A lower bound for sectional genus of quasi-polarized manifolds, $\mathrm{II}^{\text {* }}$

Yoshiaki Fukuma

July 10, 2009 version

Abstract

Let (X, L) be a quasi-polarized variety of dimension n. In this paper we investigate a lower bound for the sectional genus $g(L)$ for the following types; (1) A lower bound for the sectional genus of the case in which (f, X, C, L) is a quasi-polarized fiber space, where C is a smooth curve. (2) Non-negativity of te sectional genus of the case where (X, L) is a quasi-polarized manifold or (X, L) is a polarized variety with some singularities. (3) A lower bound for the sectional genus of the case where $\operatorname{dim} X=3$.

Introduction

Let X be a projective variety over the field of complex numbers \mathbb{C} with $\operatorname{dim} X=n$, and L an ample (resp.a nef and big) line bundle on X. Then (X, L) is called a polarized (resp. a quasi-polarized) variety. Moreover if X is smooth, then (X, L) is called a polarized (resp. quasi-polarized) manifold.

When we study polarized varieties, it is useful to use their invariants. The following invariants are well-known.
(1) The degree L^{n}.
(2) The sectional geuns $g(L)$.
(3) The Δ-genus $\Delta(L)$.

Many authors studied polarized varieties by using these invariants. In particular, P. Ionescu classified polarized manifolds (X, L) for the case where L is very ample and $L^{n} \leq 8$, and T. Fujita classified polarized manifolds with low sectional genera and low Δ-genera.

[^0]In this paper, we treat the sectional genus of (X, L). If X is smooth, then the sectional genus of L is defined to be a non negative integer valued function by the following formula ([7]):

$$
g(L)=1+\frac{1}{2}\left(K_{X}+(n-1) L\right) L^{n-1}
$$

where K_{X} is the canonical divisor of X. Here we state some recent results about the sectional genus of quasi-polarized manifold, and propose some conjectures and problems. The following results are known for the fundamental properties of the sectional genus.
(A) The value of $g(L)$ is non-negative integer when L is ample. (Fujita [4], Ionescu [13])
(B) There exist a classification of polarized manifold (X, L) with sectional genus $g(L) \leq 2$. (For example see Fujita [4], [5], Ionescu [13], and Beltrametti-Lanteri-Palleschi [1].)
(C) Let (X, L) be a polarized manifold. Then there exist only finite deformation types of polarized masnifolds unless (X, L) is a scroll over a smooth curve. (For the definition of deformation type of polarized manifolds, see in [7, Chapter II, §13].)

On the other hand, there is the following conjecture which was proposed by T . Fujita.

Conjecture 1 Let (X, L) be a quasi-polarized manifold. Then $g(L) \geq q(X)$, where $q(X)=h^{1}\left(\mathcal{O}_{X}\right)$ (called the irregularity of $\left.X\right)$.
In [8], we treat the case where $\operatorname{dim} X=2$. But if $\operatorname{dim} X \geq 3$, the problem seems difficult. So in [9] we considered the following conjecture:

Conjecture 2 Let (X, L) be a quasi-polarized manifold, Y a normal projective variety with $1 \leq \operatorname{dim} Y<\operatorname{dim} X$, and $f: X \rightarrow Y$ a surjective morphism with connected fibers. Then $g(L) \geq h^{1}\left(\mathcal{O}_{Y^{\prime}}\right)$, where Y^{\prime} is a resolution of Y.

Of course Conjecture 2 follows from Conjecture 1. The hypothesis of Conjecture 2 is natural because X has a fibration in many cases (Albanese fibration, Iitaka fibration e.t.c.).

In [9] we consider the case where $\operatorname{dim} Y=1$ or some special cases when $\operatorname{dim} Y \geq$ 2. In [9, Theorem 1.2.1] we proved that $g(L) \geq q(Y)$ if $\operatorname{dim} Y=1$ and L is ample. Furthermore we proved that if $g(L)=q(Y), \operatorname{dim} X \geq 3$, $\operatorname{dim} Y=1$, and L is ample, then (f, X, Y, L) is a scroll (see [9, Theorem1.4.2]).

In this paper, we mainly consider the case where (X, L) is a polarized variety such that X has some singularities or the case where (X, L) is a quasi-polarized manifold. Concretely, we consider the following cases.
(1) A lower bound for the sectional genus of the case in which (f, X, C, L) is a quasi-polarized fiber space, where C is a smooth curve.
(2) Non-negativity of te sectional genus of the case where (X, L) is a quasipolarized manifold or (X, L) is a polarized variety with some singularities.
(3) A lower bound for the sectional genus of the case where $\operatorname{dim} X=3$.

First we study the case where (f, X, Y, L) is a quasi-polarized fiber space over a smooth curve Y, and we proved that $g(L) \geq q(Y)$ if (f, X, Y, L) is one of the following type.
(1.1) X is a normal projective variety with only Cohen-Macaulay singularities, L is ample, and $q(Y) \geq 1$.
(1.2) $\operatorname{dim} X=3, L$ is nef and big, and $\operatorname{dim} Y=1$.
(1.3) $g(Y) \geq 1$, and there does not exist a birational morphism $\pi: F \rightarrow \mathbb{P}^{n-1}$ such that $L=\pi^{*} \mathcal{O}_{\mathbb{P}^{n-1}}(1)$ for a general fiber F of f.

Second we investigate the non-negativity of $g(L)$ for quasi-polarized manifolds. In order to study the non-negativity of $g(L)$, we have only to investigate the case where $\kappa(X)=-\infty$. We note that some known facts about the non-negativity of $g(L)$ is the following.
(2.a) The case in which X has only rational normal Gorenstein singularities and L is ample [4, Corollary 1].
(2.b) The case in which (X, L) is a quasi-polarized manifold with $\operatorname{dim} X \leq 3[6$, (4.8) Corollary].

In this paper, we proved the following.
(2.1) Let (X, L) be a quasi-polarized manifold with $\kappa(X)=-\infty$. Assume that $q(X) \geq 1$. Then

$$
g(L) \geq 1+\left\lceil\frac{m-2}{2} L^{n}\right\rceil
$$

where m is the dimension of the image of the Albanese map (see Proposition 2.2).
(2.2) Let X be a normal projective variety with only rational singularities, $\kappa(X)=$ $-\infty$, and $\operatorname{dim} H^{1}\left(\mathcal{O}_{X}\right) \geq 1$, and let L be an ample Cartier divisor on X. Then $g(L) \geq 1$.

Finally we consider the case where $\operatorname{dim} X=3$, and we obtain some results about Conjecture 1.

In Appendix, we state a theorem (Theorem A) which appears in [18, p.319]. Theorem A is used in the proof of Lemma 0.1 and Lemma 0.2 .

Finally we note that the most part of this paper was written up to 1995. After that we revised this paper several times.

Notation and Convention

We say that X is a variety if X is an integral separated scheme of finite type. In particular X is irreducible and reduced if X is a variety.
In this paper we shall study mainly a smooth projective variety X over the complex number field \mathbb{C}. The words "line bundles" and "Cartier divisors" are used interchangeably. The tensor products of line bundles are denoted additively.
\mathcal{O}_{X} : the structure sheaf of X.
$\chi(\mathcal{F})$: the Euler-Poincaré characteristic of a coherent sheaf \mathcal{F}.
$h^{i}(\mathcal{F}):=\operatorname{dim} H^{i}(X, \mathcal{F})$ for a coherent sheaf \mathcal{F} on X.
$h^{i}(D):=h^{i}(\mathcal{O}(D))$ for a divisor D.
$|D|$: the complete linear system associated with a divisor D.
$\kappa(D)$: the Iitaka dimension of a Cartier divisor D on X.
$\kappa(X)$: the Kodaira dimension of X.
\mathbb{P}^{n} : the projective space of dimension n.
\mathbb{Q}^{n} : a hyperquadric surface in \mathbb{P}^{n+1}.
$\sim($ or $=$): linear equivalence.
\equiv : numerical equivalence.
For $r \in \mathbb{R}$, we define $[r]:=\max \{t \in \mathbb{Z}: t \leq r\},\lceil r\rceil:=-[-r]$.
The pair (X, L) is called a quasi-polarized (resp. polarized) manifold if X is a smooth projective variety and L is a nef-big (resp. an ample) line bundle. Then (f, X, Y) is called a fiber space if X and Y are smooth projective varieties with $\operatorname{dim} X>\operatorname{dim} Y \geq 1$ and f is a surjective morphism $X \rightarrow Y$ with connected fibers. (f, X, Y, L) is called a quasi-polarized (resp. polarized) fiber space if (f, X, Y) is a fiber space and L is a nef and big (resp. an ample) line bundle.

