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Abstract. In this paper we study authentication systems and consider the follow- 
ing scenario: Each encoding rule is used for the transmission of a sequence of i 
messages. We prove a lower bound on the probability that a spooler observing i 
messages succeeds in generating an authentic message without kno.wing the encod- 
ing rule used. This bound is based on the conditional entropy of the encoding rules 
when a sequence of messages is known. Authentication systems which meet the 
bound are investigated and compared with systems that are/-fold secure against 
spoofing introduced by Massey [8]. We also give a bound for the probability of 
success if the opponent can choose how many messages he observes before trying 
to cheat. 
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1. Introduction 

In this paper we study the security of unconditionally secure authentication systems. 
We use the model of authentication introduced by Simmons [101. There are three 
participants: a transmitter, a receiver, and an opponent. The transmitter wants to 
convey some information to the receiver, whereas the opponent wants to deceive 
the receiver. The transmitter and receiver are assumed to trust each other and act 
with the common purpose of preventing the opponent from deceiving the receiver 
into accepting fraudulent messages. 

Formally, an authentication system can be described as follows. It consists of a 
set S of source states, a set M of messages, and a set E of encodin 0 rules. Each 
encoding rule defines a mapping from the set of source states into the set of messages. 
We allow splitting, that is, a source state can be mapped by one encoding rule to 
more than one message. Authentication systems where each message uniquely 
determines the corresponding source state are called Cartesian. 
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Prior to transmission the transmitter and receiver agree upon a common secret 
encoding rule. The transmitter encodes the source state he wants to convey to the 
receiver with this encoding rule and sends the obtained message. The receiver 
accepts the message as authentic if it is the encoding of some source state under the 
chosen encoding rule. 

We assume that the opponent will play as follows. He observes a sequence of 
i > 0 messages encoded under the same encoding rule. Then he can play either 
impersonation or substitution. When the opponent plays impersonation he originates 
a message of his own devising, attempting to have the receiver accept this message 
as authentic. When he plays substitution, he replaces the last message being sent 
with another message so that the receiver is misled as to the state of the source. We 
assume Kerckhoffs' principle of crytpography, that is, the only thing the opponent 
does not know is the actual encoding rule. From knowledge of the authentication 
system and observed messages encoded by the same encoding rule he can deduce 
information about the encoding rule used. 

Let p~ be the probability of success if the opponent has observed i distinct 
messages and plays optimally. Our main result (see Theorem 3.1) is that under these 
hypotheses 

Pi > 2-1(~;~lUl) = 2H(EIM~+t)-H(EIMI)" 

We also consider the case where the opponent can choose how many messages 
he observes before trying to cheat. By Pr we denote the probability of success if he 
can observe at most I messages and again plays to his best. We show (Theorem 4.1) 
that 

Pt > 2-[x/(t+x)]er~e). 

We also prove necessary and sufficient conditions for authentication systems to 
hold the bounds for p~ and Pt with equality. One result is that if the bound for P/is 
met, the encoding rules must be equally distributed and we have 

Pl = IEI -x/(i+l). 

For Cartesian authentication systems and under more stringent conditions than 
we impose, the bound Pi = IE1-1/(z+I) has been proved by F~tk [6], generalizing the 
work of Gilbert et al. [7] who proved this bound for l = 1. Various authors have 
studied the case where the opponent is restricted to observing at most one message. 
Under this assumption Simmons has shown the lower bounds for Po and/1 .  He 
called an authentication system perfect if PI = 2-(1/2)H(E) holds (see [10]-[13]). A 
bound for pl has been shown by Brickell and Simmons in [2]. Recently, Walker 
[18] proved the bounds for Pi and P~ for a special class of authentication systems, 
namely, Cartesian authentication systems without splitting. 

The aim of this paper is to show that these bounds also hold in general authentica- 
tion systems that allow splitting and provide secrecy. 

The paper is structured as follows. In Section 2 we describe more formally 
authentication systems and the opponent's role. We introduce probability functions 
on the encoding rules and on the sequences of source states. This enables us to prove 
formulas for the probability that the transmitter sends a sequence of messages and 
for the probability that the opponent is successful in cheating. 
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In Section 3 we prove the lower bound for the probability p~ of the opponent 's 
success if he has observed a sequence ofi  messages. We prove properties of authenti- 
cation systems in which this bound holds with equality and investigate authentica- 
tion systems which meet this bound for all i < l. 

In Section 4 we assume that the opponent can choose how many messages of at 
most i messages he observes before trying to cheat. We prove a lower bound for the 
probability Pz of success in this case. In analogy to [101 and [181 we call an 
authentication system l-perfect if this bound is met. For/-perfect  authentication 
systems we prove an upper bound on the number of source states. 

In the last section we investigate authentication systems that are/-fold secure 
against spoofing. This notion was introduced by Massey [81 and investigated by 
several other authors (see [31, [41, and [171). 

The bounds that we prove in Sections 3 and 4 depend on the entropies of the 
probability distribution of the encoding rules and messages and on the conditional 
mutual information. For  a probability distribution on a set X, the entropy H(X) of 
X, is defined as follows: 

H(X) = -- ~ p(x)'log(p(x)). 
x G X  

For a set Y and an element y ~ Y, the conditional entropy H(XIy) is defined 
to be 

H(XIy)-- - ~ p(xly)'log(p(xly)). 
x e X  

The estimated value H(XIY) of this conditional entropy can be expressed as 

H(XIY)= Y'. p(y).H(XIy)= - ~ ~ p(x, y).log(p(xly)). 
yr ycY x e X  

For  sets X, Y, and Z the conditional mutual information is defined as 

I(X; Y,Z)= ~., ~., ~_, p(x,y,z)'log(p(x'Y'z!~ 
\ p(xlz)/" 

It can be interpreted as the average amount of information about x e X that is given 
away by the event Y--y when the event Z = z has been observed. From the 
definition of the mutual information it follows that 

I(X; YIZ) = I(Y; XIZ) 
and 

I(X; YIZ) = H(XIZ) - H(XI Y, Z). 

2. A Model for Authentication 

Throughout  this paper we use the following notation. The set of messages that 
encode any source state under an encoding rule e e E is denoted by M(e). Given a 
sequence of messages m i = (ml . . . . .  mi) ~ M ~, we denote by E(m i) the set of encod- 
ing rules under which all messages of m ~ can occur, i.e., for all e ~ E(m ~) it is 
{ml . . . . .  m~} ~ M(e). For an encoding rule e ~ E and a natural number i, we define 
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the map fe: 

fe: M'  ~ S' u {0}, 

[~ ( s l ,  . . . , si) i f  t h e r e  are  s~ s S w i t h  e(sl)  = ml f o r  l < j <_ i, 

f e ( m l  . . . . .  m~) = (0, otherwise. 

If the messages of a sequence m i can occur under the encoding rule e, i.e., e e E(mi), 
the sequence m t is decoded to the sequence f~(m t) of source states. 

