
A LOWER BOUND FOR THE VOLUME OF STRICTLY
CONVEX BODIES WITH  MANY BOUNDARY LATTICE

POINTS

BY

GEORGE E. ANDREWS(i)

In a recent paper it was shown that if a strictly convex body C in n-dimen-

sional space contains N noncoplanar lattice points (i.e., points with integer

coordinates) on its boundary, then

S(C)>fc(n)JV("+1)/"

where SiC) denotes the surface area of C and kin) > 0 is a constant depending

only on n [1]. If F(C) denotes the volume of C and

ViC)^c'in)[SiC)JK"-1)

where c'(«) > 0 is a constant depending only on n (which is true if C is an n-

dimensional sphere for example), then the above theorem implies that

ViC)>k'in)Nin+1)li"-l)

where k\n) > 0 is a constant depending only on n. The object of this paper is to

show that the restriction to

r,(Q|c'(n)[S(q]"/t""1)

is unnecessary. The main result will be the following theorem.

Theorem. // C is an n-dimensional strictly convex body with N noncoplanar

lattice points on its boundary, then

ViQ>Kin)Nin+imn-i)

where ;c(n) > 0 depends only on n.

This paper will be divided into two sections. In the first section we shall obtain

certain elementary but necessary results. In the second section we shall prove the

above theorem.
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CONVEX BODIES WITH MANY BOUNDARY LATTICE POINTS 271

I. In this section we shall be primarily concerned with certain elementary

results in n-dimensional Euclidean geometry. The following notations and con-

ventions will be used throughout this paper.

At all times the bodies we shall deal with will be considered closed and bounded;

however, the cones we shall deal with will of course be unbounded.

We shall call a linear (n — l)-dimensional boundary element of an n-dimensional

poly tope or cone a "face."

Given the point (ay,---,a„) and the direction (Ay-, ■■■ :A„), the "ray" emanat-

ing from (ay,---,a„) in the direction (Ay:---:A„) is given by the set of points

(ay + Ayt, -,ai + A„t) and / Z 0.

If H is a supporting hyperplane of C, a convex body, then the "exterior normal

vector" of H is the one on the opposite side of H from C. We define an "exterior

normal ray" as a ray emanating from some given point of H in the direction of

the exterior normal vector.

The symbol O will always denote the origin.

At all times, o(n) = nn/2/F(n/2 + 1); nnl2/F(n/2 + 1) is the volume of the n-

dimensional unit sphere [7, p. 136].

By (Po)„, (Po)¡¡, (Po)*, ■••, we shall denote n-dimensional, convex poly topes

[7, p. 96].
By 0¡ we shall denote an n-dimensional solid angle(2). This symbol will be

used to denote both the angle and the measure of the angle, but this should

cause no confusion.

We let A;(0j) be an n-dimensional pyramid [7, p. Ill] with vertex ot;, vertex

angle 0;, and an (n — l)-dimensional convex polytope (Po)^y as base. We shall

call the collection of all faces of A,(0¡) other than (Po)*ly the "sides" of 4(0,).

To A,(&¡) we associate a similar pyramid <5;(0,) which has vertex a¡, vertex angle

0¡, and has its base parallel to (Po)*l. y but is such that the total area of its sides

is equal to 1. Also associated with A,(0,) is a cone 'S, which is the collection of all

rays emanating from ot¡ and intersecting (Po)*'_y. We designate by $>, the set of

all points y for which the angle ¿_ ya¡x is at least tt/2 if x e %„ and 0, will denote

the n-dimensional angle defined by %!,.

If 0 is an n-dimensional solid angle defined by n rays (i.e., these rays make up

the edges of 0), then

sin © = af. | det (c)) \

where c'- is the jth direction cosine of the ith ray [7, p. 122].

Lemma 1. sin© ^ (n - 1)!0.