We say that two quasi-polarized fiber spaces (f, X, Y, L) and $\left(h, X, Y^{\prime}, L\right)$ are isomorphic if there is an isomorphism $\delta: Y \rightarrow Y^{\prime}$ such that $h=\delta \circ f$. In this case we write $(f, X, Y, L) \cong\left(h, X, Y^{\prime}, L\right)$.

We say that (f, X, Y, L) is a scroll if Y is smooth, $f: X \rightarrow Y$ is \mathbb{P}^{t}-bundle, and $\left.L\right|_{F}=\mathcal{O}(1)$, where F is a fiber of f and $t=\operatorname{dim} X-\operatorname{dim} Y$.

We say that (X, L) has a structure of scroll over Y if there exists a surjective mor$\operatorname{phism} f: X \rightarrow Y$ such that $\left(F,\left.L\right|_{F}\right) \cong\left(\mathbb{P}^{n-m}, \mathcal{O}_{\mathbb{P}^{n-m}}(1)\right)$ for any fiber F of f, where
$\operatorname{dim} X=n$ and $\operatorname{dim} Y=m$.
We say that a Cartier divisor D on a projective variety X is pseudo-effective if there is a big Cartier divisor H such that $\kappa(m D+H) \geq 0$ for all natural number m.

A general fiber F of f for a quasi-polarized fiber space (f, X, Y, L) means a fiber of a point of the set which is intersection of at most countable many Zariski open sets.

Let D be an effective divisor on X. We call D a normal cossing divisor if D has regular components which intersect transversally.

0 Preliminaries

In this section, we prove some lemmata which are used in the following sections.
First we prove Lemma 0.1 and Lemma 0.2. Theorem A in Appendix plays an important role there.

Lemma 0.1 Let (f, X, Y, L) be a quasi-polarized fiber space. Assume that $\kappa\left(K_{F}+\right.$ $\left.t L_{F}\right) \geq 0$ for some positive rational number t, where F is a general fiber of f. Then $\left(K_{X / Y}+t L\right) L^{n-1} \geq 0$, where $K_{X / Y}=K_{X}-f^{*} K_{Y}$.
Proof. We note that for any natural number $p>0, \kappa\left(K_{F}+t L_{F}+\frac{1}{p} A_{F}\right) \geq 0$, where A is an ample line bundle on X. By assumption, there exists a Zariski open set U of Y such that
(1) $\left.f\right|_{f^{-1}(U)}: f^{-1}(U) \rightarrow U$ is smooth
(2) $h^{0}\left(m\left(K_{F_{y}}+t L_{F_{y}}+\frac{1}{p} A_{F_{y}}\right)\right)$ is non zero constant for any fiber F_{y} over y in U, and some natural number m such that $m t, \frac{m}{p} \in \mathbb{N}$ and

$$
\text { Bs }\left|m\left(t L_{F_{y}}+\frac{1}{p} A_{F_{y}}\right)\right|=\phi .
$$

We note that $\left.f\right|_{f^{-1}(U)}$ is proper. By Grauert's theorem ([11]), we have

$$
f_{*}\left(\mathcal{O}\left(m\left(K_{X / Y}+t L+(1 / p) A\right)\right)\right) \neq 0 .
$$

There is a natural map

$$
f^{*} f_{*}\left(\mathcal{O}\left(m\left(K_{X / Y}+t L+\frac{1}{p} A\right)\right)\right) \rightarrow \mathcal{O}\left(m\left(K_{X / Y}+t L+\frac{1}{p} A\right)\right) .
$$

Then by the Hironaka theory [12] there is a birational morphism $\mu: X^{\prime} \rightarrow X$ such that

$$
\begin{align*}
& \mu^{*} f^{*} f_{*}\left(\mathcal{O}\left(m\left(K_{X / Y}+t L+\frac{1}{p} A\right)\right)\right) \\
& \rightarrow \mu^{*}\left(\mathcal{O}\left(m\left(K_{X / Y}+t L+\frac{1}{p} A\right)-Z\right)\right) \otimes \mathcal{O}(-E) \tag{1}
\end{align*}
$$

is surjective, where X^{\prime} is a smooth projective variety, Z is an effective divisor on X, and E is a μ-exceptional effective divisor on X^{\prime}.
By Theorem A in Appendix, $f_{*}\left(\mathcal{O}\left(m\left(K_{X / Y}+t L+(1 / p) A\right)\right)\right)$ is weakly positive. Hence $\mu^{*} \mathcal{O}\left(m\left(K_{X / Y}+t L+\frac{1}{p} A\right)-Z\right) \otimes \mathcal{O}(-E)$ is pseudo effective. Since Z and E is effective divisors, $\mu^{*}\left(\mathcal{O}\left(m\left(K_{X / Y}+t L+(1 / p) A\right)\right)\right)$ is pseudo-effective. Therefore $m\left(K_{X / Y}+t L+(1 / p) A\right) L^{n-1} \geq 0$. Since p is any natural number, $\left(K_{X / Y}+t L\right) L^{n-1} \geq$ 0 .

Lemma 0.2 Let (f, X, Y, L) be a quasi-polarized fiber space, where X is a normal projective variety with only \mathbb{Q}-factorial canonical singularities with $\operatorname{dim} X=n \geq$ 2. Assume that $K_{X / Y}+t L$ is f-nef, where t is positive integer. Then $\left(K_{X / Y}+\right.$ $t L) L^{n-1} \geq 0$. Moreover if $\operatorname{dim} Y=1$, then $K_{X / Y}+t L$ is nef.
Proof. For any ample Cartier divisor A and any natural number $p, K_{X / Y}+t L+$ $(1 / p) A$ is f-nef by assumption. Let m be a natural number such that $m\left(K_{X / Y}+\right.$ $t L+(1 / p) A)$ is a Cartier divisor. Since $m\left(K_{X / Y}+t L+(1 / p) A\right)-K_{X}$ is f-ample, by the base point free theorem ([16, Theorem 3-1-1]),

$$
f^{*} f_{*} \mathcal{O}\left(\operatorname{lm}\left(K_{X / Y}+t L+\frac{1}{p} A\right)\right) \rightarrow \mathcal{O}\left(\operatorname{lm}\left(K_{X / Y}+t L+\frac{1}{p} A\right)\right)
$$

is surjective for any $l \gg 0$.
Let $\mu: X_{1} \rightarrow X$ be a resolution of X. We put $h=f \circ \mu$. Since

$$
\mu^{*} f^{*} f_{*} \mathcal{O}\left(\operatorname{lm}\left(K_{X / Y}+t L+\frac{1}{p} A\right)\right)=h^{*} h_{*} \mathcal{O}\left(\operatorname{lm}\left(K_{X_{1} / Y}+\mu^{*}\left(t L+\frac{1}{p} A\right)\right)\right)
$$

we have

$$
\begin{align*}
& h^{*} h_{*} \mathcal{O}\left(\operatorname{lm}\left(K_{X_{1} / Y}+\mu^{*}\left(t L+\frac{1}{p} A\right)\right)\right) \\
& \rightarrow \mu^{*} \mathcal{O}\left(\operatorname{lm}\left(K_{X / Y}+t L+\frac{1}{p} A\right)\right) \tag{2}
\end{align*}
$$

is surjective. We take l which satisfies the following condition.

$$
\mathrm{Bs}\left|\operatorname{lm}\left(t L+\frac{1}{p} A\right)\right|=\phi
$$

By Theorem A in Appendix and (2), we see that $\mu^{*}\left(\operatorname{lm}\left(K_{X / Y}+t L+(1 / p) A\right)\right)$ is pseudo-effective. Since p is any natural number, $\left(K_{X / Y}+t L\right) L^{n-1}=\mu^{*}\left(K_{X / Y}+\right.$ $t L)\left(\mu^{*} L\right)^{n-1} \geq 0$.

If $\operatorname{dim} Y=1$, then $K_{X / Y}+t L+(1 / p) A$ is nef. Since p is any natural number, $K_{X / Y}+t L$ is nef.