In authentication systems as described above the following problem arises. If the 
receiver gets a particular message twice he cannot decide if the message was sent 
by the transmitter or repeated by an opponent. So, if the transmitter wants to 
communicate a source state twice under the same encoding rule an authentication 
system without splitting does not provide any security. In an authentication system 
with splitting, he could use another message to encode the source state. To ensure 
that no message is repeated we must impose that, for each source state and encoding 
rule, there are enough messages and that the splitting strategy always yields different 
messages. Hence splitting does not seem to be an appropriate means of solving the 
problem. For  these reasons we assume that no source state is communicated twice 
and that the receiver does not accept any message, which is the encoding of any 
source state already sent before. 

Furthermore, we assume that the receiver accepts only those sequences of mes- 
sages that occur under the chosen encoding rule. To describe this formally we define 
the function ~ in the following way: 

~,: E x M x M i  ~ {O, 1}, 

1 if e e E(n ,  m~), f,(n) ~f~(mi), and all 
y(e, n, m i) = source states of the sequence f~(m i) are different, 

0, otherwise. 

If e is the encoding rule the transmitter and receiver agreed upon and m t is a 
sequence of messages sent by the transmitter, the receiver accepts the message n if 
and only if ~(e, n, m t) = I. For  a sequence of messages m t not valid under the 
encoding rule e there is ),(e, n, m t) = 0 for all messages n. 

There will be a probability distribution on the sequences of source states. For  
any natural number i > 2 and any sequence of source states ( s l , . . . ,  s~) e S ~ we 
denote by p(s t l s l  . . . . .  s H )  the conditional probability that s~ is the source state 
being communicated immediately after the sequence (sl, . . . ,  s~_~) ~ S t-l. Thus the 
probability of the sequence s ~ = (s~ . . . . .  st) ~ S ~ is given by 

p(s t) = ' p ( s l  . . . . .  st) = p ( s t l s l ,  . . . ,  s i -x )"  P(Sl  . . . . .  s t -x ) .  

By our assumption, for any sequence (s~ . . . . .  s~) e S t of source states with st 
{sl . . . . .  st-1 } we have that p(Sl  . . . . .  si) = O. 

Given the probability distribution on the sequences of source states, the transmit- 
ter and receiver will determine a probability distribution p on E, called the encoding 
strategy. If splitting occurs, then they will also determine a probability distribution 
(called the splitting strategy) to get a message, given a source state and an encoding 
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rule. After selection of the encoding strategy and the splitting strategy, they are 
independent of the probability distribution of the sequences of source states. 
Throughout this paper we assume that all encoding rules have a positive probabil- 
ity, i.e., p(e) -~ 0 for all e r E. 

Given the probability functions on the sequences of source states and the set of 
encoding rules, and the splitting strategy we can calculate the pobability of a 
sequence of messages m i = (m I . . . . .  mi) r M s. Using ~e~ E P(e] mi) = 1 we have 

p(m i) = p(mi). ~ p(elm ~) 
e r  

= ~. p(e, m i) 
e r  

= ~, p(mile)'p(e). 
e c E  

Note that if the sequence m ~ cannot occur under the encoding rule e, i.e., e r E(m~), 
we have p(m~le) = 0. Thus, in the expression for p(m ~) we can restrict the summation 
to E(mi). If e e E(m i) and no splitting occurs, then p(mile) = p(fe(mi)). With splitting 
we have p(m~le)= p(fe(mi)).p(milf~(mi), e), where p(m~lfe(mi), e) depends on the 
splitting strategy being used. We denote by p(ml m ~) the probability that the trans- 
mitter sends the message m immediately after the sequence m ~. Thus we have 
p(m i, m) = p(mlmi) �9 p(mi), where p(m i, m) denotes the probability of the sequence 
(m i, m) = (ml . . . . .  mi, m) e M i+1. Note that p(m ~, m) and p(m, m s) denote different 
probabilities, namely, the probabilities of the sequences (m s, m) = (ml . . . . .  ms, m) 
and (m, m i) = (m, ml . . . . .  mi). 

In the following we describe precisely how the opponent tries to cheat. As 
mentioned above, after observation of a sequence of messages he can play substitu- 
tion or impersonation. We assume that the opponent is successful if the receiver 
accepts the fraudulent message as authentic and, in the case of substitution, is 
misled as to the state of the source. 

Let e be the actual encoding rule and let m i be a sequence of messages already 
sent by the transmitter. Assume that he now sends the message m. If, after having 
observed m s and m, the opponent plays impersonation, he sends his message n after 
m. The receiver accepts n if n is a possible message under the encoding rule, i.e., 
n e M(e), and no source state is repeated, i.e., f~(n) ~f~(m ~, m). If the opponent plays 
substitution he substitutes the message m, sent by the transmitter, by his own 
message n. He is sucessful if the receiver accepts n, i.e., if n ~ M(e), and f~(n) Cf~(m~), 
and the receiver is misled as to the state of the source, i.e., f~(n) ~ f~(m). Thus, by 
our rules there is no difference in the acceptance of the message if the opponent 
plays impersonation or substitution. Therefore, we do not distinguish these two 
ways of cheating. 

The probability that after observation of m ~ the opponent is successful in sub- 
stituting m is denoted by payoff(m, m~). It can be calculated as follows. The probabil- 
ity that the encoding rule e is the actual chosen encoding rule is p(elm~). The 
opponent is successful if the receiver accepts the message m, i.e., if y(e, m, m s) = 1. 
Hence, we have 

pay~ mi) = ~n~ p(elmi)'Y(e, m, mi) = ~ ~ . . , }  P(elm')'Y(e, m, mi), 
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because ~,(e, m, m ~) = 0 for all e r E(m, mi). Ifm is a message that could be sent after 
m ~ by the transmitter (that is p(mlm ~) # 0), then the probability that the opponent 
is successful if he sends m is payoff(m, m i) # 0. 

We describe the strategy of the opponent by a probability distribution. The 
probability that he selects a message m given that he has observed m ~ using strategy 
q is denoted by q(m[mi). The probability that, after observation ofm j, he is successful 
using strategy q is ~m �9 u q(mlmi) �9 payoff(m, mi). Let Pi(q) be the expected value of 
the probability that he is successful after observation of i messages. Then 

Pi(q) = ss~Mt p(mi) meM ~ q(m[mi)" payoff(m, mi). 

By p~(m ~) we denote the maximum probability that the opponent is successful 
given that he has observed m l, where the maximum is taken over all strategies. By 
p~ we denote the expected value of pi(mi). Thus, we have 

Pi = Is ~,t-~-~ u P(m~)'Pi(mi)" 

We call a strategy q optimal if Pi(q) = P~. 

Lemma 2.1. Let  m ~ ~ M ~, with p(m ~) # 0. Then, for  each m ~ M,  we have 

pl(m l) >__ payoff(m, mi). 

Proof. Choose mo ~ M and define a strategy q' by q'(mlm ~) = 1 ifm = mo, and by 
q'(mlm i) = 0 otherwise. Because we have defined pi(m l) to be the maximum value, 
we have 

pi(m i) >_ ~ q'(m[mi) �9 payoff(m, m i) = payoff(mo, mi). []  
m 6 M  

3. A Lower Bound for Pi 

In this section we prove our main result, namely, a lower bound for the probability 
of success after having observed a sequence of i messages. 

