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Abstract

Let (X,L) be a quasi-polarized variety of dimension n. In this paper we
investigate a lower bound for the sectional genus g(L) for the following types;
(1) A lower bound for the sectional genus of the case in which (f,X,C,L) is
a quasi-polarized fiber space, where C is a smooth curve. (2) Non-negativity
of te sectional genus of the case where (X,L) is a quasi-polarized manifold or
(X,L) is a polarized variety with some singularities. (3) A lower bound for
the sectional genus of the case where dimX = 3.

Introduction

Let X be a projective variety over the field of complex numbers C with dim X = n,
and L an ample (resp.a nef and big) line bundle on X. Then (X, L) is called a
polarized (resp. a quasi-polarized) variety. Moreover if X is smooth, then (X, L) is
called a polarized (resp. quasi-polarized) manifold.

When we study polarized varieties, it is useful to use their invariants. The
following invariants are well-known.

(1) The degree Ln.

(2) The sectional geuns g(L).

(3) The Δ-genus Δ(L).

Many authors studied polarized varieties by using these invariants. In particular,
P. Ionescu classified polarized manifolds (X, L) for the case where L is very ample
and Ln ≤ 8, and T. Fujita classified polarized manifolds with low sectional genera
and low Δ-genera.

∗Key words and phrases. Quasi-polarized manifold, sectional genus.
†2000 Mathematics Subject Classification. Primary 14C20; Secondary 14J99.
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In this paper, we treat the sectional genus of (X, L). If X is smooth, then the
sectional genus of L is defined to be a non negative integer valued function by the
following formula ([7]):

g(L) = 1 +
1

2
(KX + (n − 1)L)Ln−1,

where KX is the canonical divisor of X. Here we state some recent results about
the sectional genus of quasi-polarized manifold, and propose some conjectures and
problems. The following results are known for the fundamental properties of the
sectional genus.

(A) The value of g(L) is non-negative integer when L is ample. (Fujita [4], Ionescu
[13])

(B) There exist a classification of polarized manifold (X, L) with sectional genus
g(L) ≤ 2. (For example see Fujita [4], [5], Ionescu [13], and Beltrametti-
Lanteri-Palleschi [1].)

(C) Let (X, L) be a polarized manifold. Then there exist only finite deformation
types of polarized masnifolds unless (X, L) is a scroll over a smooth curve. (For
the definition of deformation type of polarized manifolds, see in [7, Chapter
II, §13].)

On the other hand, there is the following conjecture which was proposed by T.
Fujita.

Conjecture 1 Let (X, L) be a quasi-polarized manifold. Then g(L) ≥ q(X), where
q(X) = h1(OX) (called the irregularity of X).

In [8], we treat the case where dimX = 2. But if dimX ≥ 3, the problem seems
difficult. So in [9] we considered the following conjecture:

Conjecture 2 Let (X, L) be a quasi-polarized manifold, Y a normal projective vari-
ety with 1 ≤ dim Y < dim X, and f : X → Y a surjective morphism with connected
fibers. Then g(L) ≥ h1(OY ′), where Y ′ is a resolution of Y .

Of course Conjecture 2 follows from Conjecture 1. The hypothesis of Conjecture 2 is
natural because X has a fibration in many cases (Albanese fibration, Iitaka fibration
e.t.c.).

In [9] we consider the case where dim Y = 1 or some special cases when dimY ≥
2. In [9, Theorem 1.2.1] we proved that g(L) ≥ q(Y ) if dim Y = 1 and L is ample.
Furthermore we proved that if g(L) = q(Y ), dimX ≥ 3, dimY = 1, and L is ample,
then (f, X, Y, L) is a scroll (see [9, Theorem1.4.2]).

In this paper, we mainly consider the case where (X, L) is a polarized variety
such that X has some singularities or the case where (X, L) is a quasi-polarized
manifold. Concretely, we consider the following cases.
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(1) A lower bound for the sectional genus of the case in which (f, X, C, L) is a
quasi-polarized fiber space, where C is a smooth curve.

(2) Non-negativity of te sectional genus of the case where (X, L) is a quasi-
polarized manifold or (X, L) is a polarized variety with some singularities.

(3) A lower bound for the sectional genus of the case where dimX = 3.

First we study the case where (f, X, Y, L) is a quasi-polarized fiber space over
a smooth curve Y , and we proved that g(L) ≥ q(Y ) if (f, X, Y, L) is one of the
following type.

(1.1) X is a normal projective variety with only Cohen-Macaulay singularities, L is
ample, and q(Y ) ≥ 1.

(1.2) dimX = 3, L is nef and big, and dim Y = 1.

(1.3) g(Y ) ≥ 1, and there does not exist a birational morphism π : F → Pn−1 such
that L = π∗O�n−1(1) for a general fiber F of f .

Second we investigate the non-negativity of g(L) for quasi-polarized manifolds.
In order to study the non-negativity of g(L), we have only to investigate the case
where κ(X) = −∞. We note that some known facts about the non-negativity of
g(L) is the following.

(2.a) The case in which X has only rational normal Gorenstein singularities and L
is ample [4, Corollary 1].

(2.b) The case in which (X, L) is a quasi-polarized manifold with dimX ≤ 3 [6,
(4.8) Corollary].

In this paper, we proved the following.

(2.1) Let (X, L) be a quasi-polarized manifold with κ(X) = −∞. Assume that
q(X) ≥ 1. Then

g(L) ≥ 1 +

⌈
m − 2

2
Ln

⌉
,

where m is the dimension of the image of the Albanese map (see Proposition
2.2).

(2.2) Let X be a normal projective variety with only rational singularities, κ(X) =
−∞, and dimH1(OX) ≥ 1, and let L be an ample Cartier divisor on X. Then
g(L) ≥ 1.
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Finally we consider the case where dim X = 3, and we obtain some results about
Conjecture 1.

