A LOWER BOUND FOR THE FIRST EIGENVALUE OF A NEGATIVELY CURVED MANIFOLD

RICHARD SCHOEN

There has been much work in recent years on the relation of the low eigenvalues of a compact Riemannian manifold to the geometry of the manifold. For Riemann surfaces with positive genus, it was observed by P. Buser [1] that one can find a compact hyperbolic surface of fixed genus (hence fixed area) with arbitrarily small first eigenvalue (see [10] for more information on this problem). For hyperbolic manifolds of dimension larger than two, Mostow's theorem implies that the topology uniquely determines the geometry, so the above phenomenon for λ_1 is likely to be a two-dimensional phenomenon. In this note we show that this is the case. Precisely, let M^n be a compact Riemannian manifold with sectional curvature bounded between two negative constants. We show here that if $n \ge 3$, then $\lambda_1(M)$ has a lower bound depending only on the volume of M. Actually, for n > 3, Gromov [7] has shown that an upper bound on volume implies an upper bound on diameter (for negatively curved M). Using this result, a bound such as ours would follow from a general result of S. T. Yau [11]. For n = 3, the diameter is not bounded in terms of volume (see [2, 3.13]) so our result seems to be of most interest in this case. Buser [2] has observed that our dependence on the inverse square of the volume is best possible.

The case n=3 of our theorem was announced in the Hawaii Symposium in 1979. In this note we give a simplified version, valid for all n > 2, of our original proof. We wish to thank P. Buser for pointing out reference [9] which is used in the proof of Lemma 1.

The main results

We will assume throughout that M^n is a compact n dimensional manifold. We state our main result.

Received December 14, 1981. Research supported by the Sloan Foundation.

Theorem. If the sectional curvatures of M satisfy the inequality $-1 \le K_M \le -\kappa^2$ for some $\kappa \in (0, 1)$ and if $n \ge 3$, then the first eigenvalue $\lambda_1(M)$ satisfies

$$\lambda_1(M) \ge \min \left\{ \frac{(n-1)^2 \kappa^2}{4}, \frac{\delta_n}{\operatorname{Vol}^2(M)} \right\} \ge \frac{\delta'_{n,\kappa}}{\operatorname{Vol}^2(M)},$$

where $\delta_n = 4^{-1}\omega_{n-1}^2[\varepsilon_n e^{-\varepsilon_n(1-\kappa)}]^{2n-2}$, $\varepsilon_n = 4^{-(n+3)}$, $\omega_n = volume$ of the unit ball in \mathbb{R}^n , and

$$\delta_{n,\kappa}' = (n-1)^2 4^{-1} \kappa^2 \omega_n^2 \varepsilon_n^{2n}.$$

We now introduce some terminology. Given a hypersurface Σ in M and a local orthonormal frame e_1, \dots, e_{n-1} tangent to Σ , the mean curvature vector is given by

$$H = \frac{1}{n-1} \sum_{i=1}^{n-1} (D_{e_i} e_i)^{\text{Nor}},$$

where D is the Levi-Civita connection on M, and ()^{Nor} means projection normal to Σ . We will need three preliminary lemmas. The first is an isoperimetric inequality.

Lemma 1. Suppose Σ is a closed (possibly disconnected) hypersurface in M which bounds a region Ω in M. Suppose the mean curvature vector H points everywhere into Ω , and assume the inequalities

$$|H| \ge 1$$
, $\operatorname{Ric}_{M} \ge -(n-1)$.

Then we have $Vol(\Sigma) \ge (n-1)Vol(\Omega)$.

Proof. This result follows from the paper of Heintze-Karcher [9]. The estimates of [9, p. 453] applied on one side of Σ give the inequality

$$\operatorname{Vol}(\Omega) \leq \left(\int_0^\infty \left(\cosh r - \left(\min_{\Sigma} |H| \right) \sinh r \right)_+^{n-1} dr \right) \operatorname{Vol}(\Sigma),$$

where ()₊ indicates the positive part of a function. Using the fact that $|H| \ge 1$, we get immediately the conclusion of Lemma 1.

For a point $P \in M$, let i(P) denote the injectivity radius of M at P. Our next lemma gives an estimate of i(P) for points along a hypersurface in terms of the volume of the hypersurface.

