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Abstract. The harmonic index H(G) of a graph G is defined as the sum of the weights 2
d(u)+d(v) of all edges uv

of G, where d(u) denotes the degree of a vertex u in G. We give a best possible lower bound for the harmonic
index of a graph (a triangle-free graph, respectively) with minimum degree at least two and characterize
the extremal graphs.

1. Introduction

In this work, we consider the harmonic index. For a simple graph (or a molecular graph) G = (V,E),
the harmonic index H(G) is defined in [1] as H(G) =

∑
uv∈E(G)

2
d(u)+d(v) , where d(u) denotes the degree of a

vertex u in G. Favaron et al. [2] considered the relation between harmonic index and the eigenvalues of
graphs. Zhong [3] found the minimum and maximum values of the harmonic index for simple connected
graphs and trees, and characterized the corresponding extremal graphs. Deng, Balachandran, Ayyaswamy,
Venkatakrishnan [4] considered the relation relating the harmonic index H(G) and the chromatic number
χ(G) and proved that χ(G) ≤ 2H(G) by using the effect of removal of a minimum degree vertex on the
harmonic index. It strengthens a result relating the Randić index and the chromatic number conjectured
by the system AutoGraphiX and proved by Hansen et al. in [5], since we always have H(G) ≤ R(G)
for any graph G. Deng, Tang, Zhang [6] considered the harmonic index H(G) and the radius r(G) and
strengthened some results relating the Randić index and the radius in [7] [8] [9]. Deng, Balachandran,
Ayyaswamy, Venkatakrishnan [10] determined the trees with the second-the sixth maximum harmonic
indices, and unicyclic graphs with the second-the fifth maximum harmonic indices, and bicyclic graphs
with the first-the fourth maximum harmonic indices. For other related results see [11] [12] [13] [14]. Here
we will establish a best possible lower bound for the harmonic index of a graph, a triangle-free graph,
respectively, with n vertices and minimum degree at least two and characterize the extremal graphs.

2. A lower bound for the harmonic index of a graph with minimum degree at least two

In the section, we will establish a best possible lower bound for the harmonic index of a graph with
minimum degree at least two and characterize the extremal graphs.
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For an edge e = uv of a graph G, its weight is defined to be 2
d(u)+d(v) . The harmonic index of G is the sum

of weights over all its edges.

Lemma 2.1. If e is an edge with maximal weight in G, then H(G − e) < H(G).

Proof. Let e = uv. Since uv is an edge with maximal weight in G, we have d(w) ≥ d(v) for w ∈ N(u) and
d(w) ≥ d(u) for w ∈ N(v). Note that 1

x − 1
x−1 is increasing for x > 1.

H(G) −H(G − e) = 2
d(u)+d(v) +

∑
w∈N(u)\{v}

( 2
d(u)+d(w) − 2

d(u)+d(w)−1 )

+
∑

w∈N(v)\{u}
( 2

d(v)+d(w) − 2
d(v)+d(w)−1 )

≥ 2
d(u)+d(v) + (d(u) − 1)( 2

d(u)+d(v) − 2
d(u)+d(v)−1 )

+(d(v) − 1)( 2
d(v)+d(u) − 2

d(v)+d(u)−1 )
= 2

d(u)+d(v)−1 − 2
d(u)+d(v) > 0

which proves the result.
Let Ka,b be the complete bipartite graph with a and b vertices in its two partite sets, respectively. For

n ≥ 4, let K∗2,n−2 be the graph obtained from K2,n−2 by joining an edge between the two non-adjacent vertices
of degree n − 2. Obviously, H(K∗2,n−2) = h1(n) = 4 + 1

n−1 − 12
n+1 . Let δ(G) be the minimum degree of the graph

G.

Theorem 2.2. Let G be a graph with n ≥ 3 vertices and δ(G) ≥ 2. Then H(G) ≥ h1(n) with equality if and only if
G = K∗2,n−2.