Lemma 0.3 Let (f, X, Y) be a fiber space with $\operatorname{dim} X>\operatorname{dim} Y \geq 1$. Then $q(X) \leq$ $q(Y)+q(F)$, where F is a general fiber of f.

Proof. See [9, Theorem B in Appendix].
Lemma 0.4 Let (X, L) be a quasi-polarized manifold with $\operatorname{dim} X \leq 3$. Then $g(L) \geq$ 0 . Moreover if $g(L) \leq 1$, then $g(L) \geq q(X)$.
Proof. See [9, Corollary 4.8 and Corollary 4.9].

1 The case of quasi-polarized fiber space over a smooth curve

In this section, we consider the case in which (f, X, Y, L) is a (quasi-)polarized fiber space with $\operatorname{dim} Y=1$.

Theorem 1.1 Let (f, X, C, L) be a polarized fiber space, where X is a normal projecitve variety with only Cohen-Macaulay singularities and C is a smooth projective curve with $g(C) \geq 1$. Then $g(L) \geq g(C)$.
Proof. Let $\mu: X^{\prime} \rightarrow X$ be a resolution of X and $\operatorname{dim} X=n$. Then $\left(g, X^{\prime}, C\right)$ is a fiber space, where $g=f \circ \mu$. Let F be a general fiber of f and let F^{\prime} be a general fiber of g. Then F is normal, F^{\prime} is smooth, and $\mu_{F^{\prime}}: F^{\prime} \rightarrow F$ is a resolution of F. Let $L^{\prime}=\mu^{*} L$. Then $\left(L^{\prime}\right)^{n-1} F^{\prime}=L^{n-1} F$. We note that $g(L)=g\left(L^{\prime}\right)$ and

$$
g\left(L^{\prime}\right)=g(C)+\frac{1}{2}\left(K_{X^{\prime} / Y}+(n-1) L^{\prime}\right)\left(L^{\prime}\right)^{n-1}+(g(C)-1)\left(\left(L^{\prime}\right)^{n-1} F^{\prime}-1\right)
$$

If $\kappa\left(K_{F^{\prime}}+(n-1) L_{F^{\prime}}^{\prime}\right) \neq-\infty$, then by Lemma 0.1 , we get $g(L)=g\left(L^{\prime}\right) \geq g(C)$ since $\left(L^{\prime}\right)^{n-1} F^{\prime} \geq 1$ and $g(C) \geq 1$.

If $\kappa\left(K_{F^{\prime}}+(n-1) L_{F^{\prime}}^{\prime}\right)=-\infty$, then $\left(F, L_{F}\right) \cong\left(\mathbb{P}^{n-1}, \mathcal{O}_{\mathbb{P}^{n-1}}(1)\right)$ by [9, Theorem (2.2)] and the ampleness of L. By [2, Proposition (1.4)], (f, X, C, L) is a scroll. But in this case, $g(L)=g(C)$.

Next we consider the case in which (f, X, C, L) is a quasi-polarized fiber space with $\operatorname{dim} X=3$ and $\operatorname{dim} C=1$.

Definition 1.2 Let $\left(f_{1}, X_{1}, Y, L_{1}\right)$ and $\left(f_{2}, X_{2}, Y, L_{2}\right)$ be quasi-polarized fiber spaces, where X_{i} may have singularities for $i=1,2$. Then $\left(f_{1}, X_{1}, Y, L_{1}\right)$ and $\left(f_{2}, X_{2}, Y, L_{2}\right)$
are said to be birationally equivalent if there is another variety G with birational morphisms $g_{i}: G \rightarrow X_{i}(i=1,2)$ such that $g_{1}^{*} L_{1}=g_{2}^{*} L_{2}$ and $f_{1} \circ g_{1}=f_{2} \circ g_{2}$.

Theorem 1.3 Let (f, X, C, L) be a quasi-polarized fiber space with $\operatorname{dim} X=3$ and $\operatorname{dim} C=1$. Then there exists a quasi-polarized fiber space $\left(f^{\prime}, X^{\prime}, C, L^{\prime}\right)$ which is birationally equivalent to (f, X, C, L) such that $\left(f^{\prime}, X^{\prime}, C, L^{\prime}\right)$ is one of the following types.
(1) $K_{X^{\prime}}+2 L^{\prime}$ is $f^{\prime}-n e f$.
(2) $\left(f^{\prime}, X^{\prime}, C, L^{\prime}\right)$ is a scroll.

Here X^{\prime} is a normal projective variety with only \mathbb{Q}-factorial terminal singularities.
Proof. We prove this theorem by the similar method of the proof of [6, Theorem (4.2)].

If $K_{X}+2 L$ is f-nef, we put $\left(f^{\prime}, X^{\prime}, C, L^{\prime}\right)=(f, X, C, L)$. So we may assume that $K_{X}+2 L$ is not f-nef. Then there exists an extremal curve l_{0} such that $\left(K_{X}+2 L\right) l_{0}<$ 0 and $f\left(l_{0}\right)$ is a point. Let $\phi_{0}: X \rightarrow Z$ be the contraction morphism of l_{0}. Then there is a morphism $\pi_{0}: Z \rightarrow C$ such that $f=\pi_{0} \circ \phi_{0}$.
(a) The case where ϕ_{0} is not birational.

If $L . l_{0}=0$, then $L \in \phi_{0}^{*} \operatorname{Pic}(Z)$. But this is a contradiction. (In fact, since L is nef and big, L_{F} is also nef and big, where F is a general fiber of ϕ_{0}. But since $L \in \phi_{0}^{*} \operatorname{Pic}(Z), L_{F}^{n-1}=0$. This is a contradiction.) Hence $L . l_{0}>0$ and L is relatively ϕ_{0}-ample. By [6, (3.7)], $\operatorname{dim} Z=1$ and $\left(\phi_{0}, X, Z, L\right)$ is a scroll. But since f has connected fibers, we have $Z \cong C$.
Hence $(f, X, C, L)=\left(\phi_{0}, X, Z, L\right)$ is a scroll.
(b) The case where ϕ_{0} is birational.

If $L . l_{0}>0$, then this cannot occur by the same argument as in [6, (3.6)]. So $L . l_{0}=0$ and $L=\phi_{0}^{*} L_{1}$ for some L_{1} in $\operatorname{Pic}(Z)$.
If ϕ_{0} is divisorial contraction, then we put $\left(f_{0}, X_{0}, C, L_{0}\right):=\left(\pi_{0}, Z, C, L_{1}\right)$. If ϕ_{0} is flipping contraction, we take a flip $\phi^{+}: X^{+} \rightarrow Z$ and put $\left(f_{0}, X_{0}, C, L_{0}\right):=$ $\left(f^{+}, X^{+}, C,\left(\phi^{+}\right)^{*}\left(L_{1}\right)\right)$, where $f^{+}=\pi_{0} \circ \phi^{+}$.

In the above two cases, X_{0} is a normal variety with only \mathbb{Q}-factorial terminal singularities and is smooth in codimension 2 . Moreover $\left(f_{0}, X_{0}, C, L_{0}\right)$ is birationally equivalent to (f, X, C, L).

Next we repeat the above process for $\left(f_{0}, X_{0}, C, L_{0}\right)$. Then this process cannot continue infinitely by the minimal model conjecture. Therefore we get the assertion.

Theorem 1.4 Let (f, X, C, L) be a quasi-polarized fiber space with $\operatorname{dim} X=3$ and $\operatorname{dim} C=1$. Then $g(L) \geq g(C)$.