For the proof of the theorem we need the following result. 

Theorem (Jensen's Inequality). Let  wi ~ [0, 1], i ~ I = { 1 . . . . .  n}, n is some integer, 
with ~ , l w  i = 1. I f  ~p is a real function which is convex (i.e., ~p'(s) < ~p'(t) for  all 
a < s < t < b) on the interval (a, b) and xi ~ (a, b), i ~ I, then 

Equality holds if  and only if  all x i, i ~ I, are equal. 

This inequality will be applied to the functions ~p(x)= - log(x)  and ~p(x)= 
x- log(x), which are convex for x > 0. 

In order to simplify the following statements and proofs, we denote by M o the 
empty sequence. We define p(Mo) = 1 and the joint probability p(x, Mo) = p(x). 
Thus, we get p(Mo[x) = 1 and p(xiMo) = p(x). 
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Theorem 3.1. Let A be an authentication system and let p~ be the maximal probability 
of  deception after observation of i messaoes. Then 

Pi ~ 2H(EIM~+~)-H(EIMt) = 2-1(E;MIIr 

Moreover, equality holds if and only if, for all m i E M i with p(m i) ~ 0 and all m r M 
with p(m[m l) # O, the followino conditions are satisfied: 

(a) The probability payoff(m, m i) that m is accepted as authentic if m ~ was observed 
satisfies Pi = payoff(m, mi). 

(b) The conditional probability p(m]e, m ~) that m is the next messaoe sent by the 
transmitter, oiven that e is the actual encodin 0 rule and the sequence m ~ has 
already been sent, is constant for all e ~ E(m, mi). 

Proof. From the definition of the conditional mutual information we have 

I(E; M I M  ~) = H ( E [ M  ~) - H(EIM ~+~) = H ( M I M  ~) - H(MIE, Mi). 

Thus, it is sufficient to show 

log(pi) _> H(M[E, M l) - H(MIM') .  

Let m ~ ~ M i be a sequence of messages with p(m ~) # O, and let m e M be a message 
with p(mlm i) r O. In the first step of the proof we show the following inequality: 

p(mlmi) �9 log(p(mlm~)) ~ ~ p(e, mlmi) �9 log(payoff(m, mi) �9 p(mle, mi)), (1) 
eeE(m, m I) 

which is fundamental for the proof of the theorem. 
From p(mlm i) ~ 0 it follows that E(m, m ~) ~ O and payoff(m, m i) ~ 0. Thus we 

can define a probability distribution ~b,,,., on the encoding rules E(m, m ~) by 

p(elm~). ~(e, m, m i) 
~a, W(e) := 

payoff(m, m l) 

Because payoff(m, m i) = ~ e  ~ r~m.-l~P(elm~)'~(e, m, m ~) then ~,~r~m. ,-,) ~m. .,(e) = 1, 
thus ~m..., is a probability distribution. 

We use ~,(e, m, m ~) = 1 if p(mle, m') r O, in order to rewrite the conditional 
probability p(mlm ~) as 

p(mlm ~) = ~, p(e, mira l) 
e ~  s m 9  

= ~ p(elm')'p(mle, m/) 
e~E(m, m I) 

= ~ p(elmi) �9 p(mle, mi)'~(e,  ~ mi). 
e ~ E(m, mr) 

By the definition of ~ . . . , ,  we get 

p(mlm i) = ~ , r m')'p(mle, mi). 
e e E ( m ,  m )  

Using Jensen's inequality for q~(x)= x.log(x) at x = p(mlm i) = ~ , , E ( . . , ) w ~ "  x~ 
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with w e = ~b=..,(e), and x e = payoff(m, mi)'p(mle, mi), we have 

P(m[mi)" log(p(m[mi)) < ~ ~m..,(e)-(payoff(m, mi).p(mle, mi)) 
�9 �9 E(m,  m 9  

�9 log(payoff(m, mi).p(m]e, mi)) 

= ~, p(e, m[mi)" log(payoff(m, m~)'p(m[e, mi)), 
e ~ E(m, m i) 

by the definition of ~]m, l ~" This shows (1). 
In the second step of the proofwe show, for m ~ r M ~, with p(m ~) # 0, the inequality 

n ( M l m  i) > -log(pi(mi)) + H(MIE, mi). 

By definition of H(Mlm/) and use of inequality (1) we get 

n(MI m/) _- _ ~ P(mlmi) "log(p(mlmi)) 
m � 9  

> - ~ ~ p(e, mlmi) �9 log(payoff(m, mi) �9 p(m[e, mi)) 
m e M  e~E(m, m I) 

= _ ~ P(m[mi)'log(payoff(m, mi)) 
m ~ M  

- ~ ~ P(elm~)'p(mle, mi)'log(p(mle, mi)). 
m e M  eeE(m,  m f) 

Now we use the definition of H(M]E, m ~) and get 

H(M[m ~) _> - ~ p(m[mi)'log(payoff(m, m~)) + H(MIE, mi). 
m � 9  

By Lemma 2.1, pi(m i) > payoff(m, mi). Thus we have 

H(M[m ~) > -log(pi(m/)) �9 ~ p(m[m i) + H(M[E, m/) (2) 
m � 9  

= -log(p/(mi)) + H(MIE, m~). 

Hence, we have shown the second step. 
In the third step we eventually show the inequality for Pv By definition of p~ and 

using Jensen's inequality for rp(x) = - log(x)  we get 

l~ : l~ (=~M, p(mi)'pi(m')) > =7~u, P(mi)'l~ (3) 

The lower bound of log(pi(mt)) proved in step 2 yields 

=~M, p(m'), log(p,(m')) >_ .~M, p(m')'(H(MIE, m') -- H(Mtm')). 

Together we get 

log(p,) > =~M, p(m').(H(M[E, m') - H(Mim')) = H(M[E, M') - H(M]M'), 

using the definition of H(MJE, M') and H(M[ Mi). 
This shows the first statement of the theorem. 
We have log(pi ) = H(M[ E, M i) - H(MJM ~) if and only if equality is attained in 

inequalities (I)-(3) used in the proof. Thus, equality holds if and only if the following 
conditions are satisfied for each m ~ e M ~ with p(m ~) # 0: 
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(1) For each m ~ M, with p(mlm i) ~ 0, payoff(m, mi).p(ml e, m i) is a constant for 
all e E E(m, mi). 

(2) For each m ~ M, with p(ml m~) # 0, 

payoff(m, m t) = pi(mi). 

(3) The probability pi(m i) is constant. 

These conditions are equivalent to the following claim: 

For each m i ~ M ~, with p(m i) # 0, and m ~ M, with p(mlm i) 4= O, the following 
conditions hold: 

(a) The probability payoff(m, m i) that m is accepted as authentic, given that m ~ 
has been observed, is payoff(m, m i) = Pi. 