In Appendix, we state a theorem (Theorem A) which appears in [18, p.319].
Theorem A is used in the proof of Lemma 0.1 and Lemma 0.2.

Finally we note that the most part of this paper was written up to 1995. After
that we revised this paper several times.

Notation and Convention
We say that X is a variety if X is an integral separated scheme of finite type. In
particular X is irreducible and reduced if X is a variety.
In this paper we shall study mainly a smooth projective variety X over the complex
number field C. The words “line bundles” and “Cartier divisors” are used inter-
changeably. The tensor products of line bundles are denoted additively.
OX : the structure sheaf of X.
χ(F): the Euler-Poincaré characteristic of a coherent sheaf F .
hi(F) := dimH i(X,F) for a coherent sheaf F on X.
hi(D) := hi(O(D)) for a divisor D.
|D|: the complete linear system associated with a divisor D.
κ(D): the Iitaka dimension of a Cartier divisor D on X.
κ(X): the Kodaira dimension of X.
Pn: the projective space of dimension n.
Qn: a hyperquadric surface in Pn+1.
∼ (or =): linear equivalence.
≡: numerical equivalence.

For r ∈ R, we define [r] := max{ t ∈ Z : t ≤ r }, 
r� := −[−r].

The pair (X, L) is called a quasi-polarized (resp. polarized) manifold if X is a
smooth projective variety and L is a nef-big (resp. an ample) line bundle. Then
(f, X, Y ) is called a fiber space if X and Y are smooth projective varieties with
dim X > dim Y ≥ 1 and f is a surjective morphism X → Y with connected fibers.
(f, X, Y, L) is called a quasi-polarized (resp. polarized) fiber space if (f, X, Y ) is a
fiber space and L is a nef and big (resp. an ample) line bundle.

We say that two quasi-polarized fiber spaces (f, X, Y, L) and (h, X, Y ′, L) are iso-
morphic if there is an isomorphism δ : Y → Y ′ such that h = δ ◦ f . In this case we
write (f, X, Y, L) ∼= (h, X, Y ′, L).

We say that (f, X, Y, L) is a scroll if Y is smooth, f : X → Y is Pt-bundle, and
L|F = O(1), where F is a fiber of f and t = dimX − dim Y .

We say that (X, L) has a structure of scroll over Y if there exists a surjective mor-
phism f : X → Y such that (F, L|F ) ∼= (Pn−m,O�n−m(1)) for any fiber F of f , where
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dim X = n and dimY = m.

We say that a Cartier divisor D on a projective variety X is pseudo-effective if there
is a big Cartier divisor H such that κ(mD + H) ≥ 0 for all natural number m.

A general fiber F of f for a quasi-polarized fiber space (f, X, Y, L) means a fiber of
a point of the set which is intersection of at most countable many Zariski open sets.

Let D be an effective divisor on X. We call D a normal cossing divisor if D has
regular components which intersect transversally.

0 Preliminaries

In this section, we prove some lemmata which are used in the following sections.
First we prove Lemma 0.1 and Lemma 0.2. Theorem A in Appendix plays an

important role there.

Lemma 0.1 Let (f, X, Y, L) be a quasi-polarized fiber space. Assume that κ(KF +
tLF ) ≥ 0 for some positive rational number t, where F is a general fiber of f . Then
(KX/Y + tL)Ln−1 ≥ 0, where KX/Y = KX − f ∗KY .

Proof. We note that for any natural number p > 0, κ(KF + tLF + 1
p
AF ) ≥ 0, where

A is an ample line bundle on X. By assumption, there exists a Zariski open set U
of Y such that

(1) f |f−1(U) : f−1(U) → U is smooth

(2) h0(m(KFy + tLFy + 1
p
AFy)) is non zero constant for any fiber Fy over y in U ,

and some natural number m such that mt, m
p
∈ N and

Bs

∣∣∣∣m(tLFy +
1

p
AFy)

∣∣∣∣ = φ.

We note that f |f−1(U) is proper. By Grauert’s theorem ([11]), we have

f∗(O(m(KX/Y + tL + (1/p)A))) = 0.

There is a natural map

f ∗f∗

(
O

(
m

(
KX/Y + tL +

1

p
A

)))
→ O

(
m

(
KX/Y + tL +

1

p
A

))
.
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Then by the Hironaka theory [12] there is a birational morphism μ : X ′ → X such
that

μ∗f ∗f∗

(
O

(
m

(
KX/Y + tL +

1

p
A

)))

→ μ∗
(
O

(
m

(
KX/Y + tL +

1

p
A

)
− Z

))
⊗O(−E)(1)

is surjective, where X ′ is a smooth projective variety, Z is an effective divisor on X,
and E is a μ-exceptional effective divisor on X ′.
By Theorem A in Appendix, f∗(O(m(KX/Y + tL + (1/p)A))) is weakly positive.
Hence μ∗O(m(KX/Y + tL + 1

p
A) − Z) ⊗O(−E) is pseudo effective. Since Z and E

is effective divisors, μ∗(O(m(KX/Y + tL + (1/p)A))) is pseudo-effective. Therefore
m(KX/Y +tL+(1/p)A)Ln−1 ≥ 0. Since p is any natural number, (KX/Y +tL)Ln−1 ≥
0. �

Lemma 0.2 Let (f, X, Y, L) be a quasi-polarized fiber space, where X is a normal
projective variety with only Q-factorial canonical singularities with dim X = n ≥
2. Assume that KX/Y + tL is f -nef , where t is positive integer. Then (KX/Y +
tL)Ln−1 ≥ 0. Moreover if dim Y = 1, then KX/Y + tL is nef.