Proof. We note that $g(L)=g\left(L^{\prime}\right)$, where $\left(f^{\prime}, X^{\prime}, C, L^{\prime}\right)$ is birationally equivalent to (f, X, C, L) such that $\left(f^{\prime}, X^{\prime}, C, L^{\prime}\right)$ satisfies (1) or (2) in Theorem 1.3.
(a) The case where $\left(f^{\prime}, X^{\prime}, C, L^{\prime}\right)$ is (2) in Theorem 1.3

In this case, we have $g(L)=g\left(L^{\prime}\right)=g(C)$.
(b) The case where $\left(f^{\prime}, X^{\prime}, C, L^{\prime}\right)$ is (1) in Theorem 1.3

Then by Lemma 0.2

$$
\begin{equation*}
\left(K_{X^{\prime} / C}+2 L^{\prime}\right)\left(L^{\prime}\right)^{2} \geq 0 . \tag{1.4.1}
\end{equation*}
$$

If $g(C)=0$, then by [6, (4.8) Corollary], we have $g(L) \geq 0=g(C)$. So we may assume that $g(C) \geq 1$. Since $\left(L^{\prime}\right)^{2} F^{\prime} \geq 1$ (where F^{\prime} is a fiber of f^{\prime}),

$$
\begin{aligned}
g(L) & =g\left(L^{\prime}\right) \\
& =g(C)+\frac{1}{2}\left(K_{X^{\prime} / C}+2 L^{\prime}\right)\left(L^{\prime}\right)^{2}+(g(C)-1)\left(\left(L_{F}^{\prime}\right)^{2}-1\right) \\
& \geq g(C)
\end{aligned}
$$

by (1.4.1).
Remark 1.5 If the Flip Conjectures I and II for the case where X is terminal (that is, the case where $\Delta=0$ and X has only terminal singularities in [16, Conjecture $5-1-10$ and Conjecture 5-1-13]) are true for $\operatorname{dim} X \geq 4$, then the following statement is true by the same argument as the proof of Theorem 1.3.
Let (f, X, C, L) be a quasi-polarized fiber space with $\operatorname{dim} X=n$ and $\operatorname{dim} C=1$. Then there exists a quasi-polarized fiber space ($f^{\prime}, X^{\prime}, C, L^{\prime}$) which is birationally equivalent to (f, X, C, L) such that $\left(f^{\prime}, X^{\prime}, C, L^{\prime}\right)$ is one of the following types.
(1) $K_{X^{\prime}}+(n-1) L^{\prime}$ is f^{\prime}-nef.
(2) $\left(f^{\prime}, X^{\prime}, C, L^{\prime}\right)$ is a scroll.

Here X^{\prime} is a normal projective variety with only \mathbb{Q}-factorial terminal singularities. We note that if the Flip Conjectures are true, then $g(L) \geq 0$ for any quasi-polarized manifolds (X, L) (see $[6, \S 4]$). Therefore Theorem 1.4 is true for $\operatorname{dim} X \geq 4$ if the Flip Conjectures are true for $\operatorname{dim} X \geq 4$.

Remark 1.6 Recently it was proved that the Flip Conjecture I is true, that is, the flip contraction always exists (see [10]). Moreover it is known that the flips terminate for the case where $\Delta=0$ and $\operatorname{dim} X \leq 4$ (see [16, Theorem 5-1-15]). Therefore Theorem 1.4 is true for $\operatorname{dim} X \leq 4$.

In general, for any $n=\operatorname{dim} X$, we can prove the following theorem.
Theorem 1.7 Let (f, X, C, L) be a quasi-polarized fiber space with $\operatorname{dim} C=1$ and $g(C) \geq 1$. Assume that there does not exist a birational morphism $\pi: F \rightarrow \mathbb{P}^{n-1}$ such that $L=\pi^{*} \mathcal{O}_{\mathbb{P}^{n-1}}(1)$ for a general fiber F of f. Then $g(L) \geq g(C)$.
Proof. If $\kappa\left(K_{F}+(n-1) L_{F}\right) \geq 0$ for a general fiber F of f, then by Lemma 0.1, $\left(K_{X / C}+(n-1) L\right) L^{n-1} \geq 0$. So we have $g(L) \geq g(C)$. Hence we may assume that $\kappa\left(K_{F}+(n-1) L_{F}\right)=-\infty$. Then $h^{0}\left(F, K_{F}+t L_{F}\right)=0$ for $1 \leq t \leq n-1$. By the

Serre duality, we get $h^{n-1}\left(F,-t L_{F}\right)=0$ for $1 \leq t \leq n-1$. By [6, (2.2) Theorem], there exists a birational morphism $\pi: F \rightarrow \mathbb{P}^{n-1}$ such that $\pi^{*} \mathcal{O}_{\mathbb{P}^{n-1}}(1)=L_{F}$. But this contradicts the assumption.

2 The case where $\kappa(X)=-\infty$

First we prove the following lemma.
Lemma 2.1 Let (f, X, Y, L) be a quasi-polarized fiber space. Then $\left(K_{X / Y}+(n-\right.$ $m+1) L) L^{n-1} \geq 0$, where $n=\operatorname{dim} X$ and $m=\operatorname{dim} Y$.

Proof. Since $\operatorname{dim} F=n-m$ for a general fiber F of f, we have $\kappa\left(K_{F}+(n-m+\right.$ 1) $\left.L_{F}\right) \geq 0$ (See [4, (3.4) Lemma]). Hence by Lemma 0.1, we get $\left(K_{X / Y}+(n-m+\right.$ 1)L) $L^{n-1} \geq 0$.

Proposition 2.2 Let (X, L) be a quasi-polarized manifold with $\kappa(X)=-\infty$ and $q(X) \geq 1$. Then

$$
g(L) \geq 1+\left\lceil\frac{m-2}{2} L^{n}\right\rceil
$$

where m is the dimension of the image of the Albanese map.
Proof. Let $\alpha: X \rightarrow \operatorname{Alb}(X)$ be the Albanese map of X and let $f: X \rightarrow Y$ be its Stein factorization. Let $\mu_{Y}: Y_{1} \rightarrow Y$ be a resolution of Y. Then there exists a smooth projective variety X_{1}, a birational morphism $\mu_{X}: X_{1} \rightarrow X$, and a surjective morphism $f_{1}: X_{1} \rightarrow Y_{1}$ with connected fibers such that $\mu_{Y} \circ f_{1}=f \circ \mu_{X}$. We note that $\left(f_{1}, X_{1}, Y_{1}, \mu_{X}^{*} L\right)$ is a quasi-polarized fiber space and $g(L)=g\left(\mu_{X}^{*} L\right)$. We put $L_{1}:=\mu_{X}^{*} L$. Then

$$
\begin{aligned}
g(L) & =g\left(L_{1}\right) \\
& =1+\frac{1}{2}\left(K_{X_{1} / Y_{1}}+(n-m+1) L_{1}\right) L_{1}^{n-1}+\frac{m-2}{2} L_{1}^{n}+\frac{1}{2} f_{1}^{*} K_{Y_{1}} L_{1}^{n-1}
\end{aligned}
$$

Since $\kappa\left(Y_{1}\right) \geq 0$ (see [21, Lemma 10.1]), we have $f_{1}^{*} K_{Y_{1}} L_{1}^{n-1} \geq 0$. By Lemma 2.1, we see that

$$
g(L) \geq 1+\left\lceil\frac{m-2}{2} L^{n}\right\rceil
$$

because $g(L) \in \mathbb{Z}$.
In Corollary 2.3 and Corollary 2.4, we use the same notation as in the proof of Proposition 2.2.

Corollary 2.3 Let (X, L) be a quasi-polarized manifold with $\kappa(X)=-\infty$ and $q(X) \geq 1$. Suppose that (X, L) does not satisfy the following condition.
(*) $\operatorname{dim} Y_{1}=1$ and there is a birational morphism $\varphi: F_{1} \rightarrow \mathbb{P}^{n-1}$ such that
$L_{1 F_{1}}=\varphi^{*} \mathcal{O}_{\mathbb{P}^{n-1}}(1)$ for a general fiber F_{1} of f_{1}.
Then $g(L) \geq 1$.
Proof. Let m be the dimension of the image of the Albanese map of X. If $m \geq 2$, then $g(L) \geq 1$ by Proposition 2.2. So we may assume $m=1$. By assumption and [6, (2.2) Theorem], $\kappa\left(K_{F_{1}}+\left.(n-1) L_{1}\right|_{F_{1}}\right) \neq-\infty$. Therefore $g(L) \geq 1$ by Lemma 0.1.

Corollary 2.4 Let (X, L) be a quasi-polarized manifold with $\kappa(X)=-\infty$. Suppose that $L^{n} \leq 2 q(X)+1$ and $q(X) \geq 1$. Then $g(L) \geq 0$.

Proof. By Proposition 2.2, we may assume that $m=1$. Then by the proof of Proposition 2.2, $g(L)=g\left(L_{1}\right) \geq g\left(Y_{1}\right)-\frac{1}{2} L^{n}=q(X)-\frac{1}{2} L^{n}$. By assumption and $g(L) \in \mathbb{Z}$, we have $g(L) \geq 0$.

In general, we can prove the following proposition by Fujita's results [6].
Proposition 2.5 Let (X, L) be a quasi-polarized manifold of dimension n with $L^{n} \leq$ 4. Then $g(L) \geq 0$.