(b) The conditional probability p(mle, m i) is constant for all e ~ E(m, m~). [] 

There are authentication systems which reach the bound proved in Theorem 3.1. 
The authentication systems, constructed in Chapters 6 and 7 of [4], based on 
t-(v, k, I) Steiner systems and transversal designs TD~(t, k, n) reach the bound for 
all i ~ {0 . . . . .  t - 1 } ,  if all sequences ofdifferent source state oflength _< t are equally 
probable. The authentication systems, constructed in Theorem 3.3 of [17] based 
on authentication perpendicular arrays APA~(t, k, v) also reach the bound for all 
i e {0 . . . . .  t - 1}, if all sequences of different source state of length < t are equally 
probable. The authentication systems, constructed in Theorem 5.3 of [17], based 
on tranversal designs TDa(t, k, n) reach the bound for all i ~ {0 . . . . .  t - 1}. These 
authentication systems are Cartesian and have no splitting; hence, condition (b) for 
equality in Theorem 3.1 is true for any distribution of the source states. 

Remarks. 1. The probability of success pj after having observed a sequence of i 
messages does not depend on the probability p(m[e, m i) that m is the next message 
sent by the transmitter, given that e is the actual encoding rule and m i has been 
observed. However, in the theorem proved above, the lower bound does depend on 
this probability. 

For this reason our result can be generalized as follows. Consider a probability 
distribution p*(e, m, m ~) that satisfies the following conditions: 

- -  p* matches the actual joint distribution of the encoding rules and the se- 
quences of i messages, that is 

p*(e, m i) = p(e, m') 

for all e ~ E and m ~ ~ M i. 
- -  If 7(e, m, m i) = 0, then p*(e, m, m/) = 0 also. 

Given that e is the actual encoding rule and m ~ has been observed, there is 
a probability function p*(slfe(mi)) and, for m~M(e), a splitting strategy 
p*(m[fe(m ), e, m ~) such that p*(mle, m ~) is the resulting probability function of the 
next message. 

We denote by I(E; M*[M ~) the conditional mutual information with respect to 
the probability distribution p*. Because p* satisfies the above conditions, we can 
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substitute p by p* in the whole proof of Theorem 3. I. Hence it also follows that 

Pi >-- 2-1(E~M*IMI). 

Equality holds if and only if, for all m i ~ M i with p*(m i) = p(m i) # 0 and all m ~ M 
with p*(m[m i) # 0, the following conditions are satisfied: 

(a) The probability payoff(m, m i) that m is accepted as authentic if m i was 
observed satisfies Pi = payoff(m, mi). 

(b) The conditional probability p*(m[e, m i) is constant for all e e E(m, mi). 

Ifwe take the infimum ofl(E;  M* IM i) over all probability distributions satisfying 
the above conditions, we get 

Pi >-- 2 - i n f  I(E;M*IMI)" 

2. In 1-141 Simmons and Smeets have introduced a model of authentication 
systems that can be used without the constraint that source states cannot be 
repeated. In addition to an "ordinary" authentication system a set K of keys and 
a (not secret) scheduling function f :  K x N --, E is required. Prior to transmission, 
a secret key k is chosen. Using k, an encoding rule ei = f (k ,  i) for the transmission 
of the ith source state is selected by the scheduling function. By E~ we denote the 
subset of encoding rules that could be used for the transmission of the ith source 
state. 

In these sequential authentication systems (see [ 15]) the probability of deception 
using an impersonation attack or a substitution attack is (in general) different. With 
the same proof as for Theroem 3.1 it can be shown that a similar bound holds. For 
a substitution attack we have 

Psi >- 2-1(E';M*IMJ) = 2-1~g;M*lMg; 

similarly for an impersonation attack we have 

Pli >- 2-1r = 2-I(g;M*lMg" 

These inequalities have also been shown in 1-15"1. 

Corollary 3.2. Let A be an authentication system for which Pi = 2-~;MIM') holds, i 
is a nonnegative integer. Then, for all m i E M i, with p(m i) # 0, and for all m �9 M, 
with p(mlm i) ~ O, we have: 

(i) The conditional probability p(m[e,m i) is a positive constant for all 
e �9 E(m, mi). 

(ii) The probability payoff(m, m i) that m is accepted as authentic, given that m l 
has been observed, is 

payoff(m, m i) = ~ p(elmi). 
e r E(m, el i) 

(iii) The conditwnal probability p(el m i, m) satisfies 

p(el mi) 
p(elm i, m) = ~. p(j[mi ). 

icE(mr, m) 
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Proof. Let m ~ e M i, with p(m ~) # 0, and m ~ M, with p(mlm l) # 0. 
(i) By Theorem 3.1 p(mle, m i) is constant for all e ~ E(m, mi). Since 

e,~._... -,'~ p(elmi) �9 p(mle, m s) = p(mlm ~) ~ 0, 

the conditional probability p(mle, m ~) is a positive constant. 
(ii) For all e ~ E(m, mS), it follows that y(e, m, m i) = 1 from p(mle, m i) # 0. Thus 

payoff(m, m i) = ~ ' ,  ~ e~,. l i )  p(elmi). 
(iii) By m ~+~ we denote the sequence (m ~, m) of messages. The joint probability 

p(e, m i+1) can be written as 

p(e, m ~+1) = p(elmi+l) �9 p(m t+1) 
and 

p(e, m i+l) = p(mle, mi) 'p(e ,  m i) = p(mle, m i) �9 p(elmi) �9 p(m~). 

Together we have 
p(elmi+X) = p(mle, mi) �9 p(elmi) �9 p(m i) 

p(m s+l ) 

The probability of the sequence m ~+~ can be expressed as 

p(mi+l) = ~ , + q "  Er p(j '  mi+~) = J~E( mi+l)~ p(mlj, mi ) 'p ( j lmi ) 'p (mS) ,  

SO 

p(elm i+x) = 
p(mle, mi) 'p(el  mi) �9 p(m i) 

p(mlj,  m~)" p( j lm')"  p(mi)" 
j eE(m t+l) 

By hypothesis it follows from (i) that p(m[j, m ~) is a positive constant for all 
j ~ E(mi+t). Because p(m[A m i) is constant, and the fact that p(m s) is independent 
from j, we can cancel these terms in the above expression for p(elm~+l). Hence, 

p(elm i) 
p(elm i+1) = ~ P(ylmi)" [] 

j eE(m ~§ 

In the following we consider authentication systems that reach the bound for the 
probability of success pi, proved in Theorem 3.1, for all i ~ {0 . . . . .  l}, where I is some 
nonnegative integer. The next lemma says in particular that, under the equality 
assumption, the conditional probability p(el m ~+1) does not depend on the probabil- 
ity p(fe(m i+t)) of the corresponding source states. 

