
A Lower Bound on Snap-Through Instability

of Curved Beams under Thermomechanical

Loads

Ilinca Stanciulescua,∗, Toby Mitchellb, Yenny Chandraa, Thomas Easonc,
Michael Spottswoodc

aRice University, Department of Civil and Environmental Engineering, 6100 Main

Street, Houston, TX, 77005, U.S.A
bUniversity of California at Berkeley, Department of Civil Engineering, Berkeley, CA,

94720, U.S.A
cAir Force Research Laboratory, Structural Sciences Center, 2790 D. Street, WPAFB,

OH, U.S.A.

Abstract

A nonlinear finite element formulation (three dimensional continuum el-

ements) is implemented and used for modeling dynamic snap-through in

beams with initial curvature. We identify a nontrivial (nonflat) configura-

tion of the beam at a critical temperature value below which the beam will

no longer experience snap-through under any magnitude of applied quasi-

static loadfor beams with various curvatures. The critical temperature is

shown to successfully eliminate snap-through in dynamic simulations at qua-

sistatic loading rates. Thermomechanical coupling is included in order to

model a physically minimal amount of damping in the system, and the re-

sulting post-snap vibrations are shown to be thermoelastically damped. We

propose a test to determine the critical snap-free temperature for members
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of general geometry and loading pattern; the analogy between mechanical

prestress and thermal strain that holds between the static and dynamic sim-

ulations is used to suggest a simple method for reducing the vulnerability

of thin-walled structural members to dynamic snap-through in members of

large initial curvature via the introduction of initial pretension.

Keywords: snap-through, finite element, curved beam, solid (continuum)

elements, thermomechanical loads

1. Introduction

Thin structural members can dynamically jump between multiple equilib-

rium configurations when subjected to mechanical forces, acoustic vibrations,

and thermal loads like those encountered by aerospace vehicles in extreme

operating conditions. This process, commonly referred to as snap-through,

can cause large-amplitude structural vibrations, induce fatigue, and lead to

global instability. Such vibrations can have a chaotic pattern and therefore

can be difficult to control [1]. Avoiding snap-through is therefore highly de-

sirable in the design of thin-walled structures such as aircraft and spacecraft.

In this paper, the existence of a critical temperature below which an ini-

tially curved beam will no longer experience snap-through at any applied

quasi-static load level is demonstrated. This temperature provides a lower

bound below which snap-through instability no longer occurs. This tem-

perature also corresponds to a nontrivial (that is, nonflat) deformed beam

configuration, a fact that is not apparent through methods used to charac-

terize snap-through that are limited to modeling small deflections. We argue

that such a limit can be obtained for a variety of static loads and that it also
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reduces the amplitude of the oscillations when loads are applied at dynamic

rates. Through numerical experiments we show this limit to be found at

states characterized by specific properties associated with the energy of the

system and the directional derivatives of this energy function.

Experimental characterizations of snap-through under mechanical vibra-

tions and combined thermal and mechanical loads have existed for several

decades [2, 3, 4], but numerical modeling of snap-through remains an area of

active research. In the general case, snap-through involves combined flexu-

ral, shear, and normal stresses, large time varying deflections and rotations,

and thermal effects. Nonlinear coupling between these effects makes snap-

through challenging to model accurately. An extensive literature exists on

the subject, with models describing different degrees of geometric nonlin-

earity [5, 6], material nonlinearity [7, 8, 9], thermal and acoustic loading

[10, 11, 12], and various combinations of these factors [13, 14].

Previous research on snap-through falls into three general categories:

(1) limited-deflection models (based on the von Karmann or Duffing equa-

tions for plates), (2) elastica models (based on specialized analytical tech-

niques going back to Euler), and (3) nonlinear (finite-deformation) finite

element models.

The first category suffers from the most significant limitation: these mod-

els can only describe member deflections of less than 2.5 times the member

thickness [5]. This is especially problematic because large initial curvatures

that may be present by design, e.g., in a rocket booster hull or aircraft

wing, will lead to larger snap-through loads and therefore more severe and

damaging post-snap vibrations, none of which can be modeled with limited
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deflection formulations.