Proof. For any ample Cartier divisor A and any natural number p , KX/Y + tL +
(1/p)A is f -nef by assumption. Let m be a natural number such that m(KX/Y +
tL + (1/p)A) is a Cartier divisor. Since m(KX/Y + tL + (1/p)A) − KX is f -ample,
by the base point free theorem ([16, Theorem 3-1-1]),

f ∗f∗O
(

lm

(
KX/Y + tL +

1

p
A

))
→ O

(
lm

(
KX/Y + tL +

1

p
A

))

is surjective for any l � 0.
Let μ : X1 → X be a resolution of X. We put h = f ◦ μ. Since

μ∗f ∗f∗O
(

lm

(
KX/Y + tL +

1

p
A

))
= h∗h∗O

(
lm

(
KX1/Y + μ∗

(
tL +

1

p
A

)))
,

we have

h∗h∗O
(

lm

(
KX1/Y + μ∗

(
tL +

1

p
A

)))

→ μ∗O
(

lm

(
KX/Y + tL +

1

p
A

))
(2)

is surjective. We take l which satisfies the following condition.

Bs

∣∣∣∣lm
(

tL +
1

p
A

)∣∣∣∣ = φ.
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By Theorem A in Appendix and (2), we see that μ∗(lm(KX/Y + tL + (1/p)A)) is
pseudo-effective. Since p is any natural number, (KX/Y + tL)Ln−1 = μ∗(KX/Y +
tL)(μ∗L)n−1 ≥ 0.

If dim Y = 1, then KX/Y + tL + (1/p)A is nef. Since p is any natural number,
KX/Y + tL is nef. �

Lemma 0.3 Let (f, X, Y ) be a fiber space with dim X > dim Y ≥ 1. Then q(X) ≤
q(Y ) + q(F ), where F is a general fiber of f .

Proof. See [9, Theorem B in Appendix]. �

Lemma 0.4 Let (X, L) be a quasi-polarized manifold with dim X ≤ 3. Then g(L) ≥
0. Moreover if g(L) ≤ 1, then g(L) ≥ q(X).

Proof. See [9, Corollary 4.8 and Corollary 4.9]. �

1 The case of quasi-polarized fiber space over a

smooth curve

In this section, we consider the case in which (f, X, Y, L) is a (quasi-)polarized fiber
space with dim Y = 1.

Theorem 1.1 Let (f, X, C, L) be a polarized fiber space, where X is a normal pro-
jecitve variety with only Cohen-Macaulay singularities and C is a smooth projective
curve with g(C) ≥ 1. Then g(L) ≥ g(C).

Proof. Let μ : X ′ → X be a resolution of X and dim X = n. Then (g, X ′, C) is a
fiber space, where g = f ◦ μ. Let F be a general fiber of f and let F ′ be a general
fiber of g. Then F is normal, F ′ is smooth, and μF ′ : F ′ → F is a resolution of F .
Let L′ = μ∗L. Then (L′)n−1F ′ = Ln−1F . We note that g(L) = g(L′) and

g(L′) = g(C) +
1

2
(KX′/Y + (n − 1)L′)(L′)n−1 + (g(C) − 1)((L′)n−1F ′ − 1).

If κ(KF ′ + (n − 1)L′
F ′) = −∞, then by Lemma 0.1, we get g(L) = g(L′) ≥ g(C)

since (L′)n−1F ′ ≥ 1 and g(C) ≥ 1.
If κ(KF ′ + (n − 1)L′

F ′) = −∞, then (F, LF ) ∼= (Pn−1,O�n−1(1)) by [9, Theorem
(2.2)] and the ampleness of L. By [2, Proposition (1.4)], (f, X, C, L) is a scroll. But
in this case, g(L) = g(C). �

Next we consider the case in which (f, X, C, L) is a quasi-polarized fiber space
with dim X = 3 and dim C = 1.

Definition 1.2 Let (f1, X1, Y, L1) and (f2, X2, Y, L2) be quasi-polarized fiber spaces,
where Xi may have singularities for i = 1, 2. Then (f1, X1, Y, L1) and (f2, X2, Y, L2)

7



are said to be birationally equivalent if there is another variety G with birational
morphisms gi : G → Xi (i = 1, 2) such that g∗

1L1 = g∗
2L2 and f1 ◦ g1 = f2 ◦ g2.

Theorem 1.3 Let (f, X, C, L) be a quasi-polarized fiber space with dim X = 3 and
dim C = 1. Then there exists a quasi-polarized fiber space (f ′, X ′, C, L′) which is
birationally equivalent to (f, X, C, L) such that (f ′, X ′, C, L′) is one of the following
types.

(1) KX′ + 2L′ is f ′-nef.

(2) (f ′, X ′, C, L′) is a scroll.

Here X ′ is a normal projective variety with only Q-factorial terminal singularities.

Proof. We prove this theorem by the similar method of the proof of [6, Theorem
(4.2)].

If KX +2L is f -nef, we put (f ′, X ′, C, L′) = (f, X, C, L). So we may assume that
KX +2L is not f -nef. Then there exists an extremal curve l0 such that (KX +2L)l0 <
0 and f(l0) is a point. Let φ0 : X → Z be the contraction morphism of l0. Then
there is a morphism π0 : Z → C such that f = π0 ◦ φ0.
(a) The case where φ0 is not birational.
If L.l0 = 0, then L ∈ φ∗

0Pic(Z). But this is a contradiction. (In fact, since L is
nef and big, LF is also nef and big, where F is a general fiber of φ0. But since
L ∈ φ∗

0Pic(Z) , Ln−1
F = 0. This is a contradiction.) Hence L.l0 > 0 and L is

relatively φ0-ample. By [6, (3.7)], dimZ = 1 and (φ0, X, Z, L) is a scroll. But since
f has connected fibers, we have Z ∼= C.
Hence (f, X, C, L) = (φ0, X, Z, L) is a scroll.
(b) The case where φ0 is birational.
If L.l0 > 0, then this cannot occur by the same argument as in [6, (3.6)]. So L.l0 = 0
and L = φ∗

0L1 for some L1 in Pic(Z).
If φ0 is divisorial contraction, then we put (f0, X0, C, L0) := (π0, Z, C, L1). If φ0

is flipping contraction, we take a flip φ+ : X+ → Z and put (f0, X0, C, L0) :=
(f+, X+, C, (φ+)∗(L1)), where f+ = π0 ◦ φ+.