Proof. If the point a is the vertex of 0, then (1/n!) sin 0 is the volume of a

simplex with edges of unit length emanating from a. Hence the whole of this

simplex is contained in the body that the cone defined by 0 cuts out of the unit

(2) The interiors of the solid angles we shall consider will always be contained in half-spaces.
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sphere with center at a. The measure of the volume common to this cone and the

unit sphere is Q/n. Therefore

lsin0<®,
n! n

or
sin©g(n-1)!0. q.e.d.

The following lemma is most likely due to Mahler [6] and is very similar to

Theorem V of Dr. Cassels' book [3, p. 117]. Unfortunately the author was

not able to find this result in readily available literature, and it is thus included

for completeness.

Lemma 2. Let C be a closed convex body with volume V(C) > 0. Then there

exist points x0,-,x„eC such that C contains the simplex S/¡„ with x0>—, x„

as vertices and C is contained in the simplex 3Ü'„ with vertices
n

Xj+l,(xi-Xj)      ; = 0,-,n.
i = 0;i*j

Proof. Pick the points x0, — ,x„ so that V(@„) is a maximum. Such a choice is

possible since C is closed and bounded. By convexity 3>„ is contained in C. We

note that 36 n is a simplex bounded by n hyperplanes each passing through a vertex

of S>n parallel to the opposite face of 3¿n. If C were not contained in 36n, then for

some face St(n — V) (containing x¡) of 3Sn there would be a point y of C which was

on the opposite side of S¡(n — 1) from S>n. Then x0, ••-,x,-_1, y, xf+1, — ,x„ would

define a simplex contained in C with a larger volume than V(@„), a contradiction.

Therefore C c 3S„. q.e.d.

It is easily verified that 36n and Sfn are similar simplexes the ratio of similitude

being (n: V); both 86 and 9n have the same centroid, and V(@n) = n~"V(36n).

Corollary 1. V(®n) £ V(C) ̂  n"V(@n); V(3S„) ̂ V(C) ̂  n~"V(36„).

Proof.   Clear from Lemma 2 and the fact that V(@„) = nn V(36,j. q.e.d.

Lemma 3.   If^i c ^2 and both have a as vertex, then '£2 c <€x.

Proof. If x e f 2 and ye^„ then ye^, and hence f__x<xy ~¡i n/2. Hence

xe^V q.e.d.

Lemma 4. // an n-dimensional cone ft is defined by n rays (i.e., % is the

convex cover of n linearly independent rays emanating from a point a), then <€

is the convex cover of the n rays emanating from a each ray being an exterior

normal ray to a face of£.

Proof. Let ^* denote the convex cover of the above mentioned n exterior

normal rays of 'S. Without loss of generality we let a = O. Let the defining rays of

<€ have direction numbers (a\\ — :aB) i = 1, — ,n. Then the defining rays of 'S*

have direction numbers e¡(,4'i : •■•:A¡I) i — 1, —, n where A) is the cofactor of

a1 in det(a)) and e¡ = ± 1 is chosen so that e¡(A'i, ■ ■ ■, Aln) is an exterior normal

vector to T. We let A' = et(A\, -, A\) and a' = (ai,-,a),).
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1963] CONVEX BODIES WITH MANY BOUNDARY LATTICE POINTS 273

if xe«7*, then x = XyAl + ■ ■ ■ + X„A" where all A, ̂  0. If y e <€, then yA^O;

hence yx|0. Thus x e #.

If x £ #,*then x = A/A1 + ••• + ¿„A" where at least one of the X'¡ is negative,

say X'k. Then a* • A * = 0 if i ¿ k and a*- Ak = - | det (aj) | < 0 since a* and Afe must

lie on opposite sides of the face defining A*. Hence x- ak — X'kak-Ak > 0, and a*

is a point of Iß for which ¿xOa'< n/2. Thus x £ #.

Therefore #* = §\ q.e.d.

Lemma 5. //^ is defined by n rays as in Lemma 4 and 0 is iAe vertex angle

oftf, then

F[<5(0)]^    4ir sin1/«"-0©.

