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Nagami and Roberts have proved [3, Theorem l] that if X is a

normal space of dimension at least n satisfying certain conditions,

then dim (X — U¿™ 1 Ai)^n — i if the Ai are disjoint closed subsets of

X. In this paper we allow the Ai to intersect provided that the dimen-

sion of the pairwise intersections is known. (The dimension of the

remainder is reduced accordingly.)

By dimension (denoted dim) we mean the covering dimension. The

symbols bdy and int are used to denote the topological boundary and

interior. We will say that a Ti space X is w-solid (n a positive integer)

if for every point x of X and every open neighborhood U of x there is

a connected open neighborhood V of x such that VQU, F is com-

pact, dim V^n, and no (n — 2)-dimensional subset of V separates it.

Such a space is locally compact and locally connected. This property

is hereditary on open subsets.

Theorem 1. Let m and n be integers such that w 3: — 1 and n ^ 1. Let

X be a compact completely normal space with dimX^w. Let Ai,

A2, ■ • • be a countable sequence of closed subsets of X such that

(1) dim Ai^n — i for every integer i,

(2) dim (Air\Aj)èm if i^j.
Thendim (X-\J^,1Ai)^n-m-2.

Proof. The proof of the present theorem is similar to that of

Theorem 1 in [3 ]. That proof has five steps :

(1) X is assumed to be a closed set with a certain minimal property.

(2) A function h from X into 7" is obtained.

(3) An w-dimensional pyramid is constructed in 7".

(4) Assuming the theorem is false, the inverse images in X of the

(» — 1) pairs of opposite faces of the pyramid are separated by n — 1

closed sets whose intersection contains no continuum hitting the

inverse images of both the base and the apex of the pyramid.

(5) The pyramid is truncated and the inverse images of the n pairs

of opposite faces of the lower portion are shown not to be a defining
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system [3, Definition 5], in X. This is shown to be false, and a contra-

diction results.

The only change required in order to prove our present theorem is

the substitution of the following modified step four:

Fourth step. Suppose that dim (X — Uj™ ¡ A¡)<n — m — 2. Then

dim (X — (U,11 AAJh~l(p))) is less than re — m — 2 since h~1(p) is a

Gi. By Lemma 1 of [3] there exist sets Pi, • • • , Bn_m_2 which are

closed in X~h~~l(p) and such that

(1) Bi separates d from C[, l^i^n — m — 2,

(2) n^r'PiÇU/ii^
Let A =Ui^i (Ai(~\Aj); then A is an F„ and dim Afim. By [2,

Theorem 3.4], there exist m + i sets Pn_m_i, • • • , P„_i which are

closed in X~h"1(p) and such that

(1) Bi separates C, from C/,re —w —l=i^re —1,

(2) PltZ-m-tBtZX-A.
Let i? = ntnr11P<eUr_i^.-4. H = H\Jh'\p) is _compact, and

HC\hr1(B) and h~l(p) are disjoint closed subsets of H. Recall from

step 2 that hr1(p)ÇZX-\}^lAi. Then by the above H = h~1(p)

VJ(HC\Ai)\J(Hi^A2)\J • ■ • , and these pieces are disjoint and

closed (Hr\Ai = H(~\Ai). As in step 4 of [3, Theorem l], there is no

continuum KQH which intersects both h_1(p) and HC\hr1(B).

Step 5 now proceeds unchanged, and the proof is complete.

Theorem 1 of [3 ] is obtained as a special case of this theorem when

to= —1.

Theorem 2. If X is a connected n-solid space, then X is not the count-

able union of closed proper subsets Ax, A2, ■ ■ ■ such that dim (Ai(~\A¡)

^re —2 when i^j.

Proof. Suppose the theorem is false, and Ar = U<11 Ait where the

Ai satisfy the conditions of the theorem. We will construct a sequence

Fo, Fi, • • • of compact nonempty subsets of X such that for every

integer i, F,-+i£ F< and ViC\Ai = 0. This is a contradiction since the

Vi have the finite intersection property and an empty total inter-

section.

By Baire's theorem there is an i such that int (At) is not empty.