In the above two cases, X0 is a normal variety with only Q-factorial terminal
singularities and is smooth in codimension 2. Moreover (f0, X0, C, L0) is birationally
equivalent to (f, X, C, L).

Next we repeat the above process for (f0, X0, C, L0). Then this process cannot
continue infinitely by the minimal model conjecture. Therefore we get the assertion.
�

Theorem 1.4 Let (f, X, C, L) be a quasi-polarized fiber space with dim X = 3 and
dim C = 1. Then g(L) ≥ g(C).

Proof. We note that g(L) = g(L′), where (f ′, X ′, C, L′) is birationally equivalent to
(f, X, C, L) such that (f ′, X ′, C, L′) satisfies (1) or (2) in Theorem 1.3.
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(a) The case where (f ′, X ′, C, L′) is (2) in Theorem 1.3
In this case, we have g(L) = g(L′) = g(C).
(b) The case where (f ′, X ′, C, L′) is (1) in Theorem 1.3
Then by Lemma 0.2

(KX′/C + 2L′)(L′)2 ≥ 0. (1.4.1)

If g(C) = 0, then by [6, (4.8) Corollary], we have g(L) ≥ 0 = g(C). So we may
assume that g(C) ≥ 1. Since (L′)2F ′ ≥ 1 (where F ′ is a fiber of f ′),

g(L) = g(L′)

= g(C) +
1

2
(KX′/C + 2L′)(L′)2 + (g(C) − 1)((L′

F )2 − 1)

≥ g(C)

by (1.4.1). �

Remark 1.5 If the Flip Conjectures I and II for the case where X is terminal (that
is, the case where Δ = 0 and X has only terminal singularities in [16, Conjecture
5-1-10 and Conjecture 5-1-13]) are true for dimX ≥ 4, then the following statement
is true by the same argument as the proof of Theorem 1.3.
Let (f, X, C, L) be a quasi-polarized fiber space with dimX = n and dim C = 1.
Then there exists a quasi-polarized fiber space (f ′, X ′, C, L′) which is birationally
equivalent to (f, X, C, L) such that (f ′, X ′, C, L′) is one of the following types.

(1) KX′ + (n − 1)L′ is f ′-nef.

(2) (f ′, X ′, C, L′) is a scroll.

Here X ′ is a normal projective variety with only Q-factorial terminal singularities.
We note that if the Flip Conjectures are true, then g(L) ≥ 0 for any quasi-polarized
manifolds (X, L) (see [6, §4]). Therefore Theorem 1.4 is true for dim X ≥ 4 if the
Flip Conjectures are true for dim X ≥ 4.

Remark 1.6 Recently it was proved that the Flip Conjecture I is true, that is,
the flip contraction always exists (see [10]). Moreover it is known that the flips
terminate for the case where Δ = 0 and dimX ≤ 4 (see [16, Theorem 5-1-15]).
Therefore Theorem 1.4 is true for dimX ≤ 4.

In general, for any n = dimX, we can prove the following theorem.

Theorem 1.7 Let (f, X, C, L) be a quasi-polarized fiber space with dim C = 1 and
g(C) ≥ 1. Assume that there does not exist a birational morphism π : F → Pn−1

such that L = π∗O�n−1(1) for a general fiber F of f . Then g(L) ≥ g(C).

Proof. If κ(KF + (n − 1)LF ) ≥ 0 for a general fiber F of f , then by Lemma 0.1,
(KX/C + (n − 1)L)Ln−1 ≥ 0. So we have g(L) ≥ g(C). Hence we may assume that
κ(KF + (n − 1)LF ) = −∞. Then h0(F, KF + tLF ) = 0 for 1 ≤ t ≤ n − 1. By the
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Serre duality, we get hn−1(F,−tLF ) = 0 for 1 ≤ t ≤ n − 1. By [6, (2.2) Theorem],
there exists a birational morphism π : F → Pn−1 such that π∗O�n−1(1) = LF . But
this contradicts the assumption. �

2 The case where κ(X) = −∞
First we prove the following lemma.

Lemma 2.1 Let (f, X, Y, L) be a quasi-polarized fiber space. Then (KX/Y + (n −
m + 1)L)Ln−1 ≥ 0, where n = dimX and m = dimY .

Proof. Since dim F = n − m for a general fiber F of f , we have κ(KF + (n − m +
1)LF ) ≥ 0 (See [4, (3.4) Lemma]). Hence by Lemma 0.1, we get (KX/Y + (n− m +
1)L)Ln−1 ≥ 0. �

Proposition 2.2 Let (X, L) be a quasi-polarized manifold with κ(X) = −∞ and
q(X) ≥ 1. Then

g(L) ≥ 1 +

⌈
m − 2

2
Ln

⌉
,

where m is the dimension of the image of the Albanese map.