Proof. If $\kappa\left(K_{X}+(n-1) L\right) \neq-\infty$, then by the definition of the sectional genus we have $g(L) \geq 0$. Hence we may assume that $\kappa\left(K_{X}+(n-1) L\right)=-\infty$. Then $h^{n}(X,-t L)=0$ for every integer t with $1 \leq t<n$. Hence

$$
\begin{aligned}
\chi(X, t L) & =\chi(t) \\
& =(t+1) \cdots(t+n-1)(d t+a) / n!
\end{aligned}
$$

(Here $d=L^{n}$ and $a \in \mathbb{Z}$.) Then we have $K_{X} L^{n-1}=d(1-n)-\frac{2 a}{n}$. If $t=-n$, then

$$
\begin{equation*}
\chi(-n)=\frac{(-1)^{n}}{n}(d n-a) \tag{2.5.1}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\chi(-n)=(-1)^{n} l, \tag{2.5.2}
\end{equation*}
$$

where $l=h^{n}(X,-n L)$. Hence by (2.5.1) and (2.5.2), we have $a=n(d-l)$. Then

$$
\begin{equation*}
g(L)=1-\frac{a}{n}=1-d+l . \tag{2.5.3}
\end{equation*}
$$

(1) The case of $l=0$.

Then by [6, (2.2) Theorem], we have $g(L) \geq 0$.
(2) The case of $l \geq 1$.

If $d=1$, then by (2.5.3) $g(L) \geq 0$. Hence we may assume that $2 \leq d \leq 4$.
(2-1) The case of $d=4$.
In this case, $g(L)=l-3$. If $l \geq 3$, then $g(L) \geq 0$. Hence $l=1$ or 2 .
(2-1-1) The case of $l=1$.

In this case $g(L) \geq 0$ by [6, (2.3) Theorem].
(2-1-2) The case of $l=2$.
In this case $L^{n-1}\left(K_{X}+n L\right)=2 l-d=0$. Since $l=h^{0}\left(K_{X}+n L\right) \neq 0$, we have $l=1$ by [$6,(2.8)$ Corollary]. But this is a contradiction.
(2-2) The case of $d=3$.
In this case $g(L)=l-2$. If $l \geq 2$, then $g(L) \geq 0$. So we may assume that $l=1$. But then $g(L) \geq 0$ by [6, (2.3) Theorem].
(2-3) The case of $d=2$.
In this case, $g(L)=l-1 \geq 0$.
Theorem 2.6 Let X be a normal projective variety with only rational singularities, $\kappa(X)=-\infty$, and $\operatorname{dim} H^{1}\left(\mathcal{O}_{X}\right) \geq 1$, and let L be an ample Cartier divisor on X. Then $g(L) \geq 1$.

Proof. Let $\alpha_{X}: X \rightarrow \operatorname{Alb}(X)$ be the Albanese map of X. Since X has only rational singularity, α_{X} is a morphism (see [20, (0.3.3) Lemma] [15, Lemma 8.1]). Let $\mu_{0}: X_{0} \rightarrow X$ be a resolution of X, and $X_{0} \rightarrow Y_{0} \rightarrow \operatorname{Alb}(X)$ be the Stein factraization of $\alpha_{X} \circ \mu_{0}$. We put $f_{0}: X_{0} \rightarrow Y_{0}$. Let $\mu_{Y, 1}: Y_{1} \rightarrow Y_{0}$ be a resolution of Y_{0}. Then there is a smooth projective variety X_{1}, a birational morphism $\mu_{X, 1}: X_{1} \rightarrow X_{0}$, and a surjective morphism $f_{1}: X_{1} \rightarrow Y_{1}$ with connected fibers such that $f_{0} \circ \mu_{X, 1}=\mu_{Y, 1} \circ f_{1}$.

We consider a quasi-polarized manifold $\left(X_{1},\left(\mu_{0} \circ \mu_{X, 1}\right)^{*} L\right)$. We set $L_{1}:=\left(\mu_{0} \circ\right.$ $\left.\mu_{X, 1}\right)^{*} L$. We note that $\kappa\left(Y_{1}\right) \geq 0$.

If $m:=\operatorname{dim} Y_{1} \geq 2$, then by Proposition 2.2

$$
\begin{aligned}
g(L) & =g\left(L_{1}\right) \\
& =1+\frac{1}{2}\left(K_{X_{1} / Y_{1}}+(n-m+1) L_{1}\right) L_{1}^{n-1}+\frac{m-2}{2} L_{1}^{n}+\frac{1}{2} f_{1}^{*} K_{Y_{1}} L_{1}^{n-1} \\
& \geq 1 .
\end{aligned}
$$

Hence we may assume that $m=1$. We note that $Y_{1}=Y_{0}$ and $X_{1}=X_{0}$. Let F_{1} be a general fiber of f_{1}.
(1) The case of $\kappa\left(K_{F_{1}}+(n-1) L_{1 F_{1}}\right) \geq 0$.

Then by Lemma $0.1\left(K_{X_{1} / Y_{1}}+(n-1) L_{1}\right) L_{1}^{n-1} \geq 0$. Hence $g(L)=g\left(L_{1}\right) \geq 1$ since $g\left(Y_{1}\right)=h^{1}\left(\mathcal{O}_{X}\right) \geq 1$.
(2) The case of $\kappa\left(K_{F_{1}}+(n-1) L_{1 F_{1}}\right)=-\infty$.

Let F be a general fiber of $g: X \rightarrow Y_{0}$ such that $\mu_{0}^{-1}(F)=F_{1}$. (We note that $f_{0}=g \circ \mu_{0}$.)
Then we note that F is a normal projective variety with $\operatorname{dim} F=n-1$. In this case by $[6,(2.2)$ Theorem $]$, there is a birational morphism $\varphi: F \rightarrow \mathbb{P}^{n-1}$ such that $L_{F}=\varphi^{*} \mathcal{O}_{\mathbb{P}^{n-1}}(1)$. Since L is ample, $\left(F, L_{F}\right)=\left(\mathbb{P}^{n-1}, \mathcal{O}(1)\right)$. Hence $\left(g, X, Y_{0}, L\right)$ is scroll by [2, Proposition 1.4]. Therefore $g(L)=g\left(Y_{0}\right) \geq 1$.

Next we propose the following conjecture.

Conjecture 2.7 Let (X, L) be a quasi-polarized manifold with $\kappa(X)=-\infty$, let $\alpha_{X}: X \rightarrow \operatorname{Alb}(X)$ be the Albanese map of X, and let

$$
m(X)=\left\{\begin{array}{cl}
\operatorname{dim} \alpha_{X}(X) & \text { if } q(X) \geq 1 \\
0 & \text { if } q(X)=0
\end{array}\right.
$$

Then $g(L) \geq m(X)$.
We note that Conjecture 2.7 is true if Conjecture in Introduction is true.
Proposition 2.8 Let (X, L) be an n-dimensional quasi-polarized manifold. Assume that $\kappa(X)=-\infty, n \geq 4, L^{n} \geq 3$, and $m(X) \geq 3$. Then $g(L) \geq m(X)$.

Proof. We note that $q(X) \geq 1$ since $m(X) \geq 3$. By Proposition 2.2 we have

$$
g(L) \geq 1+\left\lceil\frac{m(X)-2}{2} L^{n}\right\rceil .
$$

By assumption,

$$
\begin{aligned}
1+\left\lceil\frac{m(X)-2}{2} L^{n}\right\rceil & \geq 1+\frac{3}{2}(m(X)-2) \\
& =m(X)+\frac{1}{2} m(X)-2
\end{aligned}
$$

Since $g(L)$ is integer, we get $g(L) \geq m(X)$.
Proposition 2.9 Let (X, L) be a quasi-polarized manifold with $\operatorname{dim} X \leq 3$ and $\kappa(X)=-\infty$. Then $g(L) \geq m(X)$.
Proof. We note that $m(X) \leq q(X)$ and $m(X)<\operatorname{dim} X \leq 3$. If $g(L) \leq 1$, then $g(L) \geq q(X) \geq m(X)$ by Lemma 0.4. If $g(L) \geq 2$, then $g(L) \geq 2 \geq m(X)$.

Theorem 2.10 Let (X, L) be a polarized manifold with $\kappa(X)=-\infty$. Assume that $L^{n} \geq 3$. Then $g(L) \geq m(X)$.

