Filomat 27:1 (2013), 51–55 DOI 10.2298/FIL1301051W

A lower bound for the harmonic index of a graph with minimum degree at least two

Renfang Wu^a, Zikai Tang^a, Hanyuan Deng^{*a}

^aCollege of Mathematics and Computer Science, Key Laboratory of High Performance Computing and Stochastic Information Processing (Ministry of Education of China), Hunan Normal University, Changsha, Hunan 410081, P. R. China

Abstract. The harmonic index H(G) of a graph G is defined as the sum of the weights $\frac{2}{d(u)+d(v)}$ of all edges uv of G, where d(u) denotes the degree of a vertex u in G. We give a best possible lower bound for the harmonic index of a graph (a triangle-free graph, respectively) with minimum degree at least two and characterize the extremal graphs.

1. Introduction

In this work, we consider the harmonic index. For a simple graph (or a molecular graph) G = (V, E), the harmonic index H(G) is defined in [1] as $H(G) = \sum_{uv \in E(G)} \frac{2}{d(u) + d(v)}$, where d(u) denotes the degree of a vertex u in G. Favaron et al. [2] considered the relation between harmonic index and the eigenvalues of graphs. Zhong [3] found the minimum and maximum values of the harmonic index for simple connected graphs and trees, and characterized the corresponding extremal graphs. Deng, Balachandran, Ayyaswamy, Venkatakrishnan [4] considered the relation relating the harmonic index H(G) and the chromatic number $\chi(G)$ and proved that $\chi(G) \leq 2H(G)$ by using the effect of removal of a minimum degree vertex on the harmonic index. It strengthens a result relating the Randić index and the chromatic number conjectured by the system AutoGraphiX and proved by Hansen et al. in [5], since we always have $H(G) \leq R(G)$ for any graph G. Deng, Tang, Zhang [6] considered the harmonic index H(G) and the radius r(G) and strengthened some results relating the Randić index and the radius in [7] [8] [9]. Deng, Balachandran, Ayyaswamy, Venkatakrishnan [10] determined the trees with the second-the sixth maximum harmonic indices, and unicyclic graphs with the second-the fifth maximum harmonic indices, and bicyclic graphs with the first-the fourth maximum harmonic indices. For other related results see [11] [12] [13] [14]. Here we will establish a best possible lower bound for the harmonic index of a graph, a triangle-free graph, respectively, with *n* vertices and minimum degree at least two and characterize the extremal graphs.

2. A lower bound for the harmonic index of a graph with minimum degree at least two

In the section, we will establish a best possible lower bound for the harmonic index of a graph with minimum degree at least two and characterize the extremal graphs.

²⁰¹⁰ Mathematics Subject Classification. Primary 05C07; Secondary 05C15

Keywords. Graph, the harmonic index, the minimum degree

Received: 10 May 2012; Accepted: 26 September 2012

Communicated by Dragan Stevanović

Research supported by Hunan Provincial Natural Science Foundation of China (13JJ3053) and the Program Excellent Talent Hunan Normal University (ET13101)

Email address: *Corresponding author: hydeng@hunnu.edu.cn (Hanyuan Deng*)

For an edge e = uv of a graph *G*, its weight is defined to be $\frac{2}{d(u)+d(v)}$. The harmonic index of *G* is the sum of weights over all its edges.

Lemma 2.1. If *e* is an edge with maximal weight in *G*, then H(G - e) < H(G).