Proof. Let α : X → Alb(X) be the Albanese map of X and let f : X → Y be
its Stein factorization. Let μY : Y1 → Y be a resolution of Y . Then there exists a
smooth projective variety X1, a birational morphism μX : X1 → X, and a surjective
morphism f1 : X1 → Y1 with connected fibers such that μY ◦ f1 = f ◦ μX . We note
that (f1, X1, Y1, μ

∗
XL) is a quasi-polarized fiber space and g(L) = g(μ∗

XL).We put
L1 := μ∗

XL. Then

g(L) = g(L1)

= 1 +
1

2
(KX1/Y1

+ (n − m + 1)L1)L
n−1
1 +

m − 2

2
Ln

1 +
1

2
f ∗

1 KY1L
n−1
1 .

Since κ(Y1) ≥ 0 (see [21, Lemma 10.1]), we have f ∗
1 KY1L

n−1
1 ≥ 0. By Lemma

2.1, we see that

g(L) ≥ 1 +

⌈
m − 2

2
Ln

⌉

because g(L) ∈ Z. �

In Corollary 2.3 and Corollary 2.4, we use the same notation as in the proof of
Proposition 2.2.

Corollary 2.3 Let (X, L) be a quasi-polarized manifold with κ(X) = −∞ and
q(X) ≥ 1. Suppose that (X, L) does not satisfy the following condition.
(∗) dim Y1 = 1 and there is a birational morphism ϕ : F1 → Pn−1 such that

10



L1F1 = ϕ∗O�n−1(1) for a general fiber F1 of f1.
Then g(L) ≥ 1.

Proof. Let m be the dimension of the image of the Albanese map of X. If m ≥ 2,
then g(L) ≥ 1 by Proposition 2.2. So we may assume m = 1. By assumption and
[6, (2.2) Theorem] , κ(KF1 + (n − 1)L1|F1) = −∞. Therefore g(L) ≥ 1 by Lemma
0.1. �

Corollary 2.4 Let (X, L) be a quasi-polarized manifold with κ(X) = −∞. Suppose
that Ln ≤ 2q(X) + 1 and q(X) ≥ 1. Then g(L) ≥ 0.

Proof. By Proposition 2.2, we may assume that m = 1. Then by the proof of
Proposition 2.2, g(L) = g(L1) ≥ g(Y1) − 1

2
Ln = q(X) − 1

2
Ln. By assumption and

g(L) ∈ Z, we have g(L) ≥ 0. �

In general, we can prove the following proposition by Fujita’s results [6].

Proposition 2.5 Let (X, L) be a quasi-polarized manifold of dimension n with Ln ≤
4. Then g(L) ≥ 0.

Proof. If κ(KX + (n − 1)L) = −∞, then by the definition of the sectional genus
we have g(L) ≥ 0. Hence we may assume that κ(KX + (n − 1)L) = −∞. Then
hn(X,−tL) = 0 for every integer t with 1 ≤ t < n. Hence

χ(X, tL) = χ(t)

= (t + 1) · · · (t + n − 1)(dt + a)/n!

(Here d = Ln and a ∈ Z.) Then we have KXLn−1 = d(1 − n) − 2a
n

. If t = −n, then

χ(−n) =
(−1)n

n
(dn − a). (2.5.1)

On the other hand,
χ(−n) = (−1)nl, (2.5.2)

where l = hn(X,−nL). Hence by (2.5.1) and (2.5.2), we have a = n(d − l). Then

g(L) = 1 − a

n
= 1 − d + l. (2.5.3)

(1) The case of l = 0.
Then by [6, (2.2) Theorem], we have g(L) ≥ 0.
(2) The case of l ≥ 1.
If d = 1, then by (2.5.3) g(L) ≥ 0. Hence we may assume that 2 ≤ d ≤ 4.
(2-1) The case of d = 4.
In this case, g(L) = l − 3. If l ≥ 3, then g(L) ≥ 0. Hence l = 1 or 2.
(2-1-1) The case of l = 1.
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In this case g(L) ≥ 0 by [6, (2.3) Theorem].
(2-1-2) The case of l = 2.
In this case Ln−1(KX + nL) = 2l − d = 0. Since l = h0(KX + nL) = 0, we have
l = 1 by [6, (2.8) Corollary]. But this is a contradiction.
(2-2) The case of d = 3.
In this case g(L) = l − 2. If l ≥ 2, then g(L) ≥ 0. So we may assume that l = 1.
But then g(L) ≥ 0 by [6, (2.3) Theorem].
(2-3) The case of d = 2.
In this case, g(L) = l − 1 ≥ 0. �

Theorem 2.6 Let X be a normal projective variety with only rational singularities,
κ(X) = −∞, and dim H1(OX) ≥ 1, and let L be an ample Cartier divisor on X.
Then g(L) ≥ 1.

Proof. Let αX : X → Alb(X) be the Albanese map of X. Since X has only
rational singularity, αX is a morphism (see [20, (0.3.3) Lemma] [15, Lemma 8.1]). Let
μ0 : X0 → X be a resolution of X, and X0 → Y0 → Alb(X) be the Stein factraization
of αX◦μ0. We put f0 : X0 → Y0. Let μY,1 : Y1 → Y0 be a resolution of Y0. Then there
is a smooth projective variety X1, a birational morphism μX,1 : X1 → X0, and a
surjective morphism f1 : X1 → Y1 with connected fibers such that f0◦μX,1 = μY,1◦f1.

We consider a quasi-polarized manifold (X1, (μ0 ◦ μX,1)
∗L). We set L1 := (μ0 ◦

μX,1)
∗L. We note that κ(Y1) ≥ 0.

If m := dim Y1 ≥ 2 , then by Proposition 2.2

g(L) = g(L1)

= 1 +
1

2
(KX1/Y1

+ (n − m + 1)L1)L
n−1
1 +

m − 2

2
Ln

1 +
1

2
f ∗

1 KY1L
n−1
1

≥ 1.