Proof. It is easy to check that the assertion is true for n = 4. Suppose it holds for 4 ≤ k < n; we next show
that it also holds for n.

Let G be a graph with n > 4 vertices. If δ(G) ≥ 3, then by Lemma 1, the deletion of an edge with maximal
weight yields a graph G′ of minimal degree at least two such that H(G′) < H(G). So, we only need to prove
the result is true for G with δ(G) = 2.

Case 1. Every pair of adjacent vertices of degree two has a common neighbor.
Let u1 and u2 be a pair of adjacent vertices with degree two in G which has a common neighbor u3.

Obviously, 2 ≤ d(u3) ≤ n − 1.
Subcase 1.1. If d(u3) = 2, let G1 = G − {u1,u2, u3}, then H(G1) ≥ h1(n − 3) by the induction hypothesis,

and H(G) = H(G1) + 3
2 ≥ h1(n − 3) + 3

2 > h1(n).
Subcase 1.2. If d(u3) ≥ 4, let G2 = G − {u1,u2}, then H(G2) ≥ h1(n − 2) by the induction hypothesis. Note

that 1
x − 1

x−2 is increasing for x > 2.

H(G) = H(G2) + 1
2 +

4
d(u3)+2 +

∑
v∈N(u3)\{u1,u2}

( 2
d(u3)+d(v) − 2

d(u3)+d(v)−2 )

≥ H(G2) + 1
2 +

4
d(u3)+2 + (d(u3) − 2)( 2

d(u3)+2 − 2
d(u3) )

= H(G2) + 1
2 +

4
d(u3) − 4

d(u3)+2
≥ h1(n − 2) + 1

2 +
4

d(u3) − 4
d(u3)+2

≥ h1(n − 2) + 1
2 +

4
n−1 − 4

n+1 > h1(n).

Subcase 1.3. If d(u3) = 3, let u4 be the neighbor of u3 in G different from u1 and u2, where 2 ≤ d(u4) ≤ n−3.
(i) Suppose that d(u4) = 2. Denote by u5 the neighbor of u4 in G different from u3, where 2 ≤ d(u5) ≤ n−4.

Let G3 = G − u4 + u3u5, then H(G3) ≥ h1(n − 1) by the induction hypothesis. Note that 1
x − 1

x+1 is decreasing
for x > 0.

H(G) = H(G3) + 2
5 +

2
d(u5)+2 − 2

d(u5)+3
≥ H(G3) + 2

5 +
2

n−2 − 2
n−1

≥ h1(n − 1) + 2
5 +

2
n−2 +

2
n−1 > h1(n).
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(ii) Suppose that 3 ≤ d(u4) ≤ n − 3. Let G4 = G − u1 − u2 − u3, then H(G4) ≥ h1(n − 3) by the induction
hypothesis. Note that 2

x+2 − 6
x+1 +

4
x is decreasing for x > 0.

H(G) = H(G4) + 1
2 +

4
5 +

2
d(u4)+3 +

∑
v∈N(u4)\{u3}

( 2
d(u4)+d(v) − 2

d(u4)+d(v)−1 )

≥ H(G4) + 13
10 +

2
d(u4)+3 + (d(u4) − 1)( 2

d(u3)+2 − 2
d(u4)+1 )

= H(G4) + 13
10 +

2
d(u4)+3 − 6

d(u4)+2 +
4

d(u4)+1
≥ H(G4) + 13

10 +
2
n − 6

n−1 +
4

n−2
≥ h1(n − 3) + 13

10 +
2
n − 6

n−1 +
4

n−2 > h1(n).

Case 2. There is a pair of adjacent vertices of degree two without common neighbor.
Let u1 and u2 be a pair of adjacent vertices with degree two in G which has no common neighbor. Denote

by u3 the neighbor of u1 in G different from u2. Let G5 = G−u1+u2u3, then H(G5) ≥ h1(n−1) by the induction
hypothesis, and H(G) = H(G5) + 1

2 ≥ h1(n − 1) + 1
2 > h1(n).