Proof. Let e = uv. Since uv is an edge with maximal weight in G, we have $d(w) \ge d(v)$ for $w \in N(u)$ and $d(w) \ge d(u)$ for $w \in N(v)$. Note that $\frac{1}{x} - \frac{1}{x-1}$ is increasing for x > 1.

$$H(G) - H(G - e) = \frac{2}{d(u) + d(v)} + \sum_{w \in N(u) \setminus \{v\}} \left(\frac{2}{d(u) + d(w)} - \frac{2}{d(u) + d(w) - 1}\right) \\ + \sum_{w \in N(v) \setminus \{u\}} \left(\frac{2}{d(v) + d(w)} - \frac{2}{d(v) + d(w) - 1}\right) \\ \ge \frac{2}{d(u) + d(v)} + \left(d(u) - 1\right)\left(\frac{2}{d(u) + d(v)} - \frac{2}{d(u) + d(v) - 1}\right) \\ + \left(d(v) - 1\right)\left(\frac{2}{d(v) + d(u)} - \frac{2}{d(v) + d(u) - 1}\right) \\ = \frac{2}{d(u) + d(v) - 1} - \frac{2}{d(u) + d(v)} > 0$$

which proves the result.

Let $K_{a,b}$ be the complete bipartite graph with a and b vertices in its two partite sets, respectively. For $n \ge 4$, let $K_{2,n-2}^*$ be the graph obtained from $K_{2,n-2}$ by joining an edge between the two non-adjacent vertices of degree n - 2. Obviously, $H(K_{2,n-2}^*) = h_1(n) = 4 + \frac{1}{n-1} - \frac{12}{n+1}$. Let $\delta(G)$ be the minimum degree of the graph G.

Theorem 2.2. Let G be a graph with $n \ge 3$ vertices and $\delta(G) \ge 2$. Then $H(G) \ge h_1(n)$ with equality if and only if $G = K_{2,n-2}^*$.

Proof. It is easy to check that the assertion is true for n = 4. Suppose it holds for $4 \le k < n$; we next show that it also holds for n.

Let *G* be a graph with n > 4 vertices. If $\delta(G) \ge 3$, then by Lemma 1, the deletion of an edge with maximal weight yields a graph *G*' of minimal degree at least two such that H(G') < H(G). So, we only need to prove the result is true for *G* with $\delta(G) = 2$.

Case 1. Every pair of adjacent vertices of degree two has a common neighbor.

Let u_1 and u_2 be a pair of adjacent vertices with degree two in *G* which has a common neighbor u_3 . Obviously, $2 \le d(u_3) \le n - 1$.

Subcase 1.1. If $d(u_3) = 2$, let $G_1 = G - \{u_1, u_2, u_3\}$, then $H(G_1) \ge h_1(n-3)$ by the induction hypothesis, and $H(G) = H(G_1) + \frac{3}{2} \ge h_1(n-3) + \frac{3}{2} > h_1(n)$.

Subcase 1.2. If $d(u_3) \ge 4$, let $G_2 = G - \{u_1, u_2\}$, then $H(G_2) \ge h_1(n-2)$ by the induction hypothesis. Note that $\frac{1}{x} - \frac{1}{x-2}$ is increasing for x > 2.

$$\begin{split} H(G) &= H(G_2) + \frac{1}{2} + \frac{4}{d(u_3)+2} + \sum_{v \in N(u_3) \setminus \{u_1, u_2\}} \left(\frac{2}{d(u_3)+d(v)} - \frac{2}{d(u_3)+d(v)-2} \right) \\ &\geq H(G_2) + \frac{1}{2} + \frac{4}{d(u_3)+2} + \left(d(u_3) - 2 \right) \left(\frac{2}{d(u_3)+2} - \frac{2}{d(u_3)} \right) \\ &= H(G_2) + \frac{1}{2} + \frac{4}{d(u_3)} - \frac{4}{d(u_3)+2} \\ &\geq h_1(n-2) + \frac{1}{2} + \frac{4}{d(u_3)} - \frac{4}{d(u_3)+2} \\ &\geq h_1(n-2) + \frac{1}{2} + \frac{4}{n-1} - \frac{4}{n+1} > h_1(n). \end{split}$$

