That is, we have (k + 1) levels; in each level we have one vertex for each cell in the memory.

The set of vertices in level i will be called Vi. The directed edges go !rom vertices at one level to

the vertices 'of thenext level. Every edge is labelled by a processor. E(G(b)) contains the edge

((c, i), (d, i + 1)) labelled p if on some input in X(b) , processor p reads cell c and writes to cell d

in step (i + 1). We use f",(b) to denote the indegree of vertex v in the graph G(b). lnitially, bit i

of the input is assumed to be in cell i; finally, bit i of the output is assumed to be in cell i. We

refer to vertex (i, 0) as Cki (the input vertices) and vertex (i, k) as ßi (the output vertices).

Let a E {O, 1}n. We shall associate with each vertexof G(a) a content. The content associated

with (c,i) is the content of the cell c after step i (that is, just before the write of step (i + 1)

changes it) in the computation of A on the input a. We call this content content(a, (c,i)).

Similarly, for a processor p and an input a E {O, 1}n, state(a, (p, i)) is the state of processor p

· just before the .writeof step (i + 1) in the computation of A on input a. For a partial input b, let

contents(b, (c, i))

states(b, (p,j))

{content(z,(c,i)): z E X(b)};

- {state(z,(p,i)): zEX(b)}.

We say that (c,i) is a fized vertex if Icontents(b,(c,i))1 = 1; otherwise we say (c,i) is a free

vertex. Note that the above definitions depend on the algorithm A and the size ofinput n.

These parameters will be dear from the context where they are used.

,We model the computation of the algorithm A on the computation graph as follows. We say

that aprocessor p reads from cell (c, i) and writes to cello (d, i + 1) when we mean that in the

step (i + 1) of the computation of the algorithm A, p reads cel1 c and writesto cel1 d.

3 The Lower Bound

3.1 Overview of the method

Let b be a partial input in which at most n/8 input positions have a value of 0 or 1. Consider a

vertex (c, i) in the computation graph of algorithm A on partial input b. Let y be the content

of (c, i) on some partial input consistent with b, that it, y is a possible content for (c, i) in the

computation graph. Let Si(Y) be a set of input variables with the fol1owingproperties: (i) These

variables have va.lue * in b, and (ü) there is a value (0 or 1) for each variable in the set such that

when we set all variables to their corresponding va.lues, (c, i) is fixed to content y . That is, when

we set the values and consider the computation graph of A on the resulting partial input, (c, i)
is a fixed vertex with content y.

Under certain circumstances, this can give us a contradiction. To see this, consider the fol

lowing example. Let b be a partial input with at most n/8 input co-ordinates having 0-1 values.

Let Abe an algorithm for 1-Approximate Compaction. Suppose we can find a vertex (c,i) such

that (c, i) is output vertex ßi and n /2 + 1 ::; j ::; n, and 1 is a possible content for (c, i) on

partial input b. Suppose also that ISi(l)1 ::; n/8. Then, as above, we can find a partial input b'

with at most n/4 l's, such that output vertex ßi has content 1 on all inputs consistent with b.

In particular, the input obtained by setting all the *'s in b' to 0 has at most n/4 l's, yet, in the

output, ßi will have value 1, contradicting the claim of 1-approximate compaction.

Our proof uses essentially the ideas outlined above. The only problems are that we may not

be able to find a suitable ßiand if we do, then 18i(1)1 ::; n/8 may not hold. We are able to

surmount these pI:oblems as fol1ows. First, given any algorithm A, we obtain a partial input b

such that the computation graph has the property that for any (c, i), the corresponding Si has

"small" cardinality. Intuitively, we may expect that as i grows, so does Si. The main part of our

analysis is showing that the growth of Si can be bounded. This is called the preprocessing phase

and is described in Section 3.2. The partial input b is carefully chosen so that the number of

0-1 co-ordinates is very small. This takes care of the second problem. We then show that if the

number of 0-1 co-ordinates in a partial input is small, there exists an output vertex ßi with the

desired properties. After this, we are in a situation like the example above. The final argument

(in Theorem 3.1) finds a partial input and an output vertex (c,i) with content fixed to 1 that

are inconsistent with each other if i is too small. We thereby conclude that the algorithm cannot

finish in less than i steps.

3.2 Preprocessing

Let the algorithm A and the computation graph be defined as in Section 2.2. Define d1 = m ~ 20,

where m is a parameter whose value we determine later, and define i:4+1 = cll. Then di = m
si

-
1

•

Notice that we shall use the facts that i:4 ~ 20 and i:4+1 ~ cll in making several estimates later.