Case 3. There is no pair of adjacent vertices of degree two.
Let u be a vertex of degree two with neighbors v and w in G.
Subcase 3.1. vw < E, where 3 ≤ d(v) ≤ n − 2 and 3 ≤ d(w) ≤ n − 2. Let G6 = G − u + vw, then

H(G6) ≥ h1(n − 1) by the induction hypothesis. Note that f (x, y) = 2
x+2 +

2
y+2 − 2

x+y ≥ f (n − 2,n − 2) for

3 ≤ x ≤ n − 2 and 3 ≤ y ≤ n − 2, since ∂ f
∂x < 0 and ∂ f

∂y < 0.

H(G) = H(G6) + 2
d(v)+2 +

2
d(w)+2 − 2

d(v)+d(w)
≥ H(G6) + f (n − 2,n − 2)
≥ h1(n − 1) + 4

n − 1
n−2 > h1(n).

Subcase 3.2. vw ∈ E, where 3 ≤ d(v) ≤ n − 1 and 3 ≤ d(w) ≤ n − 1. Let G7 = G − u, then H(G7) ≥ h1(n − 1)
by the induction hypothesis. Note that 1(x, y) = 2

x+y +
6

x+1 +
6

y+1 − 2
x+y−2 − 6

x+2 − 6
y+2 ≥ 1(n − 1,n − 1) for

3 ≤ x ≤ n − 1 and 3 ≤ y ≤ n − 1, since ∂1∂y ( ∂1∂x ) < 0 and ∂1
∂x ≤

∂1(x,3)
∂x < 0, and ∂1

∂x ( ∂1∂y ) < 0 and ∂1
∂y ≤

∂1(3,y)
∂y < 0.

H(G) = H(G7) + 2
d(v)+2 +

2
d(w)+2 − 2

d(v)+d(w)−2
+

∑
z∈N(v)\{u,w}

( 2
d(v)+d(z) − 2

d(v)+d(z)−1 ) +
∑

z∈N(w)\{u,v}
( 2

d(w)+d(z) − 2
d(w)+d(z)−1 )

≥ H(G7) + 2
d(v)+2 +

2
d(w)+2 − 2

d(v)+d(w)−2
+(d(v) − 2)( 2

d(v)+2) − 2
d(v)+1 ) + (d(w) − 2)( 2

d(w)+2 − 2
d(w)+1 )

(with equality if and only if d(z) = 2 for all z ∈ N(v) ∪N(w) \ {u, v,w})
= H(G7) + 2

d(v)+d(w) +
6

d(v)+1 +
6

d(w)+1 − 2
d(v)+d(w)−2) − 6

d(v)+2 ) − 6
d(v)+2 − 6

d(w)+2 )
≥ H(G7) + 1(n − 1,n − 1)

(with equality if and only if d(v) = d(w) = n − 1)
≥ h1(n − 1) + 1

n−1 +
12
n − 1

n−2 − 12
n+1

(with equality if and only if G7 = K∗2,n−3)
= h1(n)

with equality if and only if G = K∗2,n−2.
Hence, the assertion is true for all n ≥ 4.

3. A lower bound for the harmonic index of a triangle-free graph with minimum degree at least two

In the section, we will give a best possible lower bound for the harmonic index of a triangle-free graph
with minimum degree at least two and characterize the extremal graphs.

Theorem 3.1. Let G be a triangle-free graph of order n ≥ 4 with δ(G) ≥ 2. Then H(G) ≥ h2(n) = 4− 8
n with equality

if and only if G = K2,n−2.
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Proof. It is easy to check that the assertion is true for n = 4. Suppose it holds for 4 ≤ k < n; we next show
that it also holds for n.

Let G be a graph with n > 4 vertices. If δ(G) ≥ 3, then by Lemma 1, the deletion of an edge with maximal
weight yields a graph G′ of minimal degree at least two such that H(G′) < H(G). So, we only need to prove
the result is true for G with δ(G) = 2.