Subcase 1.3. If $d(u_3) = 3$, let u_4 be the neighbor of u_3 in *G* different from u_1 and u_2 , where $2 \le d(u_4) \le n-3$. (i) Suppose that $d(u_4) = 2$. Denote by u_5 the neighbor of u_4 in *G* different from u_3 , where $2 \le d(u_5) \le n-4$. Let $G_3 = G - u_4 + u_3u_5$, then $H(G_3) \ge h_1(n-1)$ by the induction hypothesis. Note that $\frac{1}{x} - \frac{1}{x+1}$ is decreasing for x > 0.

$$H(G) = H(G_3) + \frac{2}{5} + \frac{2}{d(u_5)+2} - \frac{2}{d(u_5)+3}$$

$$\geq H(G_3) + \frac{2}{5} + \frac{2}{n-2} - \frac{2}{n-1}$$

$$\geq h_1(n-1) + \frac{2}{5} + \frac{2}{n-2} + \frac{2}{n-1} > h_1(n).$$

(ii) Suppose that $3 \le d(u_4) \le n-3$. Let $G_4 = G - u_1 - u_2 - u_3$, then $H(G_4) \ge h_1(n-3)$ by the induction hypothesis. Note that $\frac{2}{x+2} - \frac{6}{x+1} + \frac{4}{x}$ is decreasing for x > 0.

$$\begin{split} H(G) &= H(G_4) + \frac{1}{2} + \frac{4}{5} + \frac{2}{d(u_4)+3} + \sum_{v \in N(u_4) \setminus \{u_3\}} \left(\frac{2}{d(u_4)+d(v)} - \frac{2}{d(u_4)+d(v)-1} \right) \\ &\geq H(G_4) + \frac{13}{10} + \frac{2}{d(u_4)+3} + \left(d(u_4) - 1 \right) \left(\frac{2}{d(u_3)+2} - \frac{2}{d(u_4)+1} \right) \\ &= H(G_4) + \frac{13}{10} + \frac{2}{d(u_4)+3} - \frac{6}{d(u_4)+2} + \frac{4}{d(u_4)+1} \\ &\geq H(G_4) + \frac{13}{10} + \frac{2}{n} - \frac{6}{n-1} + \frac{4}{n-2} \\ &\geq h_1(n-3) + \frac{13}{10} + \frac{2}{n} - \frac{6}{n-1} + \frac{4}{n-2} > h_1(n). \end{split}$$

Case 2. There is a pair of adjacent vertices of degree two without common neighbor.

Let u_1 and u_2 be a pair of adjacent vertices with degree two in G which has no common neighbor. Denote by u_3 the neighbor of u_1 in *G* different from u_2 . Let $G_5 = G - u_1 + u_2 u_3$, then $H(G_5) \ge h_1(n-1)$ by the induction hypothesis, and $H(G) = H(G_5) + \frac{1}{2} \ge h_1(n-1) + \frac{1}{2} > h_1(n)$. **Case 3**. There is no pair of adjacent vertices of degree two.

Let *u* be a vertex of degree two with neighbors *v* and *w* in *G*. **Subcase 3.1.** $vw \notin E$, where $3 \leq d(v) \leq n-2$ and $3 \leq d(w) \leq n-2$. Let $G_6 = G - u + vw$, then $H(G_6) \geq h_1(n-1)$ by the induction hypothesis. Note that $f(x, y) = \frac{2}{x+2} + \frac{2}{y+2} - \frac{2}{x+y} \geq f(n-2, n-2)$ for $3 \le x \le n - 2$ and $3 \le y \le n - 2$, since $\frac{\partial f}{\partial x} < 0$ and $\frac{\partial f}{\partial y} < 0$.