Elastica methods are valid at a theoretically unlimited range of deflec-

tions and initial curvatures, at the cost of increased mathematical complexity.

These techniques have only recently been extended to the solution of thermal

and snap-through problems [15, 16, 17]. This is most likely due to the in-

creased ease of solving the equations numerically, e.g., by shooting methods

[18, 19]. Although there is no apparent limitation to obtaining the results

discussed in this paper by elastica methods (other than possible limitations to

particular instances of the theory, e.g., the common omission of shear strain),

they are not as well-developed for general classes of problems as nonlinear

finite element methods.

Nonlinear finite element methods are the most general of the methods

available to model snap-through, an advantage for which they sacrifice the

direct, problem-specific analytical insight that is available via the first two

methods. This lack of transparency is more than compensated by the ver-

satility to model geometric nonlinearity, thermomechanical coupling, large

strains, material nonlinearity, fluid-structure interaction in aircraft, etc.

The nonlinear finite element method is chosen for this study ; it is capable

of including the full range of nonlinearities that influence snap-through and

can easily model large deflections. Beam and shell models, usually the most

computationally efficient choice for finite element modeling of thin struc-

tural members, always involve some simplifications of the underlying three-

dimensional kinematics that can lead to artificial stiffness under particular

load states (locking). These kinematic assumptions that are built into the

formulation of structural elements can lead to inaccurate solutions [20]. In
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this work we avoid such issues as well as the locking sometimes present when

linear elements are used by choosing to work with three-dimensional (solid)

quadratic elements only. In this paper, the numerical simulations are per-

formed with the Finite Element Analysis Program (FEAP), an open source

research code, which provides a framework for finite element simulations

where we can formulate and implement additional elements, constitutive

models and solution schemes via user subroutines. The formulations uti-

lized for the analysis discussed in this paper are a mix of FEAP original

elements and user routines. [21].

By thermomechanical coupling we refer only to the coupling between elas-

tic deformation and thermal effects via the thermal strain terms in the equa-

tions of mechanical equilibrium and the structural elastic heating term in the

heat equation. Although thermoelastic coupling is present in all materials,

it is often neglected; however, for large-amplitude vibrations, the thermal

gradient induced between the compressive and tensile fibers of a vibrating

member due to purely elastic deformation results in significant heat con-

duction and therefore loss of energy via thermoelastic damping. We do not

include any other mechanisms of dissipation besides thermoelastic damping,

so the damping in our study is physically minimal, and the resulting vibra-

tions are exaggerated relative to real physical systems.

In many studies [22, 23], thermal strain due to applied temperature is

included without modeling thermoelastic coupling: temperature changes are

thus treated as a simple mechanical expansion or contraction of the mate-

rial. This can be useful in tracing static solution paths, and may also give

information about the temperature-sensitivity of a particular structure, but
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the absence of thermoelastic coupling can impact the accuracy of dynamic

simulations, especially as amplitudes of vibration become large. We employ

the strain-only method in our static simulations, but move to full coupling

in order to capture relevant dynamic coupling effects.

Modeling of thermomechanical coupling also requires the selection of an

appropriate thermomechanical material constitutive law. A hyperelastic con-

stitutive law based on a modified neo-Hookean material that is appropriate

for metals has been proposed in previous studies [24]. Since we will be pri-

marily concerned with metals, the modified thermomechanical neo-Hookean

material law is appropriate and will be valid at a much larger range of strains

than the thermomechanical St. Venant-Kirchhoff law.

Failure to account for any of the above modeling concerns can signifi-

cantly impact the accuracy of dynamic simulation results. The formulation

adopted for this study accounts for the geometric nonlinearity, large strains,

and thermomechanical coupling effects required to describe snap-through.

It is a nonlinear finite element formulation, with quadratic hexahedral (or

tetrahedral) elements that uses the adiabatic staggered scheme and the con-

stitutive law detailed in [24].