Case 1. There exists a vertex u of degree two such that the neighbors of u have degree at least three.
Let N(u) = {u1,u2} and 3 ≤ d(ui) ≤ n − 2 for i = 1, 2, then δ(G − u) ≥ 2 and G − u is triangle-free.

H(G − u) ≥ h2(n − 1) by the induction hypothesis.

H(G) = H(G − u) + 2
d(u1)+2 +

2
d(u2)+2 +

∑
v∈N(u1)\{u}

( 2
d(u1)+d(v) − 2

d(u1)+d(v)−1 )

+
∑

v∈N(u2)\{u}
( 2

d(u2)+d(v) − 2
d(u2)+d(v)−1 )

≥ H(G − u) + 2
d(u1)+2 +

2
d(u2)+2 + (d(u1) − 1)( 2

d(u1)+2 − 2
d(u1)+1 )

+(d(u2) − 1)( 2
d(u2)+2 − 2

d(u2)+1 )
(with equality if and only if d(v) = 2 for all v ∈ N(u1) ∪N(u2) \ {u})

= H(G − u) + 4
d(u1)+1 − 4

d(u1)+2 +
4

d(u2)+1 − 4
d(u2)+2

≥ H(G − u) + 4
n−1 − 4

n +
4

n−1 − 4
n

(with equality if and only if d(u1) = d(u2) = n − 2)
≥ h2(n − 1) + 8

n−1 − 8
n (with equality if and only if G − u = K2,n−3)

= h2(n)

with equality if and only if G = K2,n−2.
Case 2. Every vertex u of degree two has a neighbor of degree two in G.
Let N(u) = {u1,u2} and d(u1) = 2, d(u2) ≥ 2; N(u1) = {u, v}.
Subcase 2.1. v is not a neighbor of u2.
Let G1 = G − u + u1u2, then δ(G1) ≥ 2 and G1 is triangle-free. H(G1) ≥ h2(n − 1) by the induction

hypothesis.

H(G) = H(G1) +
1
2
≥ h2(n − 1) +

1
2
> h2(n).

Subcase 2.2. v is also a neighbor of u2.
(I) If d(v) = d(u2) = 2, let G2 = G − u − v − u1 − u2, then δ(G2) ≥ 2 and G2 is triangle-free, implying n ≥ 8.

H(G2) ≥ h2(n − 4) by the induction hypothesis.

H(G) = H(G2) + 2 ≥ h2(n − 4) + 2 > h2(n).

(II) If none of v,u2 has degree two, then 3 ≤ d(v) ≤ n− 3 and 3 ≤ d(u2) ≤ n− 3 since G is triangle-free. Let
G3 = G − u − u1, then δ(G3) ≥ 2 and G3 is triangle-free, implying n ≥ 6. H(G3) ≥ h2(n − 2) by the induction
hypothesis.

Note that t(x, y) = 2
x+y − 2

x+y−2 +
6

x+1 +
6

y+1 − 6
x+2 − 6

y+2 ≥ t(n − 3,n − 3) for 3 ≤ x ≤ n − 3 and 3 ≤ y ≤ n − 3,

since ∂
∂y ( ∂t∂x ) = 4

(x+y)3 − 4
(x+y−2)3 < 0 and ∂t

∂x ≤
∂t(x,3)
∂x = − 2(2x3+21x2+60x+49)

(x+1)2(x+2)2(x+3)2 < 0, and ∂t
∂y < 0, similarly.