$$H(G) = H(G_6) + \frac{2}{d(v)+2} + \frac{2}{d(w)+2} - \frac{2}{d(v)+d(w)}$$

$$\geq H(G_6) + f(n-2, n-2)$$

$$\geq h_1(n-1) + \frac{4}{n} - \frac{1}{n-2} > h_1(n).$$

Subcase 3.2. $vw \in E$, where $3 \le d(v) \le n-1$ and $3 \le d(w) \le n-1$. Let $G_7 = G - u$, then $H(G_7) \ge h_1(n-1)$ by the induction hypothesis. Note that $g(x, y) = \frac{2}{x+y} + \frac{6}{x+1} + \frac{6}{y+1} - \frac{2}{x+y-2} - \frac{6}{x+2} - \frac{6}{y+2} \ge g(n-1, n-1)$ for $3 \le x \le n-1$ and $3 \le y \le n-1$, since $\frac{\partial g}{\partial y}(\frac{\partial g}{\partial x}) < 0$ and $\frac{\partial g}{\partial x} \le \frac{\partial g(x,3)}{\partial x} < 0$, and $\frac{\partial g}{\partial x}(\frac{\partial g}{\partial y}) < 0$ and $\frac{\partial g}{\partial y} \le \frac{\partial g(3,y)}{\partial y} < 0$.

$$\begin{split} H(G) &= H(G_7) + \frac{2}{d(v)+2} + \frac{2}{d(w)+2} - \frac{2}{d(v)+d(w)-2} \\ &+ \sum_{z \in N(v) \setminus \{u,w\}} \left(\frac{2}{d(v)+d(z)} - \frac{2}{d(v)+d(z)-1} \right) + \sum_{z \in N(w) \setminus \{u,v\}} \left(\frac{2}{d(w)+d(z)} - \frac{2}{d(w)+d(z)-1} \right) \\ &\geq H(G_7) + \frac{2}{d(v)+2} + \frac{2}{d(w)+2} - \frac{2}{d(v)+d(w)-2} \\ &+ (d(v) - 2) \left(\frac{2}{d(v)+2} - \frac{2}{d(v)+1} \right) + (d(w) - 2) \left(\frac{2}{d(w)+2} - \frac{2}{d(w)+1} \right) \\ & \text{ (with equality if and only if } d(z) = 2 \text{ for all } z \in N(v) \cup N(w) \setminus \{u, v, w\}) \\ &= H(G_7) + \frac{2}{d(v)+d(w)} + \frac{6}{d(v)+1} + \frac{6}{d(w)+1} - \frac{2}{d(v)+d(w)-2} - \frac{6}{d(v)+2} - \frac{6}{d(v)+2} - \frac{6}{d(w)+2} \right) \\ &\geq H(G_7) + g(n-1, n-1) \\ & \text{ (with equality if and only if } d(v) = d(w) = n-1) \\ &\geq h_1(n-1) + \frac{1}{n-1} + \frac{12}{n} - \frac{1}{n-2} - \frac{12}{n+1} \\ & \text{ (with equality if and only if } G_7 = K_{2,n-3}^*) \\ &= h_1(n) \end{split}$$

with equality if and only if $G = K_{2,n-2}^*$. Hence, the assertion is true for all $n \ge 4$.

3. A lower bound for the harmonic index of a triangle-free graph with minimum degree at least two

In the section, we will give a best possible lower bound for the harmonic index of a triangle-free graph with minimum degree at least two and characterize the extremal graphs.

Theorem 3.1. Let G be a triangle-free graph of order $n \ge 4$ with $\delta(G) \ge 2$. Then $H(G) \ge h_2(n) = 4 - \frac{8}{n}$ with equality *if and only if* $G = K_{2,n-2}$.

Proof. It is easy to check that the assertion is true for n = 4. Suppose it holds for $4 \le k < n$; we next show that it also holds for n.

Let *G* be a graph with n > 4 vertices. If $\delta(G) \ge 3$, then by Lemma 1, the deletion of an edge with maximal weight yields a graph *G*' of minimal degree at least two such that H(G') < H(G). So, we only need to prove the result is true for *G* with $\delta(G) = 2$.