The initial boundary value problem is formulated as follows: For all t ∈ I

find the motion (φ) and temperature (T ) fields such that

ρ0
∂2

∂t2
φ = divP + b

cṪ = D −K − Jdiv[q/J ] +R,
(1)

with boundary conditions Pn0 = t on Γσ× I, φ = φ on Γφ× I, qn0 = q on

Γq × I, T = T on Γq × I and initial conditions φ|t=0 = I in Ω, ∂
∂t
φ|t=0 = V 0
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in Ω, T |t=0 = T0 in Ω. Ω ⊂ R
nd is the domain in the reference configuration,

nd is the number of spatial dimensions in the problem, P is the first Piola

Kirchhoff stress tensor, f is the prescribed body force, c is the heat capacity,

D is the mechanical dissipation, K the heating from the Joule effect [25], R

the prescribed heat source term, and J the Jacobian of the deformation. •

denotes the prescribed value of the quantity • over the appropriate boundary

region or at the initial time. The generic problem described here can be

completed with a constitutive law prevailing in the body and the Fourier

law for heat conduction is assumed to relate the local heat flux q to the

temperature gradient, q = −[k 1]▽ T , where k is the thermal conductivity

and 1 is the identity tensor. For the purpose of this paper, the constitutive

law is assumed to have temperature-dependent constitutive moduli. After

a spatial discretization is applied (e.g., finite element) the system (1) can

be expressed as a system of ordinary differential equations with two coupled

partitions: mechanical (second order) and thermal (first order).

For the transient solution we use the adiabatic staggered scheme for cou-

pled thermoelastic boundary value problems developed in [24]; this approach

splits the solution into partitions such that the dissipative property of the

original problem is maintained in the partitioned problem. The scheme con-

sists of (1) a standard finite deformation mechanical phase, formulated such

that it is solved at constant entropy, and (2) a heat conduction phase, for-

mulated such that it is solved at fixed deformation.

We also adopted the constitutive law from [24], p. 760, eqs. 82-83 for

a for a regularized compressible neo-Hookean material. This is a law that

performs well for metals and is given by the thermomechanical strain energy
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density function

Ψ(C,Θ) = W (C) + U(J) +M(J,Θ) + T (Θ), (2)

whereW , U , M , and T are the mechanical deviatoric, mechanical volumetric,

thermomechanical coupling, and thermal-only terms respectively, given by

W (C) =
1

2
µ(tr(C)− 3) =

1

2
µ(J−

2

3 tr(C)− 3)

U(J) =
1

2
K(lnJ)2

M(J,Θ) = −3Kα(Θ−Θref )lnJ

T (Θ) = ρcm

[

(Θ−Θref )−Θln
( Θ

Θref

)

]

.

where C is the right Cauchy-Green tensor, µ is the shear modulus, ρcm is

the heat capacity, Θref is the reference temperature, K is the bulk modulus,

α is the coefficient of thermal expansion and J is the Jacobian of deformation.

For the detailed derivation of the components of the finite element for-

mulations utilized in this work, the interested reader is refered to [26].

The rest of the paper is organized as follows. In section 2 we describe

the geometry of the system under consideration and briefly describe the so-

lution methods utilized to retrieve equilibrium paths. Section 3 is dedicated

to numerical experiments that trace such equilibrium paths. In this section,

we identify special equilibrium configurations corresponding to boundaries

in the parameter space that separate domains with different stability behav-

iors. Among these, the quasi-static temperature limit that we will refer to

as monotonic, i.e., that value of the temperature below which the equilib-
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Figure 2: Concentrated (a) and dis-
tributed (b) loads. The point load is the
primary case considered.

rium path is a monotonic curve, and snap-through is no longer encountered.

Section 4 demonstrates, through a variety of transient simulations, that the

monotonic temperature also identifies a limit below which the amplitude of

the dynamic oscillations is drastically reduced and asymptotically reaches 0

at temperatures in the neighborhood of the quasi-static limit. Section 5 pro-

vides a generalization of the concept of monotonic temperature and shows

that information regarding such stability limits is no longer available when

some specific finite element formulations (e.g., the Timoshenko beam) are

utilized. When kinematic approximations such as those used by the Timo-

shenko beam are used, information available in the higher derivatives of the

energy is lost in such formulations.

9



2. Static Analysis of a Curved Beam

A planar curved beam described by an arc of a circle is chosen as the

test problem to explore the effect of applied temperature and initial beam

curvature on snap-through. The problem is solved in two phases (mechanical

and thermal.) The beam geometry is completely specified by the length of the

horizontal projection between the end points L, the projection of the lengths

of the supports LBC , and the radius of curvature of the beam R (Figure 1).