H(G) = H(G3) + 1
2 +

2
d(v)+2 +

2
d(u2)+2 +

2
d(v)+d(u2) − 2

d(v)+d(u2)−2
+

∑
w∈N(v)\{u1,u2}

( 2
d(w)+d(v) − 2

d(w)+d(v)−1 )

+
∑

w∈N(u2)\{u,v}
( 2

d(u2)+d(w) − 2
d(u2)+d(w)−1 )

≥ H(G3) + 1
2 +

2
d(v)+2 +

2
d(u2)+2 +

2
d(v)+d(u2) − 2

d(v)+d(u2)−2
+(d(v) − 2)( 2

d(v)+2 − 2
d(v)+1 ) + (d(u2) − 2)( 2

d(u2)+2 − 2
d(u2)+1 )

= H(G3) + 1
2 + t(d(v), d(u2))

≥ H(G3) + 1
2 + t(n − 3,n − 3)

≥ h2(n − 2) + 1
2 + t(n − 3,n − 3)

> h2(n).
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(III) If exactly one of v,u2 has degree two, without loss of generality, assume d(u2) = 2, then 3 ≤ d(v) ≤ n−3
since G is triangle-free.

(i)If d(v) ≥ 4, let G4 = G−u−u1−u2, then δ(G4) ≥ 2 and G4 is triangle-free, implying n ≥ 7. H(G4) ≥ h2(n−3)
by the induction hypothesis.

H(G) = H(G4) + 1 + 4
d(v)+2 +

∑
w∈N(v)\{u1,u2}

( 2
d(w)+d(v) − 2

d(w)+d(v)−2 )

≥ H(G4) + 1 + 4
d(v)+2 + (d(v) − 2)( 2

d(v)+2 − 2
d(v) )

= H(G4) + 1 + 4
d(v) − 4

d(v)+2
≥ H(G4) + 1 + 4

n−3 − 4
n−1

≥ h2(n − 3) + 1 + 4
n−3 − 4

n−1
> h2(n)

(ii)If d(v) = 3, denote by u3 the neighbor of v in G different from u1 and u2.
(a) If d(u3) = 2, let u4 be the neighbor of u3 in G different from v and G5 = G − u3 + vu4, then δ(G5) ≥ 2

and G5 is triangle-free. H(G5) ≥ h2(n − 1) by the induction hypothesis. And

H(G) = H(G5) + 2
5 +

2
d(u4)+2 − 2

d(u4)+3
≥ H(G5) + 2

5 +
2

2+3 − 2
2+2

= H(G5) + 1
2 ≥ h2(n − 1) + 1

2 > h2(n).

(b) If d(u3) ≥ 3, then d(u3) ≤ n− 5 as G is triangle-free. Let G6 = G−u− v−u1 −u2, we have δ(G6) ≥ 2 and
G6 is triangle-free, implying n ≥ 8. H(G6) ≥ h2(n − 4) by the induction hypothesis. Note that 2

x+3 − 6
x+2 +

4
x+1

is decreasing for x ≥ 0.

H(G) = H(G6) + 1 + 4
5 +

2
d(u3)+3 +

∑
w∈N(u3)\{v}

( 2
d(u3)+d(w) − 2

d(u3)+d(w)−1 )

≥ H(G6) + 9
5 +

2
d(u3)+3 + (d(u3) − 1)( 2

d(u3)+2 − 2
d(u3)+1 )

= H(G6) + 9
5 +

2
d(u3)+3 − 6

d(u3)+2 +
4

d(u3)+1
≥ H(G6) + 9

5 +
2

n−2 − 6
n−3 +

4
n−4

≥ h2(n − 4) + 9
5 +

2
n−2 − 6

n−3 +
4

n−4
> h2(n).

The proof of our theorem is completed.
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[2] O. Favaron, M. Mahio, J. F. Saclé, Some eigenvalue properties in graphs (Conjectures of Graffiti-II), Discrete Math. 111 (1993)

197–220.
[3] L. Zhong, The harmonic index for graphs, Appl. Math. Lett. 25 (2012) 561–566.
[4] H. Deng, S. Balachandran, S. K. Ayyaswamy, Y. B. Venkatakrishnan, On the harmonic index and the chromatic number of a

graph, preprint.
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[8] B. Liu, I. Gutman, On a conjecture in Randić indices, MATCH Commun. Math. Comput. Chem. 62 (2009) 143–154.
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