Case 1. There exists a vertex *u* of degree two such that the neighbors of *u* have degree at least three.

Let $N(u) = \{u_1, u_2\}$ and $3 \le d(u_i) \le n - 2$ for i = 1, 2, then $\delta(G - u) \ge 2$ and G - u is triangle-free. $H(G - u) \ge h_2(n - 1)$ by the induction hypothesis.

$$\begin{aligned} H(G) &= H(G-u) + \frac{2}{d(u_1)+2} + \frac{2}{d(u_2)+2} + \sum_{v \in N(u_1) \setminus \{u\}} \left(\frac{2}{d(u_1)+d(v)} - \frac{2}{d(u_1)+d(v)-1}\right) \\ &+ \sum_{v \in N(u_2) \setminus \{u\}} \left(\frac{2}{d(u_2)+d(v)} - \frac{2}{d(u_2)+d(v)-1}\right) \\ &\geq H(G-u) + \frac{2}{d(u_1)+2} + \frac{2}{d(u_2)+2} + (d(u_1)-1)\left(\frac{2}{d(u_1)+2} - \frac{2}{d(u_1)+1}\right) \\ &+ (d(u_2)-1)\left(\frac{2}{d(u_2)+2} - \frac{2}{d(u_2)+1}\right) \\ &\text{(with equality if and only if } d(v) = 2 \text{ for all } v \in N(u_1) \cup N(u_2) \setminus \{u\}) \\ &= H(G-u) + \frac{4}{d(u_1)+1} - \frac{4}{d(u_1)+2} + \frac{4}{d(u_2)+1} - \frac{4}{d(u_2)+2} \\ &\geq H(G-u) + \frac{4}{n-1} - \frac{4}{n} + \frac{4}{n-1} - \frac{4}{n} \\ &\text{(with equality if and only if } d(u_1) = d(u_2) = n - 2) \\ &\geq h_2(n-1) + \frac{8}{n-1} - \frac{8}{n} \end{aligned}$$
 (with equality if and only if $G-u = K_{2,n-3}$)
 $= h_2(n)$

with equality if and only if $G = K_{2,n-2}$.

Case 2. Every vertex *u* of degree two has a neighbor of degree two in *G*.

Let $N(u) = \{u_1, u_2\}$ and $d(u_1) = 2$, $d(u_2) \ge 2$; $N(u_1) = \{u, v\}$.

Subcase 2.1. v is not a neighbor of u_2 .

Let $G_1 = G - u + u_1u_2$, then $\delta(G_1) \ge 2$ and G_1 is triangle-free. $H(G_1) \ge h_2(n-1)$ by the induction hypothesis.

$$H(G) = H(G_1) + \frac{1}{2} \ge h_2(n-1) + \frac{1}{2} > h_2(n).$$

Subcase 2.2. v is also a neighbor of u_2 .

(I) If $d(v) = d(u_2) = 2$, let $G_2 = G - u - v - u_1 - u_2$, then $\delta(G_2) \ge 2$ and G_2 is triangle-free, implying $n \ge 8$. $H(G_2) \ge h_2(n-4)$ by the induction hypothesis.

$$H(G) = H(G_2) + 2 \ge h_2(n-4) + 2 > h_2(n).$$

(II) If none of v, u_2 has degree two, then $3 \le d(v) \le n-3$ and $3 \le d(u_2) \le n-3$ since G is triangle-free. Let $G_3 = G - u - u_1$, then $\delta(G_3) \ge 2$ and G_3 is triangle-free, implying $n \ge 6$. $H(G_3) \ge h_2(n-2)$ by the induction hypothesis.