Definition: For a given i, 1 ~ i ~ k, say bis a level-i bounding partial input if, in G(b), free

vertices at level j have indegree less than dj for 1 ~ j ~i.

Note that the above definition implies that if b is a level-i bounding partial input, then it is

also a level-j bounding partial input forj ~ i. Also, if b' ~ b, then b' is also a level-i bounding

input.

Let b be a level-i bounding partial input and let z E X(b). Consider the state of a processor

p after the read of step (i + 1). We wish to refine b so that this state is fixed at state(z, (p, i)).

More precisely we wish to obtain b'so that b' ~ b and states(b', (p, i)) = {state(z, (p, i)n.

Fixing the content ofa cell is defined similarly i.e. we want b' ~ band eontents(b',(c,i)) =

{eontent(z, (c, i) n. In Lemma 3.1 we give procedures to find partial inputs that fix processors

and cells to the state they have on any chosen input z. Furthermore, the procedures ensure that

the partial inputs found are consistent with :1:.

The state of p after the read of step i + 1 is completely determined by its state after the ith

read, and the contents of the cell it reads in step i + 1. Note that if the state of p after the ith

read is fixed, then it always reads the same cell in the i + 1 th read. Fixing the contents of this

cell ensures that the state of p after the 'i + 1 th read is fixed.

Similarly the content of a cell c after the i + lth write is completely determined by the states

of the processors that can write to c in the i:+ lth write,and the content'of c after the ith write.

If the states of these processors are fixed, then so is the content of c, except in the case when

no processor writes to e in the i + lth write. In either case, also fixing the content of c after

the ith write ensures that the content of c after the i + lth write is fixed. This method of fixing

processors and cells is formalized in

Lemma 3.1 Let b be a level-i bounding partial input and let z E X(b). For any given proeessor p

(eell c), there ezists a partial input b
l

sueh that z ~ b' ~ band states(b', (p, i)) = {state(z, (p, i)n

(contents(b', (c,i)) = {content(z, (c,i)n). Further, the number o/*'s in b that have a value 0/0

or 1 in b' is at most i:42.

Proof We show the existence of b' by describing procedures that find such a partial input. The

procedures are recursive and defined below.

FixProe(x, b, (p, i)): If i = 0, we know that p reads the same input position in the first step no

matter which input is presented to the algorithm. To fix the state of p after the first read,

we fix that input bit of b (if it is not already set) consistently with z. The resulting partial

input is our b'.

For i > 0, let b" be the partial input produced by FixProc(x, b, (p, i - 1)). Then, for each

input in X(b"), P reads the same cell, (c,i) say, in the read of step (i + 1). We use the

FizCell(x, b", (c, i)) to fix the contents of this cell and call the resulting partial input b'.

FizCell(x, b, (c, i)): lf i = 0, then (c, i) is an input bit. We set this bit consistently with x and

the resulting partial input is our b'.

lf i > 0, let PI, P2, ... ,Pt . be the processors that write to cell (c, i). We now define par-

tial inputs b(O), b(1), . .. , b(t) inductively. Let b(O) = b, and for j = 1, ... , t, b(j) =

output of FizProc(x, b(j:. 1), (p;, i - 1)). To get the final partial input b', we invoke

Fix Ce ll(x, b(t), (c, i - 1)).

Notice that whenever FizCell(x, b*, (c"',j)) is invoked either directly, or recursively, we have

b* ~ b and j =::; i. Since bis a. level-i degree bounding input, it is also a level-j bounding input,

and so is b*. Thus, the indegree of (c*,j) in G(b*) will be at most dj -1. Hence, in the preceding

paragraph, t ~ di - 1.

It is easy to check using induction that the procedures fix correctly, i.e. the considered processor

or cell is indeed fixed on b' to the same state or content that it has on input x. Observe that b'

Is obtained by setting *'s in b to 0 or 1, and the setting is always consistent with x. This ensures

that x . ~ b' ~ b. It remains to show that at most ~2 *'s in b are set to Oor 1 in this process.

Let Ni(p) be the number of *'s in b that are set to 0 or 1 by FizProc(x, b, (p, i)). Let

Ni = maxpNi(p). Similarly, let Mi(C) be the number of *'s in b that are set to 0 or 1 by

FizCell(x, b, (c, i)). Let Mi = maJCc Mi(c). It is easy to check that the following inequalities hold

for i ~ 1.

Mi < Mi - l + (~ - 1)Ni - 1 ;

Ni < Ni- 1 + Mi.