The primary load case considered is a point load P in the negative y-direction

located at the midpoint between the supports (Figure 2a). A distributed load

p, applied as a uniform force in the negative y-direction on each node of the

finite element mesh, is also considered (Figure 2b).

In simulations, eight different beams were utilized, with R varying from

762 mm (30 in.) to 5080 mm (200 in.) The effect of temperature variation

on the load-deflection behavior in the case of larger curvatures was found to

be very small, so such test problems were abandoned.

Table 1 summarizes the geometry of the beams: M is the arch rise,

κ = 1/R is the curvature of the beam, θ is the angle subtended by the

Beam R [mm] M [mm] κ [1/mm] θ/2 [rad] M / h
1 762.0 21.84 1.312·10−3 0.2400 86.0
2 1270.0 12.99 0.787·10−3 0.1431 51.1
3 1828.8 8.98 0.546·10−3 0.0990 35.3
4 2133.6 7.70 0.469·10−3 0.0850 30.3
5 2438.4 6.74 0.410·10−3 0.0744 26.5
6 3048.0 5.39 0.328·10−3 0.0595 21.2
7 3810.0 4.31 0.262·10−3 0.0475 17.0
8 5080.0 3.23 0.169·10−3 0.0357 12.7

Table 1: Geometry of Curved Beams.
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Figure 3: Initial beam configurations.

beam, and M/h is the ratio of M to the thickness h of the beam. Figure

3 shows the different initial beam curvatures. For all beams, the projection

length is L = 304.8 mm (12 in.), the thickness h = 0.508 mm (0.02 in) and the

transverse depth b = 12.7 mm (0.5 in.). The ends of the beam are held fixed

over a length LBC = 28.7 mm (1.125 in.) on each end. Material properties

are those of steel, given in Table 2.

Property Symbol Value Units [N-mm-s-K]
Young’s modulus E 206483 N/mm2

Poisson’s ratio ν 0.28 -
Density ρ 7.834 x 10−9 N s2 / mm4

Conductivity k 45.0 N / s K
Specific heat cm 434 x 106 mm2 / s2 K
Thermal expansion α 14 x 10−6 mm / mm K

Table 2: Material properties of thermoelastic beam.

In this paper we concentrate our attention to a system that is effectively

two-dimensional; nevertheles, we use a finite element model with full three-

dimensional capabilities. Mesh refinement studies were performed and the

level of refinement adequate to accurately capture the snap-through loads
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lead to a model with approvimately 20, 000 degrees of freedom. Note that

linear elements suffer from shear locking and are not appropriate for snap-

through problems, or for any problems involving large deformation. This

problem is avoided by using quadratic elements.

The formulation adopted [24] treats the coupling through an adiabatic

staggered approach. For the quasistatic simulations of systems under con-

stant temperature presented in the next section, the mechanical phase is

solved in isolation from the thermal phase, treating the applied temperature

change as a conservative, purely mechanical expansion or contraction of the

beam material. Many other studies have employed this method, but, with a

few exceptions [15, 16, 6], they have been limited to beams of small initial

curvature.

The case of the point load along the line of symmetry of the beam provides

an easy interpretation of the simulation results. If the symmetry is not broken

by a bifurcation, as may occur if the second, asymmetric buckling mode

emerges [27], the plots of midpoint deflection d vs. load value P will indicate

loss of stability and locate the snap-through and snap-back loads at the points

where ∂P/∂d = 0. The ability to obtain such information is completely

dependent on the symmetry of the problem: in cases without a clear line

of symmetry it is no longer possible to obtain information about the snap-

through point from the load-deflection curve, and even in the symmetric case

of the distributed load this breaks down at heightened temperatures. The

simplicity of the symmetric concentrated load case will make it easier to

develop insight into the stability behavior of the beam, which we will then

need to generalize to cases where important behaviors are no longer apparent
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from the load-deflection curves.