Proof. In this case we see that <5(0) is an n-dimensional simplex. For con-

venience we shall consider the origin O as the vertex of #. The edges of ¿>(0)

emanating from O are given by the vectors (ai, —, a'„), i = 1, •■• n. Now

F[«(e)]-l|det(a5)|,

and by Lemma 4 we know that 0 is defined by the convex cover of the   rays

emanating from O normal to the faces of %; thus

sin© = to(wTé^)l-(nK+-+^)""M^
where A) is the cofactor of a'- in det (a j). By the definition of ¿(0), the area of all

of its sides (i.e., excluding its base) equals 1. Now [l/(n — l)!]^1 + ••• + A'*)112

gives the area of the ith side of ¿(0). Hence

since JJ?=i |íi| = 1 implies that maxF{"=11 ̂¡| = n ". Thus

Now

|det(a;.)|-|det(^)| = |det(aj)|".

Hence

sin

- ((„°1)!)W"o'[¿(e)]r'

= ^-(^(0)])   •

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



274 G. E. ANDREWS [February

Therefore

V[S(&)} =    4^ sin1^-1'©.
/J - \n2"J q.e.d.

Lemma 6.   F[(5(0)] ^ ¿(n)-©1""-1' where Ç(n) depends only on n.

Proof. In the manner of Lemma 2 we circumscribe the base polytope of ¿(0)

with an (n - l)-dimensional simplex 3&n-y, and we inscribe an (n - l)-dimen-

sional simplex 3>n-y. Now â?„_x forms an n-dimensional pyramid A(0') with a

the vertex of 0, and ©'=>©.

Let us for a moment restrict our attention to H, the hyperplane containing

9>n-y, âS„-y, and the base of ¡5(0). As we noted after Lemma 2, âgn_y and 9„_y

have a common centroid. We now inscribe a 3S'n-y inside 2n_y in exactly the

same manner that 3>n-y is inscribed in 3Hn-y. Thus in this case SSn_y, 2in_y, and

â$'n_y all have a common centroid say c. If we shrink each linear dimension of H

by a factor of (n - 1)~2 about the point c, then ään_y will be transformed into

If we now shrink each linear dimension of n-dimensional space by a factor

of (n - l)-2 about the point c, then as above 0Sn_y will be transformed into

!%'n-y, and a becomes c + (n - l)_2(a - c) which was originally an interior

point of (5(0). Thus the n-dimensional simplex S'(n) defined by âS'n_y and c

+ (n - l)_2(a - c) is contained in <5(0), and A(0') is similar to S'(n) the ratio of

similitude being ((n - 1) + 2:1). Since S'(n) c <5(0), the area of the sides of S'(n)

must be ^ 1. Thus

F[A(0')] = (n - l)2T[S'(n)] Í (n - l)2V[a(0')].

By Lemma 5,

V[o(0')}fz   (¿-j sin1«-"©'.

By Lemmas 1 and 3,

sin0' = (n-l)!0' = (n- 1)!0.

Hence

V[ô(®)} Ï  F[A(0')]

/ Mi \i/(i-D

= ("-1)2"(nt) ((n-l)O1/(',-1)01/("-1)

= í(b)01/("_1). q.e.d.

Lemma 7. Given any bounded convex body C in n-dimensional space with

volume V(C) > 0, there exists an affine transformation T of determinant ±1

such that T:C-*C and
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V(C) = V(C) £ y(n)[S(C')]n/("_1)

where y(n) depends only on n.

Proof. As in Lemma 2, we inscribe a simplex 2>„ in C and circumscribe a sim-

plex J1,, with the properties listed in that lemma. We choose our transformation

T so that it sends 3>„ into a simplex 3¿'n of the same volume but with equal edges.