Hence we may assume that m = 1. We note that Y1 = Y0 and X1 = X0. Let F1 be
a general fiber of f1.
(1) The case of κ(KF1 + (n − 1)L1F1

) ≥ 0.
Then by Lemma 0.1 (KX1/Y1

+ (n − 1)L1)L
n−1
1 ≥ 0. Hence g(L) = g(L1) ≥ 1 since

g(Y1) = h1(OX) ≥ 1.
(2) The case of κ(KF1 + (n − 1)L1F1

) = −∞.
Let F be a general fiber of g : X → Y0 such that μ−1

0 (F ) = F1. (We note that
f0 = g ◦ μ0.)
Then we note that F is a normal projective variety with dimF = n − 1. In this
case by [6, (2.2) Theorem], there is a birational morphism ϕ : F → Pn−1 such that
LF = ϕ∗O�n−1(1). Since L is ample, (F, LF ) = (Pn−1,O(1)). Hence (g, X, Y0, L) is
scroll by [2, Proposition 1.4]. Therefore g(L) = g(Y0) ≥ 1. �

Next we propose the following conjecture.
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Conjecture 2.7 Let (X, L) be a quasi-polarized manifold with κ(X) = −∞, let
αX : X → Alb(X) be the Albanese map of X, and let

m(X) =

{
dim αX(X) if q(X) ≥ 1,

0 if q(X) = 0.

Then g(L) ≥ m(X).

We note that Conjecture 2.7 is true if Conjecture in Introduction is true.

Proposition 2.8 Let (X, L) be an n-dimensional quasi-polarized manifold. Assume
that κ(X) = −∞, n ≥ 4, Ln ≥ 3, and m(X) ≥ 3. Then g(L) ≥ m(X).

Proof. We note that q(X) ≥ 1 since m(X) ≥ 3. By Proposition 2.2 we have

g(L) ≥ 1 +

⌈
m(X) − 2

2
Ln

⌉
.

By assumption,

1 +

⌈
m(X) − 2

2
Ln

⌉
≥ 1 +

3

2
(m(X) − 2)

= m(X) +
1

2
m(X) − 2.

Since g(L) is integer, we get g(L) ≥ m(X). �

Proposition 2.9 Let (X, L) be a quasi-polarized manifold with dim X ≤ 3 and
κ(X) = −∞. Then g(L) ≥ m(X).

Proof. We note that m(X) ≤ q(X) and m(X) < dim X ≤ 3. If g(L) ≤ 1, then
g(L) ≥ q(X) ≥ m(X) by Lemma 0.4. If g(L) ≥ 2, then g(L) ≥ 2 ≥ m(X). �

Theorem 2.10 Let (X, L) be a polarized manifold with κ(X) = −∞. Assume that
Ln ≥ 3. Then g(L) ≥ m(X).

Proof. We note that g(L) ≥ q(X) if g(L) ≤ 2. (See [7, §12 and §15].) So we
may assume that g(L) ≥ 3. Then g(L) ≥ 3 ≥ m(X) if m(X) ≤ 3. Moreover if
dim X ≤ 4, then g(L) ≥ m(X) because m(X) ≤ 3 in this case. So we may assume
that dimX ≥ 5 and m(X) ≥ 4. Then by Proposition 2.8, we have g(L) ≥ m(X). �

3 The case where dim X = 3

In this section, we are going to investigate Conjecture in introduction for dimX = 3.

Theorem 3.1 Let (X, L) be a quasi-polarized manifold with dim X = 3 and κ(X) ≤
2. Then g(L) ≥ q(X) holds if (X, L) is one of the following cases.
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(1.1) κ(X) = −∞ and m ≤ 1.

(1.2) κ(X) = −∞, m = 2, and κ(Y ) ≤ 1.

(2.1) κ(X) = 0 and L3 ≥ 2.

(2.2) κ(X) = 0 and L is ample.

(3) κ(X) = 1 and L3 ≥ 2.

(4) κ(X) = 2, κ(Y ) ≤ 1, and L3 ≥ 2.

Here in (1.1) and (1.2), m is the dimension of the image of the Albanese map
αX : X → Alb(X), X → Y → αX(X) is the Stein factrization of αX , and Y is the
image of the Iitaka fibration of X in (4).

Proof. (A) The case of κ(X) = −∞.
(A.1) The case of q(X) = 0.
In this case, g(L) ≥ 0 = q(X) by Lemma 0.4.
(A.2) The case of q(X) ≥ 1.
Let αX : X → Alb(X) be the Albanese map of X and m = dimαX(X). Then
m = 1 or 2.
(A.2.1) The case of m = 1.
In this case, αX : X → αX(X) is a fiber space, that is, αX is surjective morphism
with connected fibers and αX(X) is a smooth curve of genus q(X). Hence g(L) ≥
q(X) by Theorem 1.4.
(A.2.2) The case of m = 2.
Let X → Y → αX(X) be the Stein factraization of αX(X). We put f : X → Y .
We note that Y is normal (not smooth in general). Let μ2 : Y1 → Y be a resolution
of Y . Then there is a birational morphism μ1 : X1 → X and a surjective morphism
f1 : X1 → Y1 with connected fibers such that μ2 ◦ f1 = f ◦ μ1. We note that
g(μ∗

1L) = g(L) and κ(Y1) ≥ 0. And also we note that κ(F ) = −∞ since κ(X) = −∞,
where F is a general fiber of f1. Since dim F = 1, F ∼= P1. Hence q(X1) = q(Y1) by
Lemma 0.3. So it is enough to show that g(μ∗

1L) ≥ q(Y1). We put L1 := μ∗
1L.