Proof. We note that $g(L) \geq q(X)$ if $g(L) \leq 2$. (See [7, $\S 12$ and $\S 15]$.) So we may assume that $g(L) \geq 3$. Then $g(L) \geq 3 \geq m(X)$ if $m(X) \leq 3$. Moreover if $\operatorname{dim} X \leq 4$, then $g(L) \geq m(X)$ because $m(X) \leq 3$ in this case. So we may assume that $\operatorname{dim} X \geq 5$ and $m(X) \geq 4$. Then by Proposition 2.8, we have $g(L) \geq m(X)$.

3 The case where $\operatorname{dim} X=3$

In this section, we are going to investigate Conjecture in introduction for $\operatorname{dim} X=3$.
Theorem 3.1 Let (X, L) be a quasi-polarized manifold with $\operatorname{dim} X=3$ and $\kappa(X) \leq$ 2. Then $g(L) \geq q(X)$ holds if (X, L) is one of the following cases.
(1.1) $\kappa(X)=-\infty$ and $m \leq 1$.
(1.2) $\kappa(X)=-\infty, m=2$, and $\kappa(Y) \leq 1$.
(2.1) $\kappa(X)=0$ and $L^{3} \geq 2$.
(2.2) $\kappa(X)=0$ and L is ample.
(3) $\kappa(X)=1$ and $L^{3} \geq 2$.
(4) $\kappa(X)=2, \kappa(Y) \leq 1$, and $L^{3} \geq 2$.

Here in (1.1) and (1.2), m is the dimension of the image of the Albanese map $\alpha_{X}: X \rightarrow \operatorname{Alb}(X), X \rightarrow Y \rightarrow \alpha_{X}(X)$ is the Stein factrization of α_{X}, and Y is the image of the Iitaka fibration of X in (4).

Proof. (A) The case of $\kappa(X)=-\infty$.
(A.1) The case of $q(X)=0$.

In this case, $g(L) \geq 0=q(X)$ by Lemma 0.4.
(A.2) The case of $q(X) \geq 1$.

Let $\alpha_{X}: X \rightarrow \operatorname{Alb}(X)$ be the Albanese map of X and $m=\operatorname{dim} \alpha_{X}(X)$. Then $m=1$ or 2 .
(A.2.1) The case of $m=1$.

In this case, $\alpha_{X}: X \rightarrow \alpha_{X}(X)$ is a fiber space, that is, α_{X} is surjective morphism with connected fibers and $\alpha_{X}(X)$ is a smooth curve of genus $q(X)$. Hence $g(L) \geq$ $q(X)$ by Theorem 1.4.
(A.2.2) The case of $m=2$.

Let $X \rightarrow Y \rightarrow \alpha_{X}(X)$ be the Stein factraization of $\alpha_{X}(X)$. We put $f: X \rightarrow Y$. We note that Y is normal (not smooth in general). Let $\mu_{2}: Y_{1} \rightarrow Y$ be a resolution of Y. Then there is a birational morphism $\mu_{1}: X_{1} \rightarrow X$ and a surjective morphism $f_{1}: X_{1} \rightarrow Y_{1}$ with connected fibers such that $\mu_{2} \circ f_{1}=f \circ \mu_{1}$. We note that $g\left(\mu_{1}^{*} L\right)=g(L)$ and $\kappa\left(Y_{1}\right) \geq 0$. And also we note that $\kappa(F)=-\infty$ since $\kappa(X)=-\infty$, where F is a general fiber of f_{1}. Since $\operatorname{dim} F=1, F \cong \mathbb{P}^{1}$. Hence $q\left(X_{1}\right)=q\left(Y_{1}\right)$ by Lemma 0.3. So it is enough to show that $g\left(\mu_{1}^{*} L\right) \geq q\left(Y_{1}\right)$. We put $L_{1}:=\mu_{1}^{*} L$.
(A.2.2.1) The case of $\kappa\left(Y_{1}\right)=0$.

In this case $q\left(Y_{1}\right) \leq 2$ by the classification theory of smooth projective surfaces. By Proposition 2.2 we have $g\left(L_{1}\right) \geq 1+\left\lceil\frac{m-2}{2} L_{1}^{n}\right\rceil$. Since $m=2$, we have $g\left(L_{1}\right) \geq 1$. If $q\left(Y_{1}\right) \leq 1$, then $g\left(L_{1}\right) \geq q\left(Y_{1}\right)$. So we may assume that $q\left(Y_{1}\right)=2$. Then Y_{1} is birationally equivalent to an Abelian surface.
If $g\left(L_{1}\right) \geq 2$, then $g\left(L_{1}\right) \geq q\left(Y_{1}\right)$. So we may assume that $g\left(L_{1}\right)=1$. But then by Lemma $0.4, g\left(L_{1}\right) \geq q\left(X_{1}\right)$. Hence this cannot occur.
(A.2.2.2) The case of $\kappa\left(Y_{1}\right)=1$.

In this case Y_{1} has an elliptic fibration. Let $\pi: Y_{1} \rightarrow C$ be an elliptic fibration. Then $q\left(Y_{1}\right)=g(C)$ or $q\left(Y_{1}\right)=g(C)+1$ by Lemma 0.3. Hence $g: X_{1} \rightarrow Y_{1} \rightarrow C$ is a fiber space, where $g=\pi \circ f_{1}$. Hence $g\left(L_{1}\right) \geq g(C)$ by Theorem 1.4.
(A.2.2.2.a) The case of $q\left(Y_{1}\right)=g(C)$.

In this case $g\left(L_{1}\right) \geq g(C)=q\left(Y_{1}\right)=q(X)$ by Lemma 0.3 .
(A.2.2.2.b) The case of $q\left(Y_{1}\right)=g(C)+1$.

Let F_{g} be a general fiber of g. We note that

$$
g\left(L_{1}\right)=g(C)+\frac{1}{2}\left(K_{X_{1} / C}+2 L_{1}\right) L_{1}^{2}+\left(L_{1}^{2} F_{g}-1\right)(g(C)-1) .
$$

If $g\left(L_{1}\right) \geq g(C)+1$, then $g\left(L_{1}\right) \geq q\left(Y_{1}\right)=q(X)$. So we may assume that $g\left(L_{1}\right)=$ $g(C)$ by Theorem 1.4. If $g(C) \leq 1$, then $g\left(L_{1}\right) \leq 1$ and $g\left(L_{1}\right) \geq q(X)$ by Lemma 0.4. So we may assume that $g(C) \geq 2$. By using Theorem 1.3 , we may assume that X_{1} is a normal projective variety with only \mathbb{Q}-factorial terminal singularities and $K_{X_{1}}+2 L_{1}$ is g-nef. (In fact if $\left(X_{1}, C, g, L_{1}\right)$ is the type (2) in Theorem 1.3, then $q\left(F_{g}\right)=0$ and $q\left(X_{1}\right)=g(C)$ by Lemma 0.3 . But then $g(C) \geq q\left(Y_{1}\right)$ because $q\left(X_{1}\right) \geq q\left(Y_{1}\right)$. Hence this type cannot occur.) Hence $K_{X_{1} / C}+2 L_{1}$ is nef by Lemma 0.2. Since $g(C) \geq 2$ and $g\left(L_{1}\right)=g(C)$, we have $L_{1}^{2} F_{g}=1$ and $\left(K_{X_{1} / C}+2 L_{1}\right) L_{1}^{2}=0$.

Claim 3.2 $K_{F_{g}}+L_{1 F_{g}}$ is not nef.
Proof. We assume that $K_{F_{g}}+L_{1 F_{g}}$ is nef. Then $r\left(K_{F_{g}}+L_{1 F_{g}}+(1 / p) A_{F_{g}}\right)$ is nef for any $p \in \mathbb{N}$ and any ample Cartier divisor A on X_{1}, where r is a natural number such that $(r / p) \in \mathbb{N}$. On the other hand $r\left(K_{F_{g}}+L_{1 F_{g}}+\frac{1}{p} A_{F_{g}}\right)-K_{F_{g}}$ is ample. By the Nonvanishing theorem (See [16, Theorem 2-1-1]),

$$
h^{0}\left(N r\left(K_{F_{g}}+L_{1 F_{g}}+\frac{1}{p} A_{F_{g}}\right)\right) \neq 0
$$

for any sufficiently large natural number N. Here we choose N which satisfies the following condition.

$$
\mathrm{Bs}\left|N r\left(L_{1}+\frac{1}{p} A\right)\right|=\phi
$$

By Grauert's theorem, $f_{*}\left(N r\left(K_{X_{1} / C}+L_{1}+(1 / p) A\right)\right) \neq 0$. By the same argument as in the proof of Lemma $0.2,\left(K_{X_{1} / C}+L_{1}\right) L_{1}^{2} \geq 0$. Hence $\left(K_{X_{1} / C}+2 L_{1}\right) L_{1}^{2}>0$. But this contradicts assumption. Hence $K_{F_{g}}+L_{1 F_{g}}$ is not nef. This completes the proof of Claim 3.2.