Note that $t(x, y) = \frac{2}{x+y} - \frac{2}{x+y-2} + \frac{6}{x+1} + \frac{6}{y+1} - \frac{6}{x+2} - \frac{6}{y+2} \ge t(n-3, n-3)$ for $3 \le x \le n-3$ and $3 \le y \le n-3$, since $\frac{\partial}{\partial y}(\frac{\partial t}{\partial x}) = \frac{4}{(x+y)^3} - \frac{4}{(x+y-2)^3} < 0$ and $\frac{\partial t}{\partial x} \le \frac{\partial t(x,3)}{\partial x} = -\frac{2(2x^3+21x^2+60x+49)}{(x+1)^2(x+2)^2(x+3)^2} < 0$, and $\frac{\partial t}{\partial y} < 0$, similarly.

$$\begin{split} H(G) &= H(G_3) + \frac{1}{2} + \frac{2}{d(v)+2} + \frac{2}{d(u_2)+2} + \frac{2}{d(v)+d(u_2)} - \frac{2}{d(v)+d(u_2)-2} \\ &+ \sum_{w \in N(v) \setminus \{u_1, u_2\}} \left(\frac{2}{d(w)+d(v)} - \frac{2}{d(w)+d(v)-1} \right) \\ &+ \sum_{w \in N(u_2) \setminus \{u, v\}} \left(\frac{2}{d(u_2)+d(w)} - \frac{2}{d(u_2)+d(w)-1} \right) \\ &\geq H(G_3) + \frac{1}{2} + \frac{2}{d(v)+2} + \frac{2}{d(u_2)+2} + \frac{2}{d(v)+d(u_2)} - \frac{2}{d(v)+d(u_2)-2} \\ &+ (d(v) - 2)(\frac{2}{d(v)+2} - \frac{2}{d(v)+1}) + (d(u_2) - 2)(\frac{2}{d(u_2)+2} - \frac{2}{d(u_2)+1}) \\ &= H(G_3) + \frac{1}{2} + t(d(v), d(u_2)) \\ &\geq H(G_3) + \frac{1}{2} + t(n - 3, n - 3) \\ &\geq h_2(n - 2) + \frac{1}{2} + t(n - 3, n - 3) \\ &> h_2(n). \end{split}$$

(III) If exactly one of v, u_2 has degree two, without loss of generality, assume $d(u_2) = 2$, then $3 \le d(v) \le n-3$ since *G* is triangle-free.

(i) If $d(v) \ge 4$, let $G_4 = G - u - u_1 - u_2$, then $\delta(G_4) \ge 2$ and G_4 is triangle-free, implying $n \ge 7$. $H(G_4) \ge h_2(n-3)$ by the induction hypothesis.

$$\begin{split} H(G) &= H(G_4) + 1 + \frac{4}{d(v)+2} + \sum_{w \in N(v) \setminus \{u_1, u_2\}} \left(\frac{2}{d(w)+d(v)} - \frac{2}{d(w)+d(v)-2} \right) \\ &\geq H(G_4) + 1 + \frac{4}{d(v)+2} + \left(d(v) - 2 \right) \left(\frac{2}{d(v)+2} - \frac{2}{d(v)} \right) \\ &= H(G_4) + 1 + \frac{4}{d(v)} - \frac{4}{d(v)+2} \\ &\geq H(G_4) + 1 + \frac{4}{n-3} - \frac{4}{n-1} \\ &\geq h_2(n-3) + 1 + \frac{4}{n-3} - \frac{4}{n-1} \\ &> h_2(n) \end{split}$$

(ii) If d(v) = 3, denote by u_3 the neighbor of v in G different from u_1 and u_2 .