Thus since

n^„) = i« = |detr|n^B),

we have | det T | = 1 [4, p. 6]. Since parallelism and volume are preserved under

this transformation, we see that 36n is also transformed into a simplex with equal

edges say 36'n. If a is the length of an edge of £>'„, then

[7, p. 126], and thus

Since J" is similar to ¡&'B,

vW-^(ï±Lf,
and

«>=<»-> KfeM"")-
Since S(36'„) ̂ S(C') ä; S(^„) by [2, p. 47], and since

V(3S') = -ip (n + 1)1/2 ((n(!1")^)''/(    V(W("~1} = Cl(n) (S(ííB)),,/(,'~ l> ,

we obtain

V(C) = F(C') = F(0B) = «~"F(^;) = n""c1(«)(S(á?B))"/(""1)

^n_"c1(n)(S(C))"/(""1)

= 7(n)(S(C'))B/(n-1) q.e.d.

One might be tempted to believe that Lemma 7 and the result contained in [1]

together imply the theorem to be proved in § II ; however, the transformation T

given above does not necessarily have integral coefficients which it would have

to have if the desired implication were to hold.

The following result is undoubtedly well known, but the author was unable

to find this result completely proved elsewhere.
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Lemma  8(3).     Given a polytope iPo)n with vertices alt —,aM, then

M    ~ Ott"'2
l0j=„Cr(n)=^_

i=i rn/2

wAere 0¡ is the n-dimensional exterior angle at a,.

Proof. Our problem is to show that the exterior angles (i.e. 0lt ••• ,0Af) of

iPo)n completely fill the unit sphere. Let us think of the unit sphere as the

totality of line segments of length 2 with midpoint in the origin. First, we show

that by translating the exterior angles of iPo)„ to the origin we obtain all such

segments. This follows almost directly from Theorem IV of [3, p. 115] which

states (among other things) that if JT is a bounded convex body then there are

precisely two supporting hyperplanes to Jf parallel to any given hyperplane H.

We now pick a direction iAy-.--- :A„). There are two supporting hyperplanes

Hy and H2 to (Po)„ with exterior unit normals

ñy = iA2y + - + A2yll2iAy, -,An) and n2 = {A\ + - + Anyll\- Ay,-, - An)

respectively. Now each of these supporting hyperplanes contains at least one

vertex of iPo)„ say a¡ c: H y and ay c H2 (since a supporting hyperplane to a closed

bounded convex set contains at least one extreme point of the set [4, p. 24]).

If we consider nx to be emanating from a¡, we have nt c 0, and similarly n2 c 0;.

Thus after translating the exterior angles of iPo)„ so that their vertices coincide

with O, we obtain at least one pair of vectors iA\ + — + A2)~í/2 iAy,---,AH) and

iA\ + ■■■ + A2)"112 (— Ay,---, - A„) which gives the required segment for the

direction iAy : ■■■ : A„). Hence

M   _ 27c"/2

(?10^ÏW2) = ?,<T(n)-

On the other hand, if a certain ray p emanating from a, is completely in the

interior of 0¡, then ¿_ xa¡y > n/2 if y e 0¡ and xep. Hence the hyperplane H

through a¡ which has this ray as an exterior normal ray is such that H n iPo)n

= «;. By [3, p. 115], no other supporting hyperplane to iPo)n has an exterior

normal ray in this direction. Thus after translating the exterior angles of iPo\

so that their vertices coincide with O, none of the interiors of the various angles

intersect.   Hence

M ~        2n"12
Z 0i^ÎW2T = Mn)'

Therefore
i = l

£0'' = lW2)" = mT(n)- qX-d-

(3) For n=2, this is simply Gauss's theorem on the curvature integral for polygons.
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II. Having established the necessary properties of polytopes in § I, we now

proceed to the general theorem. We shall restate it here for convenience.

Theorem. If C is an n-dimensional strictly convex body with JV noncoplanar

lattice points on its boundary, then

F(C)>K(n)JV(n+1)/(,,-1)

where x(n) > 0 depends only on n.