2.1. Static Solution Paths

Snap is inherently a dynamic phenomenon; since the static equilibrium

path is interrupted by an unstable region, as the load is increased, the sys-

tem must dynamically jump past the unstable region and onto a stable region

capable of bearing loads above the snap-through load. Unlike column buck-

ling, there is no stable branch that the system can follow continuously along

the equilibrium path. Nevertheless, useful information can be obtained by

studying the static solution paths.1 The lack of inertia allows us to simplify

the analysis, since there is no need to consider the effects of varying loading

rates. Moreover, the unstable equilibrium path between the stable regions

discloses information that is relevant to the dynamic case. We mapped the

static equilibrium path by using an pseudo arc-length procedure to traverse

the unstable region.

The nonlinear continuum finite element method recovers information that

is unavailable from methods based on the beam or plate (restricted kinemat-

ics) equations. In particular, there exists a nontrivial deformed configuration,

at a temperature below the zero-stress reference temperature Θref , that will

not experience snap-through at any applied static load value. The value of

this temperature depends on the initial beam geometry, the boundary con-

ditions, and the pattern of applied load. Simulations suggest that any beam

that is cooled below this temperature no longer experiences snap-through.

1“Static” refers to the mode of recovery of information on snap-through, not an actual
physical scenario.
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The subsequent sections in this paper are concerned with developing tests

to establish this lower bound on thermoelastic instability and determining

whether this limit, which is derived from purely mechanical considerations,

is sufficient to eliminate dynamic snap-through in beam simulations that

incorporate full thermomechanical coupling.

3. Numerical Experiments. The Quasi-static Analysis

The zero-stress reference temperature in all simulations is Θref = 300K.

Note that the adiabatic staggered scheme is implemented in terms of absolute

temperature, so Θ refers to absolute temperature and ∆T = Θ−Θref refers

to the temperature relative to the reference temperature.

Applied load versus deflection curves were extracted for all beams at

various temperature variations ∆T . The R = 762 mm beam (Figure 4) shows

relatively little variation in load-deflection curve behavior with temperature

variation. This plot is representative for the results corresponding to beams

with larger curvatures. Figure 5 is representative for beams with smaller

curvatures.

The key observation made by examining Figure 5 (and confirmed for the

other six beams for which we do not present the results here) is that for each

beam there exists a critical temperature below which the beam no longer

experiences snap-through at any load value for a given conservative loading

pattern, and exhibits instead a monotonic dependence of the load on deflec-

tion. We will simply call this critical value the monotonic temperature. The

load-deflection curves for this particular boundary value problem also pos-

sess a center point where all the curves obtained for temperatures above the
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monotonic temperature intersect; this center point coincides with the limit

point where ∂P/∂d = 0 on the monotonic temperature load-deflection curve

itself. Results for Beam 1 presented in Figure 4 do not include the mono-

tonic curve since for this particular system the temperature corresponding

to it was nonphysical (in a mathematical sense however, it does exist).

The method presented in this paper indirectly estimates the lower bound

under the assumption of snap-through to a symmetric solution branch. This

method relies on tracing the full equilibrium path and on systematic nu-

merical experimentation to identify the temperature for which the above

mentioned path is monotonic. In this approach, we sweep through the range

of temperatures of interest and check the monotonicity of the solution.

Although apparently similar results have been known for many years [5],

note that the snap-free configuration disclosed in such studies is simply the

configuration of an unbuckled, initially flat beam or plate, which obviously

will not experience snap-through under any magnitude of lateral loading (if
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no temperature variation is applied). Similarly, the center point in these

studies is simply the unloaded initial configuration. Note that if the tem-

perature is raised above a critical buckling temperature, such a member will

deform into a curved shape that is itself subject to snap-through [5]. Nu-

merous studies have been devoted to mapping this and the many subsequent

post-buckled states [22, 28]. Our results are distinct from these studies, since

the underlying problem is different: here, rather than an initially flat plate or

beam which must have some initial thermal deformation to experience snap-

through, we have an initially curved beam with fixed supports that displays

snap-through at the zero-stress reference temperature.

Figure 6 indicates that the monotonic temperature approaches Θref as

κ → 0, as expected. For small curvatures the lower bound varies slowly with

the curvature. More significant variations are observed for larger curvatures.