From these, with No = 1, Mo - 1 and the statedbounds on the values of dj , the following

bounds can be deduced, for i ~ 1.

Mi < 2i
-

1 (d1 ... ~) ~ ~;

Ni <. 2i (d1 .. • ~) ~ df,

(1)

(2)

•
We shall now analyze the computation graph of algorithm A. We shall find a level-k bounding

partial input b. That is, in the graph G(b), the indegree of a free vertex at level i will be less

than ~, for i = 1,2, ... , k. We next show how such a partial input with a small number of O's

and 1 's can be obtained.

The partial input b is produced in stages. The intermediate partial inputs produced will be

called bO, b1
, ..• , bk

• In the end we shall set b = bk
• Initially, we set bO = * n. N ow, in the graph

G(bO), there may be free vertices in level 1 that have degree d1 or higher. In STAGE 1 of our

procedure, we re:fi.ne bO to obtain bl
. In G(b1

) the degree of every free vertex at level 1 will be

less than dl .

When we come to STAGEi, we already have a partial input bi- 1 such that, in G(bi- 1
), every

free vertex at level j, j = 1,2, ... , i - 1, has degree less than dj . Our task in STAGE i is to

ensure that this holds for level i vertices also. We obtain a refinement bi of bi- 1 so that, in G(bi),

every free vertex at level i has degree less than cl;.. N otethat the degree of any vertex cannot

increase upon refinement.

We now describe the processing done at STAGE i. Consider the graph G(bi- 1
). A free vertex

v at level i will be calleda high degree vertex if Jv 2:: cl;.. To obtain bi we fix high degree vertices

as described below. Denne b* = bi- 1
•

High Degree Vertices. For each high degree vertex v we do the following: Let the highest

priority processor writing to v be p. There is some input z E X(b*) on which p writes

to v. We fix the stateof p to the state it has on input z using FizProc(x, b*, (p, i - 1)).

Redenne b* to be the new partial input. On every input in X(b*), p writes to v and, being

the highest priority processor, always succeeds. To fix the state of p we need set at most

N i - 1 inputs.

At the end of this process, all the free vertices at level i have indegree less than di .

This completes the description of the processing at STAGE i.

Upon applicationof the above process to levels 1, ... , k, we have a level-k bounding partial

input. We next show that for such an input, the number of possible states and contents at a

given level is bounded.

Let b be a level-i bounding input. With respect to G(b) denne }'i(b) and Zi(b) as follows.

}'i(b) - max{lcontents(b, (c, i))1 : cis a memory cell};

Zi(b) - max{lstates(b, (p, i))1 : pisa processor}.

Lemma 3.2 Let b be a level-i bounding partial input. Then Zi(b) :::; 22
' II~=l <P;'-; .

Proof We drop the parameter b in the notation. We have that Yo = 2 and Zo = 2, since,

initially, each cell has 0 or 1 and each processor, after the nrst read, can be in at most 2 states.

Consider a vertex (c, i) (i > 0) in the graph G(b). Let d < cl;. be the indegree of (c, i). Let

Pl, ... , Pd be the processors that label' the d edges. Let the number of states in which processor

pj writes to (c, i) be Sj. The content of (c, i) is determined by the state of the processor that

succeeds in writing tö (c, i), or, if no processor writesto (c, i), by the content of (c, i-I). Thus,

we have
d

Icontents(b, (c,i))1 :::; ESj + Icontents(b, (c,i -1))1.
j=l

By induction, Sj :::; Zi-l, V j and 1 contents(b, (c, i-I)) 1 :::; }'i-l. Thus, for i 2:: 1,

}'i < (cl;. - l)Zi-l + }'i-l

The .number of states of a processor after theith read is at most the product of the number

of states it had after the i - 1 th read and the number of contents of the cell it read at the ith

read. Thus

Zi ~ Zi-lYi.

Let Ai = 22
' n~=l d'j'-j. It can then be shown by induction on i that Zi ~ Ai and Yi < diA;-l'

Fromthe stated bounds on the c4's, we obtain the following more convenient bounds for Zi,

i ~ 1.
(3)

•
The following lemma shows that the partial input produced by the processing in stages has

few positions set to 0 or 1.

Lemma 3.3 Let bO = {*}n and b1
, ... , blc be the partial inputs produced by the above stage by

stage processing. Then blc has at most 4P / m positions whose value is not *.

Proof. We will show that the number of positions set to 0 or 1 in STAGE i is at most P/m2i
-

2
,

which implies the bound in the lemma.