Proof. Call the set of JV boundary lattice points Ba(N). The members of Ba(N)

are the vertices of a convex polytope entirely in the interior of C [1, Lemma 1,

p. 273]. Call this polytope (Po)°. Let us now multiply each dimension of space by

3. This transforms (Po)¿into (Po)b with V[(PoX} = 3~"V[(Po)b„}. Call the set

of vertices of (Po)*, Bb(N). Clearly if V = (Py,---,pn) is in Bb(N), then p, = 0

(mod 3) for i = 1, •••,«. Suppose p¡ is a specific vertex of (Po)b„. Note that the

convex cover of the set of lattice points {p,+ (p; — p¡)/3,¿ =£ j, i = 1,--,JV,

j = 1, •••,JV} is a convex polytope (Po)cn contained in (Po)bn. To each vertex p¡ of

(Po)b„ there is a corresponding face (Po)i,_i of (Po)c„ lying on a hyperplane H, such

that p, lies on the opposite side of H, from all other members of Bb(N), and if

i 5ÉJ, then (Po)ln.y í (Po)J„.y [1, Proof of Lemma 3, p. 274]. Thus H, truncates

(Po)b at the vertex p¡. A pyramid A^©;) is thus formed at each vertex p¡ of (Po)b

where p¡ is the vertex and H n (Po)b is the base. These pyramids are all disjoint

by construction, and the sides of each pyramid are part of the surface (or boundary)

of (Po)b. By construction, A^©,) contains in its base an (n — l)-dimensional

convex polytope with lattice point vertices (qsy,---,qsn) s = l, •••m^n. Thus

A,(@¡) must at least contain an n-dimensional simplex S(n) with lattice point

vertices since p¡ = (pn, •••, p,n) is a lattice point, and thus

V[A,(Q,)} Z V(S(n)) = ~ | det(aJ( - p„) | = -jL.

We now apply Lemma 7 to (Po)b and transform (Pofn into (Po)d„ with

V{(Pot\ = V[(Pot} = K«)[S[(P0)dB]]/(B- >.

The pyramids dealt with above are also transformed into new pyramids A'¡(©í),

and still F[A'f(©;)] = V\_A,(®,)} ^ 1/n!. Let Sf, denote the surface area of the

sides of A',(Q¡). Then clearly

^¡"/("-1)-F[¿í'(©D] = F[A'l(©D]

since ¿J(0!) is the pyramid similar to AJ(0i) but such that the total area of its

sides is equal to 1.
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d-iv («-!)/»

Wl
= 1^

i = l

= i i{^(n«5;(0;)))(n-1)/n}
¡ = i L

= [ I {^•(f(ö;(©;)))(,,-1)/',}"/("+1)]("+1)/"

' '.?! ( (n<5;(©D))("-1)/Vj  J

(n¿;(o;)))C"-D/'

i/i

1

(by Holder's inequality [5, p. 24])

I {nA;(o;))}("~1)/(n+1)
¡ = 1

(1+D/1    r     N ■1/1

> ¿ („!)-(»-D/c+i
(»+!)/»

[ i (n^o;)))""1 ]

(by Lemma 6)"low1©/
i = l

■1/1

=   n!)_(n"wAi<"+1 >/"(£(„))-o-d/«  (lÔ;)

= (n !)"("-' )lnN("+l)/n ({(it))-<n"1 )ln{ ^"^ )

\T(n/2)J

1/2 \ -1/

= K'(n)Nin+1)ln.

We now combine these results.

V(C) ^  V[_(Po)an-\

= 3-T[(Po)B]

= 3-'V[(Po)n-]

= rny(n)(K'(n))'"("-lyNin+1MH-i) ,

and letting k(«)= (|) 3"" y(n)(K'(n))"/,,~1, we obtain

V(C) > KÍn)N("+1)/("_1).

We now have a new proof for the main result in [1, p. 272].

(by Lemma 8)

q.e.d.

Corollary. If C is an n-dimensional strictly convex body with N noncoplaner

lattice points on its boundary, then
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SiC) > c(n)iV(n + 1)/".

Proof.   By the isoperimetric inequality [4, p. 104],

SiC) ^ n(cr(n))1/,,[nC)]("_1)/n

>  nioin))1"'ÍKÍn))(n-1)",N(n+i)"'

= cín)^"41*"". q.e.d.
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