Lemma 3.3. Let  A be an authentication system for  which Pi = 2-~E;MIMq holds for  
all i ~ {0 . . . . .  l}, I is a nonneoative integer. Then, for i ~ { 1 . . . . .  l + 1} for  all m i ~ M ~, 
with p(m ~) ~ O, and all e E E(mS), we have 

p(e) 
p ( e l m  ~) - ~ ~_,)~,_ 

P(J) 

and ~. p ( e )=  po u ... x p H .  
�9 ~ E(mq 

Furthermore, p(mile) is a positive constant for  all e E E(mS). 
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Proof. Let i �9 {0 . . . . .  !}, let m I+1 = (ml . . . . .  mi, mi+l) �9 M i+t be a sequence of 
messages with p(m i+1) # 0, and let e �9 E(m~+l). I f m i =  (m~ . . . . .  m~), then 0 
p(m i+1) = p(milmi) �9 p(m i) and so we have p(m i) # 0 and P(mi+l I mi) # 0. 

Using Corollary 3.2 we express p(el m~+~ ) in terms of p ( j lm ~) with j �9 E(m ~+~ ): 
p(elm i) 

p(elm '+1) = ~ p(jlm~)" 
j e E ( m  ~+t) 

For  i = 0 we have p(elm ~ = p(e), so, with m ~ = (m), we get 

p(e) 
p ( e l m ) -  ~ p(j) .  

j ~ E(m)  

Suppose that, for an i < I, we have shown that  p(el mi) = p(e)/~.,~,~e~.,,~p(e') for all 
e �9 E(mi). Because E(m~+ x) ___ E(m~), 

p(elm') 
p(el mi+l) = ~ P(J[ mi) = 

j e E ( m  ~+t) 

canceling ~ ,  ~ ~,~,~ p(e') we get 

p(e) 
p(elm i+1) _ ~ P(j)" 

j e E ( m  i+l) 

p(e)/ ~,, p(e') 
e'  e ,E(m ~ ) 

~, p(j) /  ~ p(e') '  
j e E ( m  '+t )  e ' e E ( m  t) 

p(mile ) _ p(m'), p(elm') 
p(e) 

p(ml), p(e) 
p(e) j ~ , , ,  p(j)  

p(m i) 

P o x  ... x Pi-i 

Replacing ~e~et..,~p(e) by P o x  ...  x Pi-1 yields 

~, p(e) = P o x  "'" x Pi. 
e e E ( m t + t ,  m i) 

Now let i �9 { 1 . . . . .  l + 1 }, let m ~ �9 M ~ with  p(m ~) # 0, and let e �9 E(m~). Using the 
formulas proved above for p(elm i) and ~ = , ~  p(e) we get 

This proves the first assertion of the lemma. 
By Corollary 3.2, Pi = payoff(mi+l, mi) = ~e~E~,, . . . .  [) p(e[mi). Thus, for i = 0, we 

get 
po = payoff(m)= ~,, p(e). 

e e E(m)  

Now suppose that, for i, i < l, we have shown ~ee~m,)p(e) = PO X "'" X Pi-l" From 
Pi = payoff(mi+l, mi) = ~e~E~.,+,, =,~P(e[ mi) and the above expression for p(e[m i) 
we g e t  ~ p(e) 

e e  E(mi+ t , In t) 
P'=  ~, p(e) 

e e E ( m 9  
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Since this is independent  of  e and p(m i) ~ 0 the condit ional  probabil i ty p(mil e) is 
a positive constant  for all e e E(mi). [ ]  

In the next  lemma we prove a simple formula for the probabil i ty  Pl of  success 
under  the assumption that  the encoding rules are equally probable  or that  the 
condit ional  en t ropy  H(EIM ~+~) is zero. In the latter case it also follows that  the 
encoding rules must  be equally probable.  

L e m m a  3.4. Let  A be an authentication system in which Pi = 2-1~e;ulM') holds for all 
i ~ {0 . . . .  , I}, and where I is a nonnegative integer. Suppose furthermore that either 

(a) the encoding rules are equally probable, or 
(b) H(EIM s+') = O. 

Then, for each i E { 1 . . . . .  I q- 1 }, the number of encoding rules I E(mi)l is constant for 
all m i ~ M i, with p(m i) # 0, and 

IE(mi+l)l 
P s - [ E ( m i ) ]  

for i = O, . . . ,  I. Moreover, if  H(EIM s+l) = O, for any e ~ E, 

p(e) = Po • "'" x Pz, 

i.e., the encoding rules are equally probable. 

Proof.  (a) For  an i ~ {0, . . . .  l} consider an m i e M i, with p(m i) # 0, and an m ~ M, 
with p(ml mi) ~ O. F r o m  Ps = 2-1cs~ulu') it follows, using Corol lary  3.2, that  

Ps = payoff(m, m s) = ~ p(elmS). 
e ~ E(m,  m I) 

By hypothesis  the encoding rules are equally probable  so p(e) is constant  for all 
e ~ E. Thus,  we can cancel p(e) in the expression for p(elm ~) derived in Lemma 3.3 
and get 

p(e) 1 
p(elm i) - ~, P(J) - iE(mS)l. 

j e E ( m  ~) 

Since this is true for all i e {0 . . . . .  1}, we get, for all m i+1 ~ M s+l, with p(m s+l) # 0, 

IE(mS+a)[ = Po • "'" • ps'IE[, 

in particular,  I E(mS+l)l is constant .  
(b) Suppose that  H(EIM s+~) = 0. Let  m t+l E M s+~ and let e e E, with p(e, m t+~) 

0. Because H(EIM s+l) = 0, we have p(elm s+a) = 1, therefore E(m s+l) = {e}. 
Let  e e E and let s s+~ ~ S s+~ be a sequence of source states with p(s s+l) ~ 0. By 

m s+t we denote  the sequence of messages if s s+~ is encoded with e. By construction,  

Together  we have 

1 IE(m, mi)l 
Pi'= ee~,. ')E'('~ lE(mi)l - [E(mi)[ " 
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p(e[m I+1) = 1, therefore E(m l+l) = {e} and so 

j~_,+,)~,_ p( j )  = p(e). 

By Lemma 3.3, 

j~r.~, § P(J) = Po x "" x p,. 

Together we have 

p(e) = P o x  . . .  x Pt. 

Hence the encoding rules are equally probable. The rest follows from (a). [] 

4. Perfect Authentication Systems 

In the last section we have obtained a lower bound of the probability of success for 
the opponent, if he has observed a sequence of i > 0 messages and if he uses an 
optimal strategy. In this section we turn our attention to the following scenario. 

The opponent knows that the transmitter sends at most I messages encoded by 
the same encoding rule. Therefore, he can choose how many messages he wants to 
observe before he tries to cheat. We assume that he uses a strategy Q, i.e., a 
probability distribution Q on the set {0 . . . . .  l}, to determine how many messages 
he shall observe. If Q(i) denotes the probability that he observes i messages, then, 
according to the strategy q, he substitutes the ith message. The probability P~(Q, q) 
of success of this scenario can be calculated as 

! 

Pt(Q, q )=  ~ Q(i)'pi(q). 
I=1 

We denote the maximum value of P~(Q, q) by P~, where the maximum is taken 
over all strategies Q and q. We call the strategies Q and q optimal if P~(Q, q) = Pt. 