Fix i at this value. Then bdy (int(Ai))9£0 since X is connected. Let

xoGbdy (int (Ai)). Let x<¡EV0QVoQX be as in the definition of
w-solid. Then Fo is not a subset of A( since xo is not in int (At). Sup-

pose there is an integer j¿¿i such that VoQAj. Then A¡C\A¿D V0

i~\'mt (Ai), a nonempty open set. Hence AjCsAi contains a closed set

of dimension at least re by the definition of re-solid, so dim (Ai(~\A¡)
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^w, a contradiction. Then x0 and V0 satisfy (l)-(4) below if we let

V-i = XandAo = 0.
Induction step. Suppose we are given xp and Vp such that

(1) xPE Vp, and Vp is as in the definition of «-solid ;

(2) for every integer j, VP^A¡;

(3) 7PQVp-i;
(4) YpC\Ap = 0.

We will construct xp+\ and Vp+i satisfying (l)-(4).

Let W be the open set Vp — Ap+\. If W is connected, then it is not

a subset of any A¡, since otherwise VpÇAjKJAp+i, so A¡r\Ap+i sepa-

rates Vp, a contradiction.

If W is not connected, let K be a component; K is open. Let L

= int (7Í), so KÇZLÇ1L = K. But some other component of W is not

empty and Vp is connected. Therefore bdy (L)(~\VV is nonempty,

separates Vp, and is a subset of Ap+i.

There is no integer j such that KQA¡, for suppose there is such a j.

Then 7?ÇZ^, so bdy (L^VpQAji^Ap+i. Let x£bdy (L)r\VP and
let x£ FÇ FÇ F„ be as in the definition of «-solid. Then V is not a

subset of L since x is not in L = int L. Also FP\L j¿ 0 since x is a limit

point of L. Therefore bdy (L)C\V separates V, a contradiction.

In either case we get a connected open subset (K or W) of X which

is not a subset of any A¡. Since this set (K or W) is «-solid, we can

repeat the process used to get Xo and Vo. This gives us the xp+i and

Vp+i we want, completing the induction and the proof.

It is well known that no continuum is a countable union of disjoint

closed subsets. In particular, no locally connected continuum is such

a union. Since a locally connected continuum is 1-solid, Theorem 2 is

a direct generalization of this special case.

Nagami and Roberts have given an example [3, Figure 2] which

shows that the conclusion of Theorem 2 does not hold if we require

only that X be a Cantor «-manifold. This example is a Cantor 2-mani-

fold which is the countable union of disjoint closed sets Aij and a

Cantor discontinuum.

Corollary. If X is Hausdorff, connected, locally connected, and

locally compact, then X is not a countable union of disjoint closed subsets.

Proof. Such a space is 1-solid.

Sierpinsky has given an example (see [l, p. 188]) which shows that

local connectedness is not superfluous in the Corollary.

Theorem 3. Let m and n be integers such that m2: — 1 and »el. If

X is connected, and every point in X has a neighborhood homeomorphic
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to the n-cube In, and Ai, A2, • • • are closed proper subsets of X such

that dim (AiC\A¡) ^m whenever i ¿¿j, then dim (X — U?L1Ai)'iîn — m — 2.

Proof. X is connected and w-solid. By Theorem 2 there is a point

xEX — U^! Ai. There is a neighborhood F of x which is homeomor-

phic to Jn. The dimension of X — Ui°li Ai is at least as great as the

dimension of F —U/li Ait so it is sufficient to prove the theorem for the

case where X = In.

Let 5n_1 denote the surface of In. Then (In — Sn_1) is connected and

«-solid, and no Ai contains all of it. By Theorem 2 there is a point

3G(/--5»-i)-ur.i-4i.
Recall step 3 of the proof of Theorem 1 in [3]. A pyramid with

apex p and base B has been inscribed in I*. Let h be a homeomor-

phism from J" onto J" which leaves 5"_1 fixed and such that h(q) =p.

Then h-1(p)r\(\J¿.1Ai) = 0 as before. Let f = h\Sn~\ the identity

map. Now, using these mappings h and/, repeat step 3, the modified

step 4, and step 5 to complete the proof.

Corollary 2 of [3 ] is the special case of this theorem obtained when

m= — 1.
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