Lemma 2. Suppose M satisfies $K_M \le -\kappa^2$ for some $\kappa \ge 0$, and let Σ be a hypersurface in M with mean curvature H satisfying $|H| \le \Lambda$. Suppose also that $\operatorname{Vol}(\Sigma) < \infty$ and $\mathfrak{K}^{n-2}(\overline{\Sigma} \sim \Sigma) = 0$ where \mathfrak{K}^s denotes Hausdorff s dimensional measure. Then for every point $P \in \overline{\Sigma}$ we have

$$i(P)e^{-i(P)(\Lambda-\kappa)_{+}} \leq \left[\omega_{n-1}^{-1}\operatorname{Vol}(\Sigma)\right]^{1/n-1}$$

where ω_n denotes the volume of the unit ball in \mathbb{R}^n .

Proof. The proof is a modification of a well known monotonicity inequality for the area of a submanifold of R^n . We do the proof assuming that Σ is closed since an easy cutoff argument can then be used to prove the general case. By standard comparison theorems, if r denotes the distance function to a point, $P \in M$, then we have the Hessian comparison

$$\frac{1}{2}D_{x,x}r^2 \ge (1 + \kappa r) |x|^2,$$

provided r < i(P). Restricting this inequality to Σ and taking the trace we have

$$\frac{1}{2}\Delta_{\Sigma}r^2 \geq (n-1)(1-r(\Lambda-\kappa)_+).$$

Integrating this inequality over $\Sigma_{\tau} = \Sigma \cap B_{\tau}(P)$ and applying Stokes theorem we get

$$\tau \int_{\partial \Sigma_{\tau}} |\nabla r| \ge (n-1)(1-\tau(\Lambda-\kappa)_{+}) \operatorname{Vol}(\Sigma_{\tau}),$$

where ∇ is the connection on Σ . Since for any regular value τ of $r|_{\Sigma}$ we have

$$\frac{d}{d\tau} \operatorname{Vol}(\Sigma_{\tau}) = \int_{\partial \Sigma_{\tau}} |\nabla r|^{-1},$$

and since $|\nabla r| \le 1$ on Σ , we get the differential inequality

$$\tau \frac{d}{d\tau} \operatorname{Vol}(\Sigma_{\tau}) \ge (n-1)(1-\tau(\Lambda-\kappa)_{+}) \operatorname{Vol}(\Sigma_{\tau}).$$

Integrating from ε to i(P) we have

$$\left[\varepsilon e^{-\varepsilon(\Lambda-\kappa)_+}\right]^{1-n} \operatorname{Vol}(\Sigma_{\varepsilon}) \leq \left[i(P)e^{-i(P)(\Lambda-\kappa)_+}\right]^{1-n} \operatorname{Vol}(\Sigma).$$

Letting $\varepsilon \downarrow 0$ then gives the conclusion of Lemma 2.

The third preliminary lemma we need is a version of the Margulis lemma.

Lemma 3. Suppose $-1 \le K_M < 0$, and define a set \emptyset by $\emptyset = \{P \in M: i(P) < \varepsilon_n := 4^{-(n+3)}\}$. The set \emptyset is an open set having finitely many components $\emptyset_1, \dots, \emptyset_l$. Each component \emptyset_i is a neighborhood of a simple closed geodesic Γ_i with length $(\Gamma_i) < 2 \cdot \varepsilon_n$. Moreover, each \emptyset_i is topologically equivalent to $S^1 \times B^{n-1}$, and is star-shaped with respect to Γ_i in the sense that every point of \emptyset_i is connected to Γ_i by a unique geodesic arc lying within \emptyset_i and meeting Γ_i orthogonally.

Proof. By a version of the Margulis lemma given by Buser-Karcher [3, 2.5.4] we have, under our hypotheses, that if α , β are loops at a point $q \in M$ which have lengths $|\alpha|$, $|\beta| \le 2\varepsilon_n$ then α , β generate a cyclic subgroup of $\pi_1(M, q)$. Lemma 3 can be derived from this result as follows. Let $P \in \emptyset$ be a given point, and let \tilde{P} be a point in the universal cover \tilde{M} of M lying above P. Since $i(P) < \varepsilon_n$, there is a deck transformation γ which translates \tilde{P} a distance less than $2\varepsilon_n$. Because M has negative curvature, there is a unique geodesic σ which

