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Abstract. A finite set N ⊂ Rd is a weak ε-net for an n-point set X ⊂ Rd (with respect
to convex sets) if it intersects each convex set K with |K ∩ X | ≥ εn. It is shown that

there are point sets X ⊂ Rd for which every weak 1
50 -net has at least const · e

√
d/2 points.

This distinguishes the behavior of weak ε-nets with respect to convex sets from ε-nets with
respect to classes of shapes like balls or ellipsoids in Rd , where the size can be bounded
from above by a polynomial function of d and ε.

Weak ε-nets with respect to convex sets, as defined in the abstract, were introduced by
Haussler and Welzl [7] and later applied in results in discrete geometry, most notably
in the spectacular proof of the Hadwiger–Debrunner (p, q)-conjecture by Alon and
Kleitman [2].

For a finite X ⊂ Rd , let f (X, ε) denote the smallest size of a weak ε-net for X ,
0 < ε < 1, and let

f (d, ε) = sup{ f (X, ε) : X ⊂ Rd finite}.

Alon et al. [1] proved that f (d, ε) is finite for every d ≥ 1 and every ε > 0. They
established the bounds f (2, ε) = O(ε−2) and f (d, ε) ≤ Cdε

−(d+1−δ(d)), where Cd

depends only on d and δ(d) is a positive number tending to zero (exponentially fast) as
d → ∞. With a simpler proof, they obtained the slightly worse bound C ′

dε
−(d+1), and

here their proof yields C ′
d = d O(d). Chazelle et al. [6] improved the bound for all fixed

dimensions d ≥ 3, to O(ε−d(log(1/ε))b(d)) with a suitable constant b(d).
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It seems that no lower bound better than the obvious f (d, ε) = 
(1/ε) is known.
Proving a lower bound superlinear in 1/ε for some fixed dimension remains a challenging
open problem. In the present note it is shown that, for ε fixed and sufficiently small and
d → ∞, f (d, ε) is at least e
(

√
d). The lower bound is still meaningful up to ε ≈ e−√

d ,
but for d fixed it is entirely useless. For simplicity, we do the calculations for a particular
value of ε.

Theorem 1. For all d ≥ 4, we have

f (d, 1
50 ) ≥ 1√

200
· e

√
d/2.

One can also consider weak ε-nets for set systems F other than convex sets in Rd ,
such as the family of all balls, or all ellipsoids, and so on (then N should intersect all
F ∈ F such that |F ∩ X | ≥ εn). For these two examples, balls and ellipsoids, there exist
weak ε-nets of size bounded by a polynomial in d (for fixed ε > 0). This follows from a
general result of Haussler and Welzl [7]; roughly speaking, their bound applies whenever
the sets of F can be defined by a formula of length polynomial in d. Theorem 1 shows
that the weak ε-nets for convex sets behave quite differently.

Proof of Theorem 1. Instead of a finite point set X , we consider the uniform probability
measure µ on the (d −1)-dimensional unit sphere Sd−1. We prove a lower bound for the
cardinality of a finite N ⊂ Rd intersecting every convex set K with µ(K ∩ Sd−1) ≥ 1

50 .
As will be apparent later, the sets K actually used in the proof have a simple structure,
and as far as they are concerned, the measure µ can be approximated with arbitrary
precision by the uniform probability measure concentrated on a finite X ⊂ Sd−1. As
easy limit argument shows that if weak 1

50 -nets of size s exist for all finite X , then a weak
1
50 -net of size s exists for the measure µ as well.

First we need to recall bounds for µ(Ct ), where Ct denotes the spherical cap Sd−1 ∩h,
with h being a halfspace at distance t from the origin. For all t ∈ [0, 1], we have the
well-known upper bound

µ(Ct ) ≤ 2e−t2d/2; (1)

see, e.g., [8] or [4]. It is also known that this is nearly the right order of magnitude. A
convenient explicit lower bound was calculated by Brieden et al. [5]: for

√
2/d ≤ t < 1,

we have

µ(Ct ) ≥ 1

6t
√

d
(1 − t2)(d−1)/2. (2)

Let N ⊂ Rd be an arbitrary set; we may suppose that it is contained in the unit ball
bounded by Sd−1. Supposing that n = |N | is small, we construct a collection H of
halfspaces such that N ⊆ ⋃

H and µ(Sd−1\ ⋃
H) ≥ 1

50 . Setting K = Rd\ ⋃
H , we

see that N is not a weak 1
50 -net with respect to convex sets.

We choose a suitable parameter r ∈ (0, 1). For each point p ∈ N lying outside the
(closed) ball B(0, r), we let hp be the halfspace containing p and cutting off the smallest
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cap of Sd−1 (so the boundary of hp passes through p and is perpendicular to 0p). By (1),
µ(hp ∩ Sd−1) < 2e−r2d/2. We choose r = √

(2 ln(100n))/d so that the total measure of
these caps for all p ∈ N is smaller than 1

50 .
It remains to deal with the points of N inside B(0, r). Here we want to enclose all

points of N1 = N ∩ B(0, r) in a single halfspace h0 (containing the origin) whose
boundary is at distance ρ from the origin, where ρ ∈ (0, r) is another suitable parameter.
First, we can project the points of N1 centrally from the origin on the boundary of
B(0, r); if h0 encloses the projected set, then it encloses the original set too. We consider
a random halfspace h0 with boundary at distance ρ from the origin (this approach was
taken, e.g., by Bárány and Füredi [3]). The expected number of points of N1 missed
by h0 is |N1| times the relative measure of the cap cut off by the complement of h0

on the boundary of B(0, r). The latter equals µ(Cρ/r ) ≤ 2e−ρ2d/2r2
by (1), and so if

2ne−ρ2d/2r2
< 1, then there is an h0 enclosing all of N1. Calculation shows that ρ can be

set to ln(200n2)/d (one can use ln(200n2) ≥ 2
√

ln(100n) ln(2n), which follows from
the inequality between the arithmetic and geometric means).

If the cap Sd−1\h0 has measure at least 1
25 , then N is not a weak 1

50 -net. Therefore
µ(Cρ) ≤ 1

25 . Now for d ≥ 4 and t = √
2/d, it follows from (2) that µ(Ct ) > 1

25 , and
hence ρ >

√
2/d . Substituting for ρ, we have ln(200n2)/d >

√
2/d, and calculation

yields the lower bound for n claimed by the theorem.

Remark. The best available upper bound for the size of a weak ε-net with respect to
convex sets in Rd , with ε > 0 fixed, is d O(d). Even for weak ε-nets for the uniform
measure µ on the sphere Sd−1 (used in the proof), I am aware of no substantially better
bound (although there are several alternative ways of proving an upper bound in this
particular case). Determining the right order of magnitude in this situation might perhaps
be less challenging than in the general case.
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