The following strategy Q*, q* is easily seen to be optimal. For each i e {0 . . . .  , l} 
we choose an optimal strategy q*, thus p~ = p~(q*). Now we select a j ~ {0 . . . . .  l} 
with pj > p~, for 0 < i _< I. Then we define Q*(j)  = 1 and Q*(i) = 0 for i # j .  Note 
that in order to choose this strategy, the opponent must be able to calculate the 
probabilities of success p~. 

In the following theorem we prove a lower bound for Pz and give necessary and 
sufficient conditions for the case of equality. 

Theorem 4.1. Let  A be an authentication system, and let P~ be the probability o f  
success after observation o f  at most I messages. Then 

P, >_ 2-[vtz+~)m(E). 

Equality holds if  and only if  the following conditions are satisfied: 

(1) The encoding rules are equally probable. 
(2) For each i ~ { 1 . . . . .  l + 1} for all m i ~ M i, with p(m ~) ~ O, we have 

IE(m~)[ = iEl(t+l-i)/tt+l). 



A Lower Bound on Authentication After Having Observed a Sequence of Messages 149 

(3) For each i e {1, . . . ,  l +  1} for all mi e M i, with p(m i) ~ 0, the conditional 
probability p(m~le) is constant for all e e E(mi). 

Moreover, if equality holds, then 

Pt = IE1-1/(1+1). 

Proof. For simplification we write P instead of Pz- We show the inequality for a 
strategy Q* with 

P ( Q * )  = max{po . . . . .  pt}. 

By definition of P and Q* we have P > P(Q*) > p~ for i = 0, . . . .  I. Using Theorem 
3.1 we get 

- log(P t+l) _< - log(e(Q*) I+1) (a) 

_< - log(po  x px x ... x pl) (b) 

< (H(E) - H(EIM)) + (H(EIM) -- H(EIM~)) + " -  

+ ( H ( E I M ' )  - -  H(EIMZ+I)) (c) 

= H ( E )  - H(EIM t+l) 

_< ~(E), (d) 

that is the first assertion of the theorem. 
We have - l og (P )  ~- [1/(l + 1)]H(E) if and only if equality holds in inequalities 

(a)-(d) used in the above proof. Hence equality holds if and only if the following 
conditions are satisfied: 

(a) Q* is an optimal strategy. 
(b) For each i ~ {0 . . . . .  !} the probability p, of success after observation of exactly 

i messages is equal to P, 

P = p~. 

(c) For each i e {0 . . . . .  1} there is 

- log(pi )  = H(E[M i) - H(E[Mi+I). 

(d) The conditional entropy H(EJM z+l) is equal to 0, 

H(EIM z+l) = O, 

that is, given that ! + 1 different messages have been observed, there is no 
equivocation about the encoding rule used. 

We first show that (a)-(d) imply (1)-(3). 
By (c) and (d), hypotheses (b) of Lemma 3.4 hold, so the encoding rules are equally 

probable. Hence, H ( E ) =  log(lEI), so l o g ( P ) - - - - [ 1 / ( l +  1)] log([El). Also by 
Lemma 3.4, for all m i e M ~, with p(m i) ~ 0, and m i+1 e M i+1, with p(m ~+1) # 0, we 
have 

IE(ml+X)] 

Pl-tE(m~)l �9 
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By (b), all p, are all equal to P, so 

Thus, 

1 
log(pi) l + l l~ '~ 

l 

1 
- !  +~log( lEI)  = log(p,) = log(IE(m'+l)l ) - log(IE(m')l). (.) 

From H(EIM ~+~) = 0 ,  for all m ~+1 e M ~+1 with p(m ~+1) 5 0  it follows that 
IE(mt+l)l = 1, thus 

IE(mZ+X)l = lElO/(Z+x). 

Suppose that we have shown 

(l + 1) - (i + 1)log(iEi ) log(IE(mi+l)[). 
/ + 1  

Using (.) we obtain 

log(lE(m')l) = / ~ 1  log(IEI) + log(IE(m'+l)l ) 

1 (! + 1) - (i + 
- l + 1 l o g ( I e l )  + 1 + 1 1 ) l~  

I + 1 - "  
= 1+ 1 tl~ 

This shows statement (2). 
In view of Lemma 3.4 we have that p(miJe) is a constant for all e ~ E(m'). This 

shows statement (3). 
Finally we show that (a)-(d) follow from (1)-(3). 
In order to do this we calculate the probability of success payoff(m, m'), given 

that the opponent has observed a sequence m' of i messages (0 _< i < l) and he 
substitutes a message m with p(mJm')~ O. By (3) p(m', mJe) is constant for all 
e E E(m, m'). Since p(m', m) ~ 0 by assumption, p(m', mJe) is positive, thus 
~(e, m, m i) = 1 for all e e E(m, m'). Hence we have 

payoff(m, m i) = ~ p(elm') 
e G E(m, m i) 

-_ ~ p(m'le)'p(e) 

e ~ eta,, . ') p(m') 

= ~, P(mile)'p(e) 
,~E~m.,.'~ ~_, p(m'le').p(e')' 

e'  e E(  m ~) 

l I i because p(m') = ~e,~E~.,~P(m [e )'p(e ). By (1) all p(e) are equal and by (3) each 
p(m'[e) is constant for all e ~ E(m/). Thus we get 

IE(m, m/)l [El_l/tt+l ~ 
payoff(m, m') - ]~-m-~ = 
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using (2). By Theorem 3.1 this shows (c) and (b). Condition (d) follows from 
IE(mt+t)l = 1 if p(m ~+1) # 0. By definition, Q* is an optimal strategy, so all is 
shown. [] 

For Cartesian authentication systems without splitting, this inequality has al- 
ready been proved by Walker [18] using PI = ~I=o [1/(l + 1)]pi. Generalizing his 
definition, we call an authentication system l-perfect if 

PI = 2-[1/(I+t)]H(E), 

that is, equality holds in the inequality proved in Theorem 4.1. 
Note that in/-perfect authentication systems the encoding rules must be equally 

probable, so that we have log(Pi) = - l - l / ( / +  1)]'log(IEI). 
Examples of perfect authentication systems can be found in [17] and [9]. The 

authentication systems, constructed in Theorem 5.3 of [17] based on transversal 
design TD~(t, k, n) are (t - 1)-perfect for 2 = 1. The perfect authentication systems, 
constructed in Chapter 7 of [9] are based on Reed-Solomon Codes. 

In the following we prove an upper bound on the number of source states in 
l-perfect authentication systems. In order to do this we first prove a more general 
result. 

Lemma 4.2. Let  A be an authentication system and let l be a positive integer. I f  
there is an encoding rule e ~ E and a sequence s t-t = (Sl . . . . .  Sl_l) ~ S I-1 of  source 
states such that, for all s, s' ~ S \ { s  I . . . . .  St-x} with s ~ s', the following conditions 
hold: 

(a) The set o f  encoding rules E(e(s H ,  s, s')), that is, the encoding rules that are 
possible under the sequence e(s ~-1, s, s') o f  messages, consists only o f  the 
encoding rule e. 