For very large curvatures the method presented here does not apply since

taller arches will buckle asymmetrically. The snap-through loads themselves

vary linearly with beam curvature at ∆T = 0 K, a fact that has been de-

termined analytically at small deformation and which appears to continue

to hold at large κ; however, snap-through loads no longer vary linearly with

temperature away from the zero-stress reference temperature (Figure 7). For

beams with very low initial curvature, if the temperature is too low, the beam

will be straight and in tension and no snap will be experienced.

We can observe several general trends in the results. The relative influence

of temperature on the load-deflection behavior of the beam diminishes as the

curvature κ = 1/R of the beam increases. For the case of R = 254 mm,

the effect of even a temperature change of ∆T = +100 K is so small that
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the load-deflection curves for different temperatures would be difficult to

distinguish on a graph; the snap-through load at ∂P/∂d = 0 barely changed.

By contrast, the influence of temperature on the R = 5080 mm beam is

significant enough that ∆T = +100 K is sufficient to more than triple the

snap-through load. This effect can be seen in the decrease in the magnitude

of the slope with increasing curvature shown in plots of snap-through load

versus temperature in Figure 8. Note that the effect of temperature will be

more significant for materials that are more sensitive to temperature, e.g.,

aluminum.

Figure 9 combines these results and shows the snap-through load as a

function of both the geometry (radius) and temperature. The contour line

represents the snap-through boundary, i.e., the limit (monotonic) tempera-

ture beyond which the beam does not experience snap-through. An alternate

method that can be used in obtaining the snap load and the monotonic tem-

perature for shallow arches is presented in [29], which shows a very good
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comparison with the results obtained in this paper.

We also perform a study on the effect of beam width and thickness on

the snap-through load and the lower bound temperature. The study shows

that varying the beam width (b) for the same beam thickness (h) does not

influence the lower bound temperature; the snap load, however, increases

linearly as the beam width increases (Figure 10). As we vary the beam

thickness, the snap load and the lower bound temperature are both higher

for thicker beam (Figure 11 and Figure 12).

The pseudo arc-length solution sometimes jumps from the equilibrium

path that shows the expected symmetric deformation of the beam (Figure

13) to another path where the beam deforms asymmetrically (Figure 14).

This asymmetric buckling mode has been previously discussed [5]. While the

second buckling mode is negligible if the initial curvature is small enough

[27], this mode clearly cannot be neglected for large initial beam curvatures.

Nevertheless, a unique lower bound on instability for a given beam and
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varying h

b
with b = 12.7 mm for all beams.

load pattern can still be established if the second mode only occurs above

the monotonic temperature. If the entire unstable region itself is eliminated

from the static solution path at the monotonic temperature - including the

higher buckling modes - then the lower bound on instability is unique for

a given load pattern and initial member shape. No static simulation that

we conducted contradicted this conjecture, and dynamic simulation results

indicated that higher modes tend to be activated at higher temperatures but
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disappear as temperature is lowered, suggesting that the lower bound is in

fact unique.
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Figure 13: Beam 5 (R = 2438.4 mm). Sym-
metric unstable solution; ∆T = 0 K.
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Figure 14: Beam 3 (R = 1828.8 mm).
Unstable asymmetric configuration;
∆T = 0 K.

3.1. The Monotonic Temperature and the Energy Derivative Tests

The coincidence of the limit point of the load-deflection curve at the

monotonic temperature with the center point of the graph suggests that

there is something special about this point, and inspection of the graphs

suggest that this point is likely the inflection point of the curve (Figures 15

and 16.) Numerical evaluation of the derivative ∂2P/∂d2 confirms this. Note

that these results are obtained through numerical approximation, therefore

the coincidence points are not exact. However, we prove through analytical

studies that this hypothesis holds for a simple case [26]. In the case of the

symmetric point-loaded beam, we can construct a straightforward physical

explanation of the existence of this center point that will help guide our

understanding of more general load cases and geometries.
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Figure 15: Beam 2 (R = 1270 mm). En-
ergy derivatives are zero at center point.
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3rd Deriv., ΔT = 100 K

3rd Deriv., ΔT = 0 K

2nd Deriv., ≈ Mono. T, ΔT = -5 K

3rd Deriv., ≈ Mono. T, ΔT = -5 K

Figure 16: Beam 8 (R = 5080 mm). Ob-
servation holds at varied curvatures.