is preserved by γ . Let $\langle g \rangle$ denote the cyclic group of deck transformations which preserve σ . For any $h \in \langle g \rangle$, the function $\delta_h(x) = d(x, hx)$ is a convex function on M which achieves its minimum value on σ . The set $\tilde{\mathbb{O}}_i$ defined by

$$\tilde{\mathbb{O}}_i = \{ x \in \tilde{M} : \delta_h(x) < \varepsilon_n \text{ for some } h \in \langle g \rangle \}$$

is therefore a finite union of convex neighborhoods of σ . Hence $\tilde{\theta}_i$ is star-shaped with respect to σ . Now if k is a deck transformation such that both x and k(x) lie in θ_i for some x, then for some integers r, s, g^r (resp. g^s) translates x (resp. k(x)) a distance less than $2\varepsilon_n$. But then both g^r an $k^{-1}g^sk$ translate x less than $2\varepsilon_n$ and hence we have $k^{-1}g^sk \in \langle g \rangle$. From this it follows that g, k generate a solvable subgroup of π , which is cyclic by Preissman's theorem and hence $k \in \langle g \rangle$. Therefore, the set $\tilde{\theta}_i/\langle g \rangle = \theta_i$ is a domain in M containing the original point P and is a component of θ . This gives the conclusions of Lemma 3.

Proof of Theorem. To prove the theorem we will use the isoperimetric quantity h(M) of Cheeger [4] defined by

$$h(M) = \inf \left\{ \frac{\operatorname{Vol}(\Sigma^{n-1})}{\min\{V_1, V_2\}} \right\},\,$$

where the infimum is taken over all smooth embedded hypersurfaces Σ^{n-1} (not necessarily connected) which divide M into two components with volumes V_1, V_2 . In [4], Cheeger proved the inequality

$$\lambda_1(M) \geqslant \frac{1}{4}h^2(M).$$

Thus we concentrate our efforts on giving a lower bound on h(M). We will use the following existence theorem from minimal surface theory (see [5, Chapter 5], [6])

Existence Theorem. For any v with $0 < v \le \frac{1}{2} \operatorname{Vol}(M)$, there exist an open set $\Omega_v \subset M$ with $\operatorname{Vol}(\Omega_v) = v$, and a smooth embedded hypersurface Σ_v with the property that $\overline{\Sigma}_v = \partial \Omega_v$, $\Re^s(\overline{\Sigma}_v \sim \Sigma_v) = 0$ for s > n-8, and Ω_v has the extremal property

$$\operatorname{Vol}(\Sigma_v) = \inf \{ \operatorname{Vol}(\partial \Omega) : \Omega \subseteq M \text{ with } \operatorname{Vol}(\Omega) = v \}.$$

Moreover, the mean curvature vector H of Σ_v satisfies $|H| \equiv H_v$ for a constant $H_v \ge 0$ as well as the property that H points everywhere into or everywhere out of Ω_v .

From the extremal property of Σ_n it is clear that

(2)
$$h(M) \ge \inf \{ v^{-1} \operatorname{Vol}(\Sigma_v) : 0 < v \le \frac{1}{2} \operatorname{Vol}(M) \}.$$

We divide our proof into two cases. First, if $H_v \ge 1$ then Lemma 1 can be applied to give

$$(3) v^{-1}\operatorname{Vol}(\Sigma_n) \ge n-1.$$

Note that one has to take some care in applying Lemma 1 because for large n, Σ_v may have singularities. By the observation of Gromov [8], a nearest point to $\overline{\Sigma}_v$ from any given point of $M \sim \overline{\Sigma}_v$ is always a regular point and hence the methods of [9] are applicable.

The remaining case is $H_v < 1$. Now if it were true that

(4)
$$\operatorname{Vol}(\Sigma_n) \ge \omega_{n-1} \left[\varepsilon_n e^{-\varepsilon_n (1-\kappa)} \right]^{n-1},$$

where $\varepsilon_n=4^{-(n+3)}$, then we would be finished in light of (1)-(4). Therefore we assume that (4) does not hold. Then from Lemma 2 we would have $i(P)<\varepsilon_n$ for every $p\in\overline{\Sigma}_v$; that is, we have $\overline{\Sigma}_v\subseteq 0$ in the terminology of Lemma 3. Since n>2, the set $M\sim 0$ is connected. Let U_v be the component of $M\sim\overline{\Sigma}_v$ which contains $M\sim 0$, and let $\Omega_v'=M\sim\overline{U}_v$ and $\Sigma_v'=\Sigma_v\cap\partial\Omega_v'$. By construction we have