(a) If $d(u_3) = 2$, let u_4 be the neighbor of u_3 in *G* different from *v* and $G_5 = G - u_3 + vu_4$, then $\delta(G_5) \ge 2$ and G_5 is triangle-free. $H(G_5) \ge h_2(n-1)$ by the induction hypothesis. And

$$\begin{aligned} H(G) &= H(G_5) + \frac{2}{5} + \frac{2}{d(u_4)+2} - \frac{2}{d(u_4)+3} \\ &\geq H(G_5) + \frac{2}{5} + \frac{2}{2+3} - \frac{2}{2+2} \\ &= H(G_5) + \frac{1}{2} \geq h_2(n-1) + \frac{1}{2} > h_2(n). \end{aligned}$$

(b) If $d(u_3) \ge 3$, then $d(u_3) \le n - 5$ as *G* is triangle-free. Let $G_6 = G - u - v - u_1 - u_2$, we have $\delta(G_6) \ge 2$ and G_6 is triangle-free, implying $n \ge 8$. $H(G_6) \ge h_2(n-4)$ by the induction hypothesis. Note that $\frac{2}{x+3} - \frac{6}{x+2} + \frac{4}{x+1}$ is decreasing for $x \ge 0$.

$$\begin{split} H(G) &= H(G_6) + 1 + \frac{4}{5} + \frac{2}{d(u_3)+3} + \sum_{w \in N(u_3) \setminus \{v\}} (\frac{2}{d(u_3)+d(w)} - \frac{2}{d(u_3)+d(w)-1}) \\ &\geq H(G_6) + \frac{9}{5} + \frac{2}{d(u_3)+3} + (d(u_3) - 1)(\frac{2}{d(u_3)+2} - \frac{2}{d(u_3)+1}) \\ &= H(G_6) + \frac{9}{5} + \frac{2}{n-2} - \frac{6}{d(u_3)+2} + \frac{4}{d(u_3)+1} \\ &\geq H(G_6) + \frac{9}{5} + \frac{2}{n-2} - \frac{6}{n-3} + \frac{4}{n-4} \\ &\geq h_2(n-4) + \frac{9}{5} + \frac{2}{n-2} - \frac{6}{n-3} + \frac{4}{n-4} \\ &> h_2(n). \end{split}$$

The proof of our theorem is completed.

References

- [1] S. Fajtlowicz, On conjectures of Graffiti-II, Congr. Numer. 60 (1987) 187-197.
- [2] O. Favaron, M. Mahio, J. F. Saclé, Some eigenvalue properties in graphs (Conjectures of Graffiti-II), Discrete Math. 111 (1993) 197-220.
- [3] L. Zhong, The harmonic index for graphs, Appl. Math. Lett. 25 (2012) 561–566.
- [4] H. Deng, S. Balachandran, S. K. Ayyaswamy, Y. B. Venkatakrishnan, On the harmonic index and the chromatic number of a graph, preprint.
- [5] P. Hansen, D. Vukicević, Variable neighborhood search for extremal graphs. 23. On the Randić index and the chromatic number, Discrete Math. 309 (2009) 4228-4234.
- [6] H. Deng, Z. Tang, J. Zhang, On the harmonic index and the radius of a graph, preprint.
- [7] G. Caporossi, P. Hansen, Variable neighborhood search for extremal graphs 1: The Autographix system, Discrete Math. 212 (2000) 29 - 44
- [8] B. Liu, I. Gutman, On a conjecture in Randić indices, MATCH Commun. Math. Comput. Chem. 62 (2009) 143–154.
- [9] Z. You, B. Liu, On a conjecture of the Randić index, Discrete Appl. Math. 157 (2009) 1766–1772.
- [10] H. Deng, S. Balachandran, S. K. Ayyaswamy, Y. B. Venkatakrishnan, On harmonic indices of trees, unicyclic graphs and bicyclic graphs, preprint. [11] S. Wang, B. Zhou, N. Trinajstić, On the sum-connectivity index, Filomat 25(3) (2011) 29–42.
- [12] X. Xu, Relationships between harmonic index and other topological indices, Applied Mathematical Sciences 6 (2012) 2013–2018.
- [13] A. Ilić, Note on the harmonic index of a graph, Arxiv preprint arXiv:1204.3313, 2012.
- [14] H. Deng, et al. On the harmonic index and the girth of a graph, preprint.