(A.2.2.1) The case of κ(Y1) = 0.
In this case q(Y1) ≤ 2 by the classification theory of smooth projective surfaces. By
Proposition 2.2 we have g(L1) ≥ 1 + 
m−2

2
Ln

1�. Since m = 2, we have g(L1) ≥ 1.
If q(Y1) ≤ 1, then g(L1) ≥ q(Y1). So we may assume that q(Y1) = 2. Then Y1 is
birationally equivalent to an Abelian surface.
If g(L1) ≥ 2, then g(L1) ≥ q(Y1). So we may assume that g(L1) = 1. But then by
Lemma 0.4, g(L1) ≥ q(X1). Hence this cannot occur.
(A.2.2.2) The case of κ(Y1) = 1.
In this case Y1 has an elliptic fibration. Let π : Y1 → C be an elliptic fibration.
Then q(Y1) = g(C) or q(Y1) = g(C) + 1 by Lemma 0.3. Hence g : X1 → Y1 → C is
a fiber space, where g = π ◦ f1. Hence g(L1) ≥ g(C) by Theorem 1.4.
(A.2.2.2.a) The case of q(Y1) = g(C).
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In this case g(L1) ≥ g(C) = q(Y1) = q(X) by Lemma 0.3.
(A.2.2.2.b) The case of q(Y1) = g(C) + 1.
Let Fg be a general fiber of g. We note that

g(L1) = g(C) +
1

2
(KX1/C + 2L1)L

2
1 + (L2

1Fg − 1)(g(C) − 1).

If g(L1) ≥ g(C) + 1, then g(L1) ≥ q(Y1) = q(X). So we may assume that g(L1) =
g(C) by Theorem 1.4. If g(C) ≤ 1, then g(L1) ≤ 1 and g(L1) ≥ q(X) by Lemma
0.4. So we may assume that g(C) ≥ 2. By using Theorem 1.3, we may assume
that X1 is a normal projective variety with only Q-factorial terminal singularities
and KX1 + 2L1 is g-nef. (In fact if (X1, C, g, L1) is the type (2) in Theorem 1.3,
then q(Fg) = 0 and q(X1) = g(C) by Lemma 0.3. But then g(C) ≥ q(Y1) because
q(X1) ≥ q(Y1). Hence this type cannot occur.) Hence KX1/C +2L1 is nef by Lemma
0.2. Since g(C) ≥ 2 and g(L1) = g(C), we have L2

1Fg = 1 and (KX1/C +2L1)L
2
1 = 0.

Claim 3.2 KFg + L1Fg is not nef.

Proof. We assume that KFg + L1Fg is nef. Then r(KFg + L1Fg + (1/p)AFg) is nef
for any p ∈ N and any ample Cartier divisor A on X1, where r is a natural number
such that (r/p) ∈ N. On the other hand r(KFg + L1Fg + 1

p
AFg) − KFg is ample. By

the Nonvanishing theorem (See [16, Theorem 2-1-1]),

h0

(
Nr

(
KFg + L1Fg +

1

p
AFg

))
= 0

for any sufficiently large natural number N . Here we choose N which satisfies the
following condition.

Bs

∣∣∣∣Nr

(
L1 +

1

p
A

)∣∣∣∣ = φ.

By Grauert’s theorem, f∗(Nr(KX1/C + L1 + (1/p)A)) = 0. By the same argument
as in the proof of Lemma 0.2, (KX1/C + L1)L

2
1 ≥ 0. Hence (KX1/C + 2L1)L

2
1 > 0.

But this contradicts assumption. Hence KFg + L1Fg is not nef. This completes the
proof of Claim 3.2. �

Then there is an extremal rational curve lg on Fg with (KFg + L1Fg)lg < 0 such
that (Fg , lg) is one of the following types.

(α) Fg
∼= P2 and lg is a line.

(β) Fg
∼= P1-bundle and lg is a fiber.

(γ) lg is (-1)-curve.

Case (α) In this case, q(Fg) = 0. Hence q(X1) = g(C). But then g(C) ≥ q(Y1) and
this is a contradiction because g(C) + 1 = q(Y1). Hence this case cannot occur.

15



Case (β) Then L1Fg lg = 1. Hence (Fg, L1Fg) is a scroll over a smooth curve. We put
Fg = PT (E) and πT : Fg → T , where T is a smooth curve and E is a normalized
locally free sheaf of rank 2, that is, h0(E) = 0 and h0(E ⊗L) = 0 for any line bundle
L on T with degL < 0. Then KFg = −2H + π∗

T (KT + detE) and L1Fg = H + π∗
T D,

where H is the tautological line bundle of Fg and D is a Cartier divisor on T . We put
b := degD and e := −degE . Since a general fiber of X1 → Y is P1 and π : Y1 → C
is an elliptic fibration, we see that q(Fg) = 1. Hence g(T ) = 1. Therefore e ≥ 0 or
−1 (see [11, Theorem 2.12 and Theorem 2.15, Section 2, Chapter V]).
Case (β.1) The case of e ≥ 0.
Then KFg + 2L1Fg = π∗

T (detE + 2D). Since KX1/C + 2L1 is nef, KX1/C + 2L1 ≡ 0 by
[6, (2.7) Lemma]. In particular, KFg + 2L1Fg ≡ 0. Hence 2b − e = 0. Since L1Fg is
nef and big, we have b ≥ e ≥ 0. Hence b = e = 0. But this contradicts the bigness
of L1Fg . Hence this case cannot occur.
Case (β.2) The case of e = −1.
First we note that g(T ) ≥ 1 because e < 0. Let μr : Xr → X1 be a resolution of X1

such that Xr\μ−1
r (Sing(X1)) ∼= X1\Sing(X1). Let h := g ◦μr and Lr := μ∗

rL1. Since
X1 has only Q-factorial terminal singularities, we see (Fh, LrFh

) ∼= (Fg, L1Fg), where
Fg (resp Fh) is a general fiber of g (resp h). Then LrFh

is ample if and only if LrFh

is nef and big since e < 0. Hence LrFh
is ample. Hence b ≥ 0 by [11, Proposition

2.21, Section 2, Chapter V], and we get

h0(KFg + 2L1Fg) = h0(KT + detE + 2D)

≥ 1 − g(T ) + deg(KT + detE + 2D)

= g(T ) − 1 + e + 2b

> 0.