(5)
$$v^{-1}\operatorname{Vol}(\Sigma_{v}) \ge \operatorname{Vol}(\Omega'_{v})^{-1}\operatorname{Vol}(\Sigma'_{v})$$

(recall that $v \leq \frac{1}{2} \operatorname{Vol}(M)$). Let Ω be a component of Ω'_v and let $\Sigma = \Sigma_v \cap \partial \Omega$. Then $\overline{\Omega} \subset \emptyset_i$ for some component \emptyset_i of \emptyset . Since \emptyset_i is the quotient by a cyclic group of a star-shaped neighborhood of a geodesic σ in \tilde{M} (see the proof of Lemma 3), the distance function to σ is a well defined function in \emptyset_i which we denote by ρ . By standard comparison methods we have $\Delta_M \rho \geq (n-1)\kappa$ in \emptyset_i . Thus Stokes theorem applied in Ω gives

$$(n-1)\kappa \operatorname{Vol}(\Omega) \leq \operatorname{Vol}(\Sigma).$$

Since any two components of Ω'_{v} have disjoint closures, we can sum these inequalities over all components of Ω'_{v} to conclude

(6)
$$\operatorname{Vol}(\Omega'_n)^{-1}\operatorname{Vol}(\Sigma'_n) \ge (n-1)\kappa.$$

Combining (1)–(6) we have

$$\lambda_1(M) \ge \min \left\{ \frac{(n-1)^2 \kappa^2}{4}, \frac{\delta_n}{\operatorname{Vol}^2(M)} \right\},$$

where $\delta_n = 4^{-1}\omega_{n-1}^2 [\varepsilon_n e^{-\varepsilon_n(1-\kappa)}]^{2n-2}$, $\varepsilon_n = 4^{-(n+3)}$. The final inequality of the theorem follows from this because by Lemma 3 there is a point $P \in M$ with $i(P) \ge \varepsilon_n$ hence the volume satisfies

$$\operatorname{Vol}(M) \geq \omega_n \varepsilon_n^n$$
.

Thus we have

$$\lambda_1(M) \geq \frac{\delta'_{n,\kappa}}{\operatorname{Vol}^2(M)},$$

where $\delta'_{n,\kappa} = 4^{-1}(n-1)^2 \kappa^2 \omega_n^2 \varepsilon_n^{2n}$. (Note that for $n \ge 3$ we have $\delta'_{n,\kappa} \le \delta_n$.) This completes the proof of the main theorem.

References

- [1] P. Buser, Riemannsche Flächen mit Eigenwerten in $(0, \frac{1}{4})$, Comment. Math. Helv. 52 (1977) 25-34.
- [2] _____, On Cheeger's inequality $\lambda_1 \le h^2/4$, Proc. Sympos. Pure Math., Vol. 36, Amer. Math. Soc., Providence, RI, 1980, pp. 29–77.
- [3] P. Buser & H. Karcher, Gromov's almost flat manifolds, Soc. Math. de France 81 (1981).
- [4] J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, Problems in analysis, Symposium in honor of Bochner, Princeton Univ. Press, Princeton, NJ, 1970, pp. 195-199.
- [5] H. Federer, Geometric measure theory, Springer-Verlag, New York, 1969.
- [6] _____, The singular sets of area minimizing rectifiable currents with codimension one and of area minimizing flat chains modulo two with arbitrary codimension, Bull. Amer. Math. Soc. 79 (1970) 761-771.
- [7] M. Gromov, Manifolds of negative curvature, J. Differential Geometry 13 (1978) 223-230.
- [8] _____, Paul Levy's isoperimetric inequality, to appear.
- [9] E. Heintze & H. Karcher, A general comparison theorem with applications to volume estimates for submanifolds, Ann. Sci. École Norm. Sup. (4) 11 (1978) 451-470.
- [10] R. Schoen, S. Wolpert & S. T. Yau, Geometric bounds on the low eigenvalues of a compact surface, Proc. Sympos. Pure Math., Vol. 36, Amer. Math. Soc., Providence, RI, 1980, pp. 279-286.
- [11] S. T. Yau, Isoperimetric constants and the first eigenvalue of a compact Riemannian manifold, Ann. Sci. École Norm. Sup. (4) 8 (1975) 487-507.

University of California, Berkeley