
A LOWER BOUND FOR THE NUMBER OF SQUARES

WHOSE SUM REPRESENTS INTEGRAL QUADRATIC FORMS

Myung-Hwan Kim and Byeong-Kweon Oh

Department of Mathematics, Seoul National University, Seoul 151-742, Korea

Abstract. As a generalization of the famous four square theorem of Lagrange, Mordell
and Ko proved that every positive definite integral quadratic form of n variables is repre-
sented by the sum of n + 3 squares for 1 ≤ n ≤ 5. And then for n = 6, Ko conjectured
that every positive definite integral quadratic form of six variables that can be represented
by a sum of squares is represented by the sum of nine squares. In this article, we prove
that the conjecture is not valid. We also give, for every n, a lower bound for the number
of squares whose sum represents all such forms of n variables.

Introduction

Lagrange’s famous Four Square Theorem [L] says that every positive integer can be
represented by the sum of four squares. This marvelous theorem was generalized by
Mordell [M1] and Ko [K1] as follows : every positive definite integral quadratic form
of two, three, four, and five variables is represented by the sum of five, six, seven, and
eight squares, respectively. And they tried to extend this to positive definite integral
quadratic forms of six or more variables. Mordell found [M2], however, that the positive
definite integral quadratic form (of six variables) associated to the Dynkin diagram E6

cannot be represented by a sum of squares. After Mordell found the example, Ko [K2]
conjectured the following :

Every positive definite integral quadratic form of six variables, which is represented
by a sum of squares, can be represented by the sum of nine squares.
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In this short article, we’ll show that the conjecture is not valid. More precisely, we’ll
find, for every positive integer n, a lower bound for the number of squares whose sum
represents all those positive definite integral quadratic forms of n variables that can be
represented by a sum of squares. The lower bound turns out to be bigger than 9 when
n = 6.

We adopt terminologies and notations from [O1]. Let L be a positive definite Z-
lattice of rank n equipped with a symmetric bilinear form B and the corresponding
quadratic form Q. Here, a Z-lattice is a free Z-module with s(L) ⊆ Z, where s(L) is the
scale of L. Let IN = Ze1 +Ze2 + · · ·+ZeN , where {e1, e2, · · · , eN} is the standard basis
of ZN with ei · ej = δij for all i, j = 1, 2, · · · , N . So, IN corresponds to the sum of N
squares and we may write IN = Ze1 ⊥ Ze2 ⊥ · · · ⊥ ZeN . We now define g[n] to be the
smallest positive integer g (if exists) for which L → Ig (meaning that L is represented
by Ig) for every positive definite Z-lattice L of rank n such that

(1) L → IN for some N = N(L).

Remark. It is known (see [I]) that g[n] exists for all n.

Before we compute a lower bound for g[n], we introduce a very short proof of the
above results of Lagrange, Mordell, and Ko, in lattice theoretic language (see [I], for
instance).

Theorem 1. Every positive definite Z-lattice L of rank n is represented by the genus
of In+3, i.e., L → K for some K ∈ gen(In+3).

Proof. Applying Theorems 1 and 2 in [O2], one can easily obtain that Lp → (In+3)p

for any finite prime p. Since L is positive definite, L∞ → (In+3)∞, which completes the
proof. �

Since gen(In) = cls(In) for n ≤ 8, one can recapture the results of Lagrange, Mordell,
and Ko all at once in the following theorem :

Theorem 2. Every positive definite Z-lattice L of rank n is represented by In+3 for
1 ≤ n ≤ 5.

It is easy to check that n + 3 is the minimum number of squares necessary for In+3

to represent all such L, and thereby we obtain

(2) g[n] = n + 3 for 1 ≤ n ≤ 5.

Observe that the condition (1) is not necessary for (2).

A Lower Bound for g[n]
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By A(α1, α2) we denote the positive definite Z-lattice whose corresponding matrix

is
(

α1 1
1 α2

)

, i.e., A(α1, α2) = Zv1 + Zv2 such that Q(vi) = αi for i = 1, 2, and

B(v1, v2) = 1. And let Am(α1, α2) denote the orthogonal sum of m copies of A(α1, α2).

Theorem 3. Let L = Am(2, 2) ⊥ A(2, 3). Then

(3) L → I3m+4 but L9 I3m+3.

Proof. Consider the following sublattice K of I3m+4 :

K =
(

Z(e1 + e2) + Z(e2 + e3)
)

⊥
(

Z(e4 + e5) + Z(e5 + e6)
)

⊥ · · ·

⊥
(

Z(e3m−2 + e3m−1) + Z(e3m−1 + e3m)
)

⊥
(

Z(e3m+1 + e3m+2) + Z(e3m+2 + e3m+3 + e3m+4)
)

.

Obviously, L ' K and hence L → I3m+4. Now suppose that there exists a representation
σ : L → Im+3. Then σ(A(2, 2)) = Z(ei ± ej) + Z(ek ± ej) for some distinct i, j, k ∈
{1, 2, · · · , 3m + 3}. By applying τ ∈ O(I3m+3) to σ(Am(2, 2)) if necessary, we may
assume that

σ(Am(2, 2)) =
(

Z(e1 + e2) + Z(e2 + e3)
)

⊥
(

Z(e4 + e5) + Z(e5 + e6)
)

⊥ · · ·

⊥
(

Z(e3m−2 + e3m−1) + Z(e3m−1 + e3m)
)

⊂ I3m+3.

The image of A(2, 3) under σ is contained in the orthogonal complement σ(Am(2, 2))⊥

of σ(Am(2, 2)) in I3m+3. And one can easily verify that

σ(Am(2, 2))⊥ = Z(e1 − e2 + e3) ⊥ Z(e4 − e5 + e6) ⊥ · · · ⊥ Z(e3m−2 − e3m−1 + e3m)

⊥ Ze3m+1 ⊥ Ze3m+2 ⊥ Ze3m+3.

Let σ(A(2, 3)) = Zv1 + Zv2. Without loss of generality, we may assume that v1 =
e3m+1 + e3m+2. Then

v2 =
(

∑

1≤j≤m

aj(e3j−2 − e3j−1 + e3j)
)

+ b1e3m+1 + b2e3m+2 + b3e3m+3

should satisfy

b1 + b2 = 1, 3
(

∑

1≤j≤m

a2
j

)

+ b2
1 + b2

2 + b2
3 = 3,

which is impossible because all a’s and b’s are integers. �
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Corollary 4. For every positive integer n,

g[n] ≥
[

3n + 2
2

]

,

where [ ] is the largest integer function. In particular, gZ(6) 	 9.

Proof. For 1 ≤ n ≤ 5, we already know the exact value of g[n] in (2). So, let us assume
n ≥ 6. By using Theorem 3, one can easily prove that

(4) L ⊥ 〈1〉 → I3m+5 but L ⊥ 〈1〉9 I3m+4,

where L is Z-lattice in Theorem 3. The corollary then follows immediately from (3) and
(4). �
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