Hence h∗(KXr/C +2Lr) = 0 by Grauert’s theorem. Since LrFh
is ample, h∗(KXr/C +

2Lr) is ample by ([3, Theorem 2.4 and Corollary 2.5]). By [9, Lemma 1.4.2], (KX1/C+
2L1)L

2
1 = (KXr/C + 2Lr)L

2
r > 0. Hence this case also cannot occur. Therefore case

(β) cannot occur.
Case(γ) Then L1Fg lg = 0. Hence (KFg + 2L1Fg)lg < 0 and KFg + 2L1Fg is not nef.
Therefore this case cannot occur.
By the above argument, the case in which g(L1) = g(C) and q(Y1) = g(C) + 1
cannot occur. Therefore we have g(L1) ≥ g(C) + 1 = q(Y1).
(B) The case of κ(X) = 0.
By [9, Theorem 1.3.5], g(L) ≥ q(X) holds if L3 ≥ 2. Next we prove that g(L) ≥ q(X)
holds if L is ample. We note that q(X) ≤ 3 holds by Kawamata’s theorem ([14,
Corollary 2]).
(B.1) The case of q(X) = 3.
Let αX : X → Alb(X) be the Albanese map of X. Then αX is a birational morphism.

If αX is isomorphism, then L3

3!
∈ N (see [19, Chapter III, Section 16]). Hence

L3 ≥ 6. On the other hand KX ≡ 0. Hence g(L) ≥ 7 > q(X).
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Assume that αX is not an isomorphism. By [17, Theorem 9.13], there exists
a rational curve B such that BKX < 0. If KXL2 = 0, then KX = OX because
h0(KX) > 0 and L is ample. Hence KX is nef. But this is impossible because
BKX < 0. Therefore KXL2 > 0. Hence (KX + 2L)L2 ≥ 3 if L is ample. Therefore
g(L) ≥ 3 = q(X).
(B.2) The case of q(X) ≤ 2.
Then g(L) = 1 + (1/2)(KX + 2L)L2 ≥ 2 ≥ q(X).
(C) The case of κ(X) = 1.
By [9, Theorem 1.3.4], g(L) ≥ q(X) holds if L3 ≥ 2.
(D) κ(X) = 2 case.
By using the Iitaka theory, there is a birational morphism μ1 : X1 → X and a
surjective morphism f : X1 → Y with connected fibers such that κ(F ) = 0, where
Y is a smooth projective surface and F is a general fiber of f . In this case F is an
elliptic curve. We put L1 := μ∗

1L. We note that g(L) = g(L1).
(D.1) The case of κ(Y ) = −∞.
(D.1.1) The case of q(Y ) = 0.
Then q(X) ≤ 1 by Lemma 0.3. Hence g(L) ≥ q(X) by Lemma 0.4.
(D.1.2) The case of q(Y ) ≥ 1.
Then there is a surjective morphism g : Y → C with connected fibers, where C is
a smooth curve. We put h := g ◦ f : X1 → Y → C. Let Ff (resp. Fg, Fh) be a
general fiber of f (resp. g, h).Then q(Fh) ≤ q(Ff) + q(Fg) = 1. Since κ(X) = 2, we
have κ(Fh) ≥ 0. Therefore KX1/CL2

1 ≥ 0 by [9, Lemma 1.3.1].
If g(C) = 0, then q(X) ≤ g(C) + q(Fh) = 1. Hence g(L) = g(L1) ≥ q(X).
If g(C) ≥ 1, then

g(L) = g(L1)

= g(C) +
1

2
(KX1/C + 2L1)L

2
1 + (g(C) − 1)(L2

1Fh − 1)

≥ g(C) + 1

≥ g(C) + q(Fh)

≥ q(X)

because L2
1F ≥ 1 and KX1/CL2

1 ≥ 0.
(D.2) The case of κ(Y ) = 0 or 1.
By Lemma 0.3, q(X1) ≤ q(Ff) + q(Y ) = 1 + q(Y ). By [9, Theorem 2.3] we have
g(L) ≥ q(Y ) + L3 − 1. So if L3 ≥ 2, then g(L) ≥ q(Y ) + 1 ≥ q(X1). �

Appendix

Here we give a proof of the following which was proved in [9, Theorem A′]:
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Theorem. Let X and Y be smooth quasi-projective varieties over C , L a semiample
invertible sheaf over X, f : X → Y a projective surjective morphism. Then for any
positive integer k and i, f∗(ω⊗k

X/Y ⊗L⊗i) is weakly positive.

Proof. Let η : X ′ → X be a finite cyclic covering defined by the nonsingular

divisor B such that L⊗N = O(B). Then η∗ωX′/Y =
N−1⊕
i=0

(ωX/Y ⊗ L⊗i). Since X ′ is

nonsingular and η is affine,

(η∗ωX′/Y )⊗k = η∗(ω⊗k
X′/Y ).

Hence we have

(f ◦ η)∗(ω⊗k
X′/Y ) =

k(N−1)⊕
t=0

f∗(ω⊗k
X/Y ⊗ L⊗t)⊕α(t),

which is weakly positive by Viehweg [22], where

(
N−1∑
i=0

xi

)k

=
k(N−1)∑

t=0

α(t)xt. Thus

f∗(ω⊗k
X/Y ⊗L⊗t) is also weakly positive for 0 ≤ t ≤ k(N − 1). Tend N → ∞ and this

completes the proof. �

As a corollary of the result, we get the following Theorem A:

Theorem A (Viehweg and Mori [18, P.319]) Let X and Y be smooth quasi-
projective varieties over the field of complex numbers C, L a base point free Cartier
divisor on X, and f : X → Y be a projective surjective morphism. Then f∗(ω⊗k

X/Y ⊗
L) is weakly positive in the sense of Viehweg [22] for ∀k > 0. (Here ωX/Y =
ωX ⊗ f ∗ω−1

Y .)
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