After the processing at stages 1,2, ... ,i - 1, by Lemma 3.2 a prQcessor, p, after the read at

level i - 1 can be in at most Zi-'-l states. Thus there can be at most Zi-l edges between levels

i - 1 and i labelled p. Hence, the number of edges between levels i - 1 and i Is at most Zi-lP,

where P is the number of processors. Let Hi be the number of high degree vertices at level i.

Then we have
H. < Zi-l,P

t - c4

The number of bits set in STAGE i is at most Ni-1Hi ~ Zi-1Zi-1P.

SinGe c4 ~ d1-1 ~ . Zi_lNi_lm2i-2 using .(2) , (3) and c4 2: m2i- 2, the number of bits set in

STAGE i is at most m;'-2' •

3.3 The final argument

Recall that di = m 6i
-

1
.

Theorem 3.1 Letc ~ 1 be a constant, A ~ 0 and k = r ~ log (loJ~~:).2))1. Then, any algorithm

that solves A-Approzimate Compaction with cn processors requires k steps.

Proof. We prove the lower bound for A 2: 2; notice that this implies a lower bounds for all

smaller values of A. For A ~ n 210 /v'32c, thelower bound is trivial, so assume 2 ~ A < nfö /v'32c.

Let A be an algorithm that claims to solve A-Approximate Compactionwith P(n) = cn

processors in less than k steps.

We choose m such that 4Pln) ~ gp; it suffices to choose m = 32cA2
• Thus c4 is defined for

i 2: 1. The. choice of k in the theorem ensures that m6~ ~ 8~2'

For these choices of m and k we carry out the preprocessing described in the previous section.

Let b be the partial input obtained; by Lemma 3.3 there are at most 4P~n) ::; g}; bits set in b.

In X(b), there is some z'" E {0,1}n such that z'" has exactly 2; + 1 1's. For input z"', some

output cell amon!!: ß.!J:.+1, ... ,ß!!+!! has a 1 written to it. For, if not, there must be a 1 written
~. 2A 2 A

to ßi, for some i > ~ + X. For the admissible values of A, ~ + X > (~ + 1)(1 + A). Thus the

padding factor is greater than A, contradicting the claim of the algorithm.

Thus, in' G(b), there is an output cell ßj, for some j, 2; + 1 ::; j ::; ~ + X, for which 1 is a

possible content. We fix this cell to 1 using FizGell(x"', b, (ßj, k)). By Lemma 3.1, the number of

bits set by FizGell is at most Nie ::;-4. From the bounds on the values of the d/s and the choices
I:

of m and k we have 4 ::; m 6
::; 8~2. Thus b' has at most 4~2 bits set. Further, Vz E X(b'),

output cell ßj has a 1 written in it.

Let b" be the inputobtained by setting all the *'s in b' to 0. Then b" has at most 4~2 1's, and

since ~ + 1 > 4~2 (1 + A), The 1 in ßj is outside the initiallocations into which the 1's are to

be compacted. Thus thepadding factor is greater than A and we have a contradiction. Thus A

cannot solve A-Approximate Compaction in k steps. •

By substituting a constant for A in the expression for k in Theorem 3.1, we have

Corollary 3.1 (Linear Approximate Gompaction) For any constant A, A-Approximate Gom

paction requires n(log log n) time.

Corollary 3.2 For € -+ 0, and A = n~, A-Approximate Gompaction cannot be done in constant

time.

Proof. When € < 1, for sufficiently large n, 32d2
::; A3

• Thus the expression in Theorem 3.1

for k reduces to 1/4log(1/3€). As € -+ 0, this expression goes to infinity. •

4 Remarks

We discuss the application of LAC to processor allocation. By approximately compacting them

into O(k) initial cells, it is possible to allocate to each 1 a group of n(n/k) processors, such that

the indices of each group form a contiguous sequence. It has been argued that the property of the

processors forming a contiguous sequence is essential for processor allocation to be meaningful

[9]. This is because if a processor allocated to a task does not know which other processors are

allocated to the same task, it is difficult for it to co-operate effectively with the others. There is

other evidence that supports this argument. Consider, for example, the ARBITRARY PRAM

model. In this model, of the processors writing to a cell, any one may succeed. It has been- shown

that if a processor does not know the other processors in its group, then even simple tasks like

finding the processor with the smallest index in the group are hard [18, 2].