Then there is an extremal rational curve l_{g} on F_{g} with $\left(K_{F_{g}}+L_{1 F_{g}}\right) l_{g}<0$ such that $\left(F_{g}, l_{g}\right)$ is one of the following types.
(α) $F_{g} \cong \mathbb{P}^{2}$ and l_{g} is a line.
(β) $F_{g} \cong \mathbb{P}^{1}$-bundle and l_{g} is a fiber.
$(\gamma) l_{g}$ is (-1)-curve.
Case (α) In this case, $q\left(F_{g}\right)=0$. Hence $q\left(X_{1}\right)=g(C)$. But then $g(C) \geq q\left(Y_{1}\right)$ and this is a contradiction because $g(C)+1=q\left(Y_{1}\right)$. Hence this case cannot occur.

Case (β) Then $L_{1 F_{g}} l_{g}=1$. Hence $\left(F_{g}, L_{1 F_{g}}\right)$ is a scroll over a smooth curve. We put $F_{g}=\mathbb{P}_{T}(\mathcal{E})$ and $\pi_{T}: F_{g} \rightarrow T$, where T is a smooth curve and \mathcal{E} is a normalized locally free sheaf of rank 2 , that is, $h^{0}(\mathcal{E}) \neq 0$ and $h^{0}(\mathcal{E} \otimes \mathcal{L})=0$ for any line bundle \mathcal{L} on T with $\operatorname{deg} \mathcal{L}<0$. Then $K_{F_{g}}=-2 \mathcal{H}+\pi_{T}^{*}\left(K_{T}+\operatorname{det} \mathcal{E}\right)$ and $L_{1 F_{g}}=\mathcal{H}+\pi_{T}^{*} D$, where \mathcal{H} is the tautological line bundle of F_{g} and D is a Cartier divisor on T. We put $b:=\operatorname{deg} D$ and $e:=-\operatorname{deg} \mathcal{E}$. Since a general fiber of $X_{1} \rightarrow Y$ is \mathbb{P}^{1} and $\pi: Y_{1} \rightarrow C$ is an elliptic fibration, we see that $q\left(F_{g}\right)=1$. Hence $g(T)=1$. Therefore $e \geq 0$ or -1 (see [11, Theorem 2.12 and Theorem 2.15, Section 2, Chapter V]).
Case ($\beta .1$) The case of $e \geq 0$.
Then $K_{F_{g}}+2 L_{1 F_{g}}=\pi_{T}^{*}(\operatorname{det} \mathcal{E}+2 D)$. Since $K_{X_{1} / C}+2 L_{1}$ is nef, $K_{X_{1} / C}+2 L_{1} \equiv 0$ by [6, (2.7) Lemma]. In particular, $K_{F_{g}}+2 L_{1 F_{g}} \equiv 0$. Hence $2 b-e=0$. Since $L_{1 F_{g}}$ is nef and big, we have $b \geq e \geq 0$. Hence $b=e=0$. But this contradicts the bigness of $L_{1 F_{g}}$. Hence this case cannot occur.
Case ($\beta .2$) The case of $e=-1$.
First we note that $g(T) \geq 1$ because $e<0$. Let $\mu_{r}: X_{r} \rightarrow X_{1}$ be a resolution of X_{1} such that $X_{r} \backslash \mu_{r}^{-1}\left(\operatorname{Sing}\left(X_{1}\right)\right) \cong X_{1} \backslash \operatorname{Sing}\left(X_{1}\right)$. Let $h:=g \circ \mu_{r}$ and $L_{r}:=\mu_{r}^{*} L_{1}$. Since X_{1} has only \mathbb{Q}-factorial terminal singularities, we see $\left(F_{h}, L_{r F_{h}}\right) \cong\left(F_{g}, L_{1 F_{g}}\right)$, where $F_{g}\left(\operatorname{resp} F_{h}\right)$ is a general fiber of $g(\operatorname{resp} h)$. Then $L_{r F_{h}}$ is ample if and only if $L_{r F_{h}}$ is nef and big since $e<0$. Hence $L_{r F_{h}}$ is ample. Hence $b \geq 0$ by [11, Proposition 2.21, Section 2, Chapter V], and we get

$$
\begin{aligned}
h^{0}\left(K_{F_{g}}+2 L_{1 F_{g}}\right) & =h^{0}\left(K_{T}+\operatorname{det} \mathcal{E}+2 D\right) \\
& \geq 1-g(T)+\operatorname{deg}\left(K_{T}+\operatorname{det} \mathcal{E}+2 D\right) \\
& =g(T)-1+e+2 b \\
& >0 .
\end{aligned}
$$

Hence $h_{*}\left(K_{X_{r} / C}+2 L_{r}\right) \neq 0$ by Grauert's theorem. Since $L_{r F_{h}}$ is ample, $h_{*}\left(K_{X_{r} / C}+\right.$ $\left.2 L_{r}\right)$ is ample by ([3, Theorem 2.4 and Corollary 2.5]). By [9, Lemma 1.4.2], ($K_{X_{1} / C}+$ $\left.2 L_{1}\right) L_{1}^{2}=\left(K_{X_{r} / C}+2 L_{r}\right) L_{r}^{2}>0$. Hence this case also cannot occur. Therefore case (β) cannot occur.
Case (γ) Then $L_{1 F_{g}} l_{g}=0$. Hence $\left(K_{F_{g}}+2 L_{1 F_{g}}\right) l_{g}<0$ and $K_{F_{g}}+2 L_{1 F_{g}}$ is not nef. Therefore this case cannot occur.
By the above argument, the case in which $g\left(L_{1}\right)=g(C)$ and $q\left(Y_{1}\right)=g(C)+1$ cannot occur. Therefore we have $g\left(L_{1}\right) \geq g(C)+1=q\left(Y_{1}\right)$.
(B) The case of $\kappa(X)=0$.

By [9, Theorem 1.3.5], $g(L) \geq q(X)$ holds if $L^{3} \geq 2$. Next we prove that $g(L) \geq q(X)$ holds if L is ample. We note that $q(X) \leq 3$ holds by Kawamata's theorem ([14, Corollary 2]).
(B.1) The case of $q(X)=3$.

Let $\alpha_{X}: X \rightarrow \operatorname{Alb}(X)$ be the Albanese map of X. Then α_{X} is a birational morphism. If α_{X} is isomorphism, then $\frac{L^{3}}{3!} \in \mathbb{N}$ (see [19, Chapter III, Section 16]). Hence $L^{3} \geq 6$. On the other hand $K_{X} \equiv 0$. Hence $g(L) \geq 7>q(X)$.

Assume that α_{X} is not an isomorphism. By [17, Theorem 9.13], there exists a rational curve B such that $B K_{X}<0$. If $K_{X} L^{2}=0$, then $K_{X}=\mathcal{O}_{X}$ because $h^{0}\left(K_{X}\right)>0$ and L is ample. Hence K_{X} is nef. But this is impossible because $B K_{X}<0$. Therefore $K_{X} L^{2}>0$. Hence $\left(K_{X}+2 L\right) L^{2} \geq 3$ if L is ample. Therefore $g(L) \geq 3=q(X)$.
(B.2) The case of $q(X) \leq 2$.

Then $g(L)=1+(1 / 2)\left(K_{X}+2 L\right) L^{2} \geq 2 \geq q(X)$.
(C) The case of $\kappa(X)=1$.

By [9, Theorem 1.3.4], $g(L) \geq q(X)$ holds if $L^{3} \geq 2$.
(D) $\kappa(X)=2$ case.

By using the Iitaka theory, there is a birational morphism $\mu_{1}: X_{1} \rightarrow X$ and a surjective morphism $f: X_{1} \rightarrow Y$ with connected fibers such that $\kappa(F)=0$, where Y is a smooth projective surface and F is a general fiber of f. In this case F is an elliptic curve. We put $L_{1}:=\mu_{1}^{*} L$. We note that $g(L)=g\left(L_{1}\right)$.
(D.1) The case of $\kappa(Y)=-\infty$.
(D.1.1) The case of $q(Y)=0$.