(b) There is an integer c > 1 with IE(e(s I-t, s))[ > c. 

Then the number of  source states is restricted by 

IE(e(sl-1))l- 1 
ISI _< + l -  1. 

c - - 1  

Proof. Let e e E and let s z-1 = {st . . . . .  st-~ } ~ S z-t be such that conditions (a) and 
(b) hold. Then, for s, s' ~ S \ {S l  . . . . .  st-~ } with s # s', the intersection of E(e(s t-l, s)) 
and E(e(s J-l, s')) consists only of e. Hence 

IE(e(s '-1, s))\{e}l < IE(e(st-~))\{e}l. 
seS\{sl  . . . . .  s H  } 

Using (b) we get 

(ISI - (! - 1)).(c - 1) ~ IE(e(s~-l))l - 1, 

which proves the lemma. [] 

Lemma 4.3. Let  A be an l-perfect authentication system. I f  there is a sequence s ~-1 = 
(st . . . . .  St_x) ~ S H such that p(s ~-1, s, s') ~ 0 for all s, s' ~ S \ { s  I . . . . .  s H }  with 
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s ~ s', then the number of  source states is restricted by 

ISl -< IEI lm+l~  + 1. 

Proof. Let e e E and let s H = (s~ . . . . .  sl-1) ~ S t-I with p(s I-~, s, s') # 0 for all s, 
s' ~ S \ { s i  . . . . .  s H }  with s # s'. By Theorem 4.1 we get IE(e(sH))l = IEI 2m+~, 
]E(e(s z-l, s))l = IE[ vtl+l~, and IE(e(s H ,  s, s'))l = 1. Using the above lemma we have 

IEI 2m+x~ - 1 iElXm+x) 
ISI ~ iEi1/t~+1~ _ 1 + 1 - 1 = + I. [ ]  

For Cartesian authentication systems, this bound has been proved for ! = 1 
by [7]; it is not the best bound possible as is shown in [1] for I = 2 and in [9]. 

5. Authentication Systems that are / -Fold Secure Against Spoofing 

In this section we consider the relations between authentication systems that reach 
the lower bound for p~ of Theorem 3.1 and authentication systems that are/-fold 
secure against spoofing. 

Throughout  this section we assume that each sequence of different source states 
of length i, i ~ { I, . . . ,  l + 1 }, can occur. By S t* we denote the set of sequences of 
different source states of length i. Thus we have p(s ~) :~ 0 for all s ~ ~ S ~*. Since we 
already assumed p(e) v L 0 for all e ~ E, we now have p(m) ~ 0 for all m ~ M. By M i* 
we denote the set of sequences of different messages of length i. 

In [8] Massey has shown that the probability of success of an opponent who 
knows the authentication system is always greater or equal to the probability of 
guessing an authentic message. If the opponent has observed i different messages, 
the probability of guessing an authentic message is the number of messages the 
receiver would accept as authentic divided by the number of messages not observed. 
The number of messages the receiver would accept is at least [S[ - i, so we have 

[ S I - i  

Pa - I M I ~ "  

Massey called an authentication system l-fold secure against spoofing, if, for all 
i ~ {0 . . . . .  l}, one has 

[Sl - i 

P~ - I M I -  i" 

In the following lemma we give a characterization for such authentication 
systems. 

Lemma 5.1. An authentication system A is l-fold secure against spoofing if and only 

if: 
(a) For each i e {0 . . . . .  l}, for all sequences o f  different messages m i =  

(ml . . . . .  mi) e M ~*, and for all m e M \ { m  1 . . . . .  rni} the probability 
payoff(m, m ~) that m is accepted as authentic given that m ~ has been observed 
is constant. 
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(b) N o  splitting occurs. 
(c) For each i e { 1 . . . .  , l + 1 } and for  all m i e M i*, p(m z) # 0. 

Proof.  Let  i 6 {0 . . . . .  1}, let m i = (ml . . . . .  m,) e M i* be a sequence of  different 
messages with p(m i) ~ 0, and let m ~ M \ { m t  . . . . .  mi}. The  probabil i ty  that  m is 
accepted as authentic,  given that  m ~ has been observed, is 

payoff(m, m i) = ~ p(eimi) �9 3,(e, m, mi). 
e e f ( m ,  m j) 

Summat ion  over  all m ~ M \ { m x  . . . . .  mi} yields 

~'  payoff(m, m i) = Z er - ' )p(elmi) '~(e ,  m, m i) 
meM\{ml ..... "i} melW\{ml ..... ml} , 

= e.~E(. .) mcM(e)\~mt. ..... -,} p(elm') '7(e,  m ,  m i) 

= ~, p(e]m i) ~ y(e, m, m i) 
eEE(m l) m e M ( e )  \7~m I . . . . .  rot} 

> I S I -  i. (**) 

Consider  now an authent icat ion system A that  is /-fold secure against spoofing. 
Let  i ~ {0 . . . . .  l}, let m i = (ml . . . . .  mi) e M i* be a sequence of  different messages, 
with p(m i) ~ 0, and let m e M \ { m l  . . . . .  mi}. By (**) there exists at least one 
mo ~ M \ { m l  . . . . .  m~} with payoff(too, m l) > (ISl - i)/(IMI - i). Suppose that  
payoff(too, m ~) > (ISI - i)/(IMI - i). Then  Pi > (ISI - i)/(IMI - i), contradict ing 
the hypothesis  that  A is /-fold secure against spoofing. Thus, payoff(m, m ~) = 
( I S I -  i ) / ( I M I -  i) for all m 6 M \ { m l  . . . .  ,mi}.  In particular, payoff(m,m/) is 
constant .  

In order  to show that  no splitting occurs, assume that  m~ # m 2 both  encode a 
source state s under  some encoding rule e. Since m2 ~ M \ { m l  } and p(ml)  ~ 0 we 
get payoff(m2, m l ) =  (ISl- I ) / ( I M [ -  1 ) #  0, as proved above. However,  the re- 
ceiver does not  accept m z because it encodes the same source state as m~. This 
contradic t ion shows that  no splitting occurs. 

It remains to show that  p(m ~) # 0 for all m i 6 M ~*, i ~ { 1 . . . .  ,1 + 1 }. By assump- 
tion, p(m) ~ 0 for all m E M. Suppose we have shown, for i < 1, that  p(m ~) # 0 for 
all m i ~ M s*. Let  m ~+~ = (m I . . . . .  mi+l) ~ M ~+t* be a sequence of different messages. 
Since no  splitting occurs, 

p(m '+1) = ~ p(mi+lle) 'p(e) = ~ p(f~(m '+1))" p(e). 
eeE(m f+l) eeE(m j+t ) 

By assumption,  p(m I . . . . .  mi)-~O and mi+x ~ { m t , . . . , m i } ,  thus payoff(ml+x, 
(mx . . . . .  mi)) = (ISI - i)/(IMI - i) ~ O, therefore E(m i+I) ~ ~ .  NOW p(m i+x) ~- 0 
follows from the above  formula.  