On the other hand, on the PRIORITY model, the above task is easy. Functions like AND

and OR can also beeasily computed without knowing the other processors in the group. Thus a

situation is conceivable in which, so long as a sufficient number of processors is allocated to each

subtask, progress can be made, even if the processors do not know which other processors have

been allocated to their task. The general problem of processor allocation may be formalized as

follows. Given a 0-1 vector of length n as input, compute an output vector ofp values, which

has the following property: if j is the index of a bit in the input which has value 1, at least c\
output positions shouldhave the value j, where k js the number of l's in the input and cis a

constant ~ 1. We are to solve this problem with p processors. We think of the processors whose

indices have value j as being allocated to the task with index j. N otice that this definition does

not require the processors to form a contiguous sequence.

Our lower~bound for LAC does not imply any bound for this problem. Its complexity is an

interesting open question.

The technique of bounding the number of states that a processor can have, by setting input.

bits, is quite general. This technique was used in proving lower bounds for the chaining problem

[5]. It has also been useful in proving lower bounds for a number of other problems in parallel

computation [3]. We believe the methods are applicable to computational models other than

PRAMs. This work is in progress.

5 Acknowledgements

We thank Jaikumar Radhakrishnan for his comments on an earlier draft and for pointing out the

application to Corollary 3.2. We thank Torben Hagerup for manydiscussions and suggestions

which greatly improved the paper.

References

[1] P. Beame .and J. T. Hastad. Optimal bounds for decision problems on the CRCW PRAM.

Journal of the AGM, 36 (1989), pp. 643-670.

[2] S. Chaudhuri. LowerBounds for Parallel Computation. Ph.n Thesis, Rutgers University,

(1991).

[3] S. Chaudhuri. Sensitive Functions and Approximate Problems. manuseript, (1993).

[4] S. Chaudhuri, T. Hagerup and R. Raman. Approximate and Exact Deterministic Parallel

Selection. In Proe. of Math. Fdtns. of Gomp. Sei., (1993), to appear.

[5] S. Cllaudhuri and J. Radhakrishnan. The Complexity of Parallel Prefix Problems on Small

Domains. In Proe. 33rd Annual FOGS, (1992), pp. 638~647.

[6] R. Cole and U. Vishkin Faster Optimal Parallel Prefix Sums and List Ranking Information

and Gomputation, 81 (1989), pp. 334-352.

[7] J. Gil and L. Rudolph. Counting and Paclring in Parallel. In International Gonferenee on

Parallel Proeessing, (1986), pp. 1000-1002.

[8] T. Hagerup. On a Compaction Theorem of Ragde. Information Proeessing Letters, 43

(1992), pp. 335-340.

[9] T. Hagerup. The Log-S.tar Revolution. In Proc. 9th STAGS, (1992), Springer LNCS, Vol.

577, pp. 259-278.

[10] T. Hagerup.Fast Deterministic Processor Allocation. In Proc. 4th AGM-SIAM SODA

(1993), pp. 1-10.

[11]- T. Hagerup. personal communication.

[12] T. Hagerupand R. Raman. Waste makes haste: Tight bounds for loose parallel sorting.

In Proc. 33rd IEEE FOGS (1992), pp. 628-637.

[13] J. JaJa.. An Introduction to Parallel Algorithms. Addison-Wesley, Reading, Mass., 1992.

[14] P.D. MacKenzie Load balancing requires !l(log* n) expected time. In Proc.3th AGM-SIAM

SODA (1992), pp. 94-99.

[15] Y. Matias and U. Vishkin. Converting High Probability into Nearly-Constant Time - with

Applications to Parallel Hashing. In Proc~ 23rd Annual STOC, (1991), pp. 307~316.

[16] I. Newman, P. Ragde and A. Wigderson. Perfect Hashing, Graph Entropy and Circuit

Complexity. In Proc. Fifth Ann. Gonf. on Structure in Gomplezity Theory, (1990), pp.

91-99.

[17] P. Ragde. The Parallel Simplicity of Compaction and Chaining. In Proc. 17th ICALP

(1990), Springer LNCS, Vbl 443, pp. 744-751.

[18] P. Ragde. Processor-Time Tradeoffs in PRAM Simulations. Journal of Gomputer and

System Sciences, (1992).

[19] L. Rudolph and W. Steiger. Subset Selection in Parallel. In Proc. of the 1985 Int. Gonfer

ence on Parallel Processing, (1985), pp. 11-13.

[20] R. Sarnath: Lower bounds for padded sorting and approximate counting. TR 93-02, SUNY

Buffalo, (1993).

	93-1460001
	93-1460002
	93-1460003
	93-1460004
	93-1460005
	93-1460006
	93-1460007
	93-1460008
	93-1460009
	93-1460010
	93-1460011
	93-1460012
	93-1460013
	93-1460014
	cover-hinten_2099-2897-300dpi