Then $q(X) \leq 1$ by Lemma 0.3 . Hence $g(L) \geq q(X)$ by Lemma 0.4.
(D.1.2) The case of $q(Y) \geq 1$.

Then there is a surjective morphism $g: Y \rightarrow C$ with connected fibers, where C is a smooth curve. We put $h:=g \circ f: X_{1} \rightarrow Y \rightarrow C$. Let $F_{f}\left(\right.$ resp. $\left.F_{g}, F_{h}\right)$ be a general fiber of f (resp. g, h).Then $q\left(F_{h}\right) \leq q\left(F_{f}\right)+q\left(F_{g}\right)=1$. Since $\kappa(X)=2$, we have $\kappa\left(F_{h}\right) \geq 0$. Therefore $K_{X_{1} / C} L_{1}^{2} \geq 0$ by [9, Lemma 1.3.1].

If $g(C)=0$, then $q(X) \leq g(C)+q\left(F_{h}\right)=1$. Hence $g(L)=g\left(L_{1}\right) \geq q(X)$.
If $g(C) \geq 1$, then

$$
\begin{aligned}
g(L) & =g\left(L_{1}\right) \\
& =g(C)+\frac{1}{2}\left(K_{X_{1} / C}+2 L_{1}\right) L_{1}^{2}+(g(C)-1)\left(L_{1}^{2} F_{h}-1\right) \\
& \geq g(C)+1 \\
& \geq g(C)+q\left(F_{h}\right) \\
& \geq q(X)
\end{aligned}
$$

because $L_{1}^{2} F \geq 1$ and $K_{X_{1} / C} L_{1}^{2} \geq 0$.
(D.2) The case of $\kappa(Y)=0$ or 1 .

By Lemma $0.3, q\left(X_{1}\right) \leq q\left(F_{f}\right)+q(Y)=1+q(Y)$. By [9, Theorem 2.3] we have $g(L) \geq q(Y)+L^{3}-1$. So if $L^{3} \geq 2$, then $g(L) \geq q(Y)+1 \geq q\left(X_{1}\right)$.

Appendix

Here we give a proof of the following which was proved in $\left[9\right.$, Theorem $\left.A^{\prime}\right]$:

Theorem. Let X and Y be smooth quasi-projective varieties over \mathbb{C}, \mathcal{L} a semiample invertible sheaf over $X, f: X \rightarrow Y$ a projective surjective morphism. Then for any positive integer k and $i, f_{*}\left(\omega_{X / Y}^{\otimes k} \otimes \mathcal{L}^{\otimes i}\right)$ is weakly positive.

Proof. Let $\eta: X^{\prime} \rightarrow X$ be a finite cyclic covering defined by the nonsingular divisor B such that $\mathcal{L}^{\otimes N}=\mathcal{O}(B)$. Then $\eta_{*} \omega_{X^{\prime} / Y}=\bigoplus_{i=0}^{N-1}\left(\omega_{X / Y} \otimes \mathcal{L}^{\otimes i}\right)$. Since X^{\prime} is nonsingular and η is affine,

$$
\left(\eta_{*} \omega_{X^{\prime} / Y}\right)^{\otimes k}=\eta_{*}\left(\omega_{X^{\prime} / Y}^{\otimes k}\right) .
$$

Hence we have

$$
(f \circ \eta)_{*}\left(\omega_{X^{\prime} / Y}^{\otimes k}\right)=\bigoplus_{t=0}^{k(N-1)} f_{*}\left(\omega_{X / Y}^{\otimes k} \otimes \mathcal{L}^{\otimes t}\right)^{\oplus \alpha(t)}
$$

which is weakly positive by Viehweg [22], where $\left(\sum_{i=0}^{N-1} x^{i}\right)^{k}=\sum_{t=0}^{k(N-1)} \alpha(t) x^{t}$. Thus $f_{*}\left(\omega_{X / Y}^{\otimes k} \otimes \mathcal{L}^{\otimes t}\right)$ is also weakly positive for $0 \leq t \leq k(N-1)$. Tend $N \rightarrow \infty$ and this completes the proof.

As a corollary of the result, we get the following Theorem A:
Theorem A (Viehweg and Mori [18, P.319]) Let X and Y be smooth quasiprojective varieties over the field of complex numbers \mathbb{C}, \mathcal{L} a base point free Cartier divisor on X, and $f: X \rightarrow Y$ be a projective surjective morphism. Then $f_{*}\left(\omega_{X / Y}^{\otimes k} \otimes\right.$ $\mathcal{L})$ is weakly positive in the sense of Viehweg [22] for $\forall k>0$. (Here $\omega_{X / Y}=$ $\left.\omega_{X} \otimes f^{*} \omega_{Y}^{-1}.\right)$

References

[1] M. C. Beltrametti, A. Lanteri, and M. Palleschi, Algebraic surfaces containing an ample divisor of arithmetic genus two, Arkiv för Mat. 25 (1987), 189-210.
[2] M. C. Beltrametti and A.J.Sommese, On the adjunction theoretic classification of polarized varieties, J. reine angew. Math. 427 (1992), 157-192.
[3] H. Esnault and E. Viehweg, Effective bounds for semipositive sheaves and for the height of points on curves over complex function fields, Composit. Math. 76 (1990), 69-85.
[4] T. Fujita, On polarized manifolds whose adjoint bundles are not semipositive, Advanced Studies in Pure Math. 10 (1985), 167-178.
[5] T. Fujita, Classification of polarized manifolds of sectional genus two, the Proceedings of "Algebraic Geometry and Commutative Algebra" in Honor of Masayoshi Nagata, 1987, 73-98.
[6] T. Fujita, Remarks on quasi-polarized varieties, Nagoya Math. J. 115 (1989), 105-123.
[7] T. Fujita, Classification Theories of Polarized Varieties, London Math. Soc. Lecture Note Series 155, 1990.
[8] Y. Fukuma, A lower bound for the sectional genus of quasi-polarized surfaces, Geom. Dedicata 64 (1997), 229-251.
[9] Y. Fukuma, A lower bound for sectional genus of quasi-polarized manifolds, J. Math. Soc. Japan 49 (1997), 339-362.
[10] C. D. Hacon and J. McKernan, Extension theorems and the existence of flips, Flips for 3 -folds and 4-folds, 76-110, Oxford Lecture Ser. Math. Appl., 35, Oxford Univ. Press, Oxford, 2007.
[11] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math. 521977.
[12] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero I, II, Ann. of Math. 79 (1964), 109-326.
[13] P. Ionescu, Generalized adjunction and applications, Math. Proc. Camb. Phil. Soc. 99 (1986), 457-472.
[14] Y. Kawamata, Characterization of Abelian varieties, Composit. Math. 43 (1981), 253-276.
[15] Y. Kawamata, Minimal models and the Kodaira dimension of algebraic fiber spaces, J. reine angew Math. 363 (1985), 1-46.
[16] Y. Kawamata, K. Matsuda, and K. Matsuki, Introduction to the minimal model problem, Advanced Studies in Pure Math. 10 (1985), 283-360.
[17] J. Kollár, The structure of algebraic threefolds: an introduction to Mori's program, Bull. Amer. Math. Soc. 17 (1987), 211-273.
[18] S. Mori, Classification of higher-dimensional varieties, Proc. Symp. Pure Math. 46 1987, 269-331.
[19] D. Mumford, Abelian Varietes, Oxford University Press, 1970.
[20] A. J. Sommese, On the adjunction theoretic structure of projective varieties, Lecture Notes in Math. 1194, 175-213.
[21] K. Ueno, Classification Theory of Algebraic Varieties and Compact Complex spaces, Lecture Notes in Math. 439 (1970)
[22] E. Viehweg, Weak positivity and the additivity of the Kodaira dimension for certain fiber spaces, Advanced Studies in Pure Math. 1 1983, 329-353.

Yoshiaki Fukuma
Department of Mathematics
Faculty of Science
Kochi University
Akebono-cho, Kochi 780-8520
Japan
E-mail: fukuma@kochi-u.ac.jp

[^0]: * Key words and phrases. Quasi-polarized manifold, sectional genus.
 †2000 Mathematics Subject Classification. Primary 14C20; Secondary 14J99.