Now suppose that, for each i ~ {0 . . . . .  l}, for all sequences of different messages 
m s = (ml . . . . .  mi) ~ M ~*, and for all m e M \ { m l  . . . .  , mi}, the probabil i ty  
payoff(m, m ~) is constant  and no splitting occurs. 

Let  i e {0 . . . .  , l}, let m ~ = (m~ . . . . .  ms) ~ M ~*, and let e ~ E(mi). Since there is 
no splitting, IM(e) \ {m:  . . . . .  mi}l = ISl - i and y(e, m, m i) = 1 for all m ~ M ( e ) \  
{mi . . . . .  m~}. Using (**) we get ~ m , u \ { , ,  ..... m,} payoff(m, m ~) = ISI - i. By hypothe-  
sis, payoff(m, m ~) is constant  for all m e M \  {mr . . . . .  m~}, therefore payoff(m, m ~) = 
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(ISI- i ) / ( I M I -  i). Hence p~ = (ISI- i ) / ( I M I -  i), so A is /-fold secure against 
spoofing. [ ]  

We have two different lower bounds for the probability of success p~, given that 
i messages have been observed: the bound proved by Massey is 

I S l -  i 
P~ > IMI - i' (4) 

while the bound proved in Section 3 is 

Pi >-- 2H(EIM'+t)-I'I(EIM')" (5)  

These bounds are different as shown by the following examples. In both examples 
the encoding rules are equally probable and there are two source states with 
respective probabilities 2/3 and 1/3. 

Example 1. The authentication system is defined by the following matrix: 

S 1 S 2 

el  ml ,  rtl 2 m 3 

e2 mr,  m5 m6 

We use a uniform splitting strategy. The entropies satisfy H(E) = 1 and H(EIM)  = 
0. Therefore 

PO = �89 = 2H(EIM)-H(E) > 2 = ]SI 
IMI" 

Example 2. The authentication system is defined by the following matrix: 

SI $2 

e I ml  m2 

e 2 m2 ml  

e3 m3 m,t 

e4 m4 m3 

The entropy of the encoding rules is H(E) = 2. For  a message m there is p(m) = �88 
and p(elm) = p(m]e), p(e)/p(m) = p(~(m)),  since p(e) -- p(m) = �88 Thus, H(Eim) = 
-2 log(2) - �89 log(~) = log(3) - 2. Therefore, H(E] M) = log(3) - 2 and 

Po = �89 = IS[ = 2 - 1  :~ 21~ = 2H(EIM)-H(E)" 

IMI 

In the next two lemmas we give necessary and sufficient conditions such that if 
an authentication system reaches one bound with equality it also meets the other 
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bound. It is obvious that  an authenticat ion system that  is /-fold secure against 
spoofing with I > 0 is not  l-perfect. (For an authenticat ion system that  is l-fold secure 
against spoofing we have p~_~ < p~, for 0 < i ~ 1, whereas in an i-perfect authentica- 
tion system all pi are equal.) 

Lemma 5.2. Let  A be an authentication system that is l-fold secure against spoofing. 
Then 

p~ = 2-~(~u1~9 

for all i ~ {0 . . . .  , l} if  and only if, for each i ~ { 1 . . . . .  l + 1} and for all m ~ ~ M ~*, the 
conditional probability p(mil e) is a constant for  all e 6 E(mi). 

Proof. Suppose p~ = 2 -~tr;Mlu'~ holds for all i 6 {0 . . . . .  l}. Then, by Lemma 3.3, for 
all m i ~ M i, i ~ {1 . . . . .  ! + 1} with p(m i) # 0, it follows that  p(mi]e) is a positive 
constant  for all e ~ E(m~). Using Lemma 5.1(c) we see that  p(m i) # 0 holds for all 
m ~ ~ M ~*, i 6 {1 . . . . .  l + 1}, thus we have proved the assertion. 

We suppose now that, for all m ~ E M ~*, i ~ {1 . . . . .  l + 1}, the conditional proba- 
bility p(mile) is a constant  for all e ~ E(mi). Using Lemma 5.1(c) it follows from 
~ E p ( m i l e )  = p(m i) # 0 that  p(m/le) is a positive constant.  

Let i ~ {0 . . . . .  i}, let m i = (m~ . . . . .  m~) ~ M i, and let m ~ M with p(m i, m) # 0. 
Obviously, it follows that  m / 6 M i* and m ~ M \ { m ~  . . . . .  mi}. Then, by hypothesis, 
p(m i, mle) is a positive constant  for all e e E(m i, m), and p(mile) is also a positive 
constant  for all e ~ E(m i, m) ~ E(mi). Hence, p(mle, m/) = p(m ~, mle)/p(mile) is a 
positive constant  for all e ~ E(m ~, m). By Lemma 5.1(b) we have pi = payoff(m, m~). 
Thus, by Theorem 3.1, the assertion follows. []  

Lemma 5.3. Let  A be an authentication system where, for all i ~ {0 . . . . .  l}, the 
probability of  success is 

Pi = 2-I~;MIM') .  

Then A is I-fold secure against spoofing i f  and only if, for each i ~ {1 . . . . .  I + 1}, for 
all m ~ ~ M i*, one has E(m ~) ~ ~ and no splitting occurs. 

Proof. If A is/-fold secure against spoofing it follows by Lemma 5.1 that  there 
is no splitting and, for all i t  {1 . . . . .  l + 1}, m l e  M i*, that  p(m ~) ~ O. Because 
0 ~ p(m i) = ~e~Etl,)p(mile),  we must have E(m i) :~ O.  

Conversely, suppose that, for each i ~ { 1 . . . . .  1 + 1 } and for all m ~ ~ M i*, we have 
E(m i) ~ ~ and no splitting occurs. Thus we have p(m i) = ~ E~.')P(fe(mZ))'P(e) �9 
By assumption, p(s i) ~ 0 for all sequences s i ~ S ~* and p(e) ~ 0 for all e 6 E, thus 
p(m i) ~ 0 for all m i ~ M i*. Using Theorem 3.1 we get p~ = payoff(m, m i) for all 
i ~ {0, . . . .  l} and (m ~, m) e M ~*. Hence, by Lemma 5.1, it follows that  A is /-fold 
secure against spoofing. []  

Examples of authenticat ion systems that  are (t - 1)-fold secure against spoofing 
and that  satisfy the bound Pi = 2-Ite;MlU'~ for all i E {0 . . . . .  t - 1} are the following 
authenticat ion systems already mentioned in Section 3: the authentication systems, 
constructed in Chapters 6 and 7 of [4], based on t-(v, k, 1) Steiner systems and 
tranversal designs TDa(t, k, n) for n = 1, and the authenticat ion systems, con- 
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structed in Theorem 3.3 of [-17], based on authentication perpendicular arrays 
APA~(t, k, v) for ~ = 1. For all these authentication systems we must have that all 
sequences of different source states of length < t are equally probable. 
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