If the beam stays symmetric about the midpoint, the slope of the beam

at the midpoint must always be horizontal, and by equilibrium the axial in-

ternal force at the midpoint must be equal to the horizontal reaction force at

the supports. We intuitively expect that the unstable configuration with the

maximum horizontal reaction force is the maximally unstable configuration,

that is, the unstable configuration that would move to a stable configuration

with the maximum possible kinetic energy relative to all other unstable con-

figurations (if the beam were initially held perfectly fixed at this configuration

and then released.)

The maximum horizontal reaction does coincides with the center point of

the graphs (Figure 17), indicating that the center point corresponds to the

maximally unstable configuration. This does not mean that the horizontal

reaction must be less than or equal to zero at the monotonic temperature

in order to avoid instability, as one might assume: Figure 17(b) shows that

the maximum horizontal reaction can still be compressive at the monotonic

temperature.
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(a) Load-deflection diagram
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(b) Beam horizonal reaction

Figure 17: Beam 8 (R = 5080 mm). Maximum horizontal reaction occurs at center point.

The center point is a function of the specific boundary value problem

that we chose to explore. We would like to develop a more general test

to determine the maximally unstable configuration for problems where the

load-deflection curve may not be so well-behaved. The following heuristic

argument will point us toward such a test. For this particular problem,

the external work can be computed as the integral of the product of the

concentrated load P (d) and the deflection at the midpoint d.

The second derivative of energy gives the standard static stability test,

while the third derivative of energy gives new information that should lo-

cate the center point. The third derivative of energy allows us to suggest

a mathematical definition of the maximally unstable configuration and the

monotonic temperature. Since the value of ∂2E/∂d2 can be considered a mea-

sure of the degree of instability present in the system, we would expect that a

point where its derivative ∂3E/∂d3 is zero would be an instability extremum

that is local to the unstable region. The maximally unstable configuration
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would be the instability extremum in the range where ∂2E/∂d2 < 0. If we

are able to shrink this range by lowering the temperature, then in the limit

where the unstable domain shrinks to zero we have both ∂3E/∂d3 = 0 and

∂2E/∂d2 = 0 at the same configuration. The temperature that generates

this configuration and satisfies these conditions is the monotonic tempera-

ture. In other words, the temperature that shrinks the unstable region to a

point, for which the maximally unstable (∂3E/∂d3 = 0) and the minimally

stable (∂2E/∂d2 = 0) configurations are necessarily one and the same, is the

monotonic temperature. Note that this is similar to the use of higher deriva-

tives in continuation methods [22], though some simplifications of these more

general (and computationally expensive) techniques may be possible for ther-

momechanical problems, as discussed below.

The energy Eint is obtained from the finite element code, and its numerical

derivatives can be approximated by simple difference formulas. We use this

data to test the above hypothesis and we do find that the third numerical

derivatives of energy are zero at the center point, and the second derivative

of energy is zero at the same point for the monotonic temperature (Figure

15). This observation holds for beams of significantly different curvatures

(Figure 16).

For the case of the distributed load (Figure 2b), a global center point

no longer exists (Figure 18). The curves for lower temperatures possess a

center point but the curves at elevated temperatures do not pass through

it. Similar to the case of the concentrated load, the curved beam acts like

an arch under distributed load, resisting primarily through axial stiffness

rather than through weaker flexural stiffness. However, this “arch” is not
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≈Mono. T, ΔT = -27.9 K

Figure 18: Beam 5 (R = 2438.4 mm).
Load-deflection curves for distributed
loads: no center point at elevated
temperatures.
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3rd Deriv., ΔT = 10 K

3rd Deriv., ΔT = 5 K

2nd Deriv., ≈Mono. T, ΔT = -27.9 K

3rd Deriv., ≈Mono. T, ΔT = -27.9 K

Figure 19: Beam 5 (R = 2438.4 mm). En-
ergy derivatives are still zero at monotonic
temperature despite absence of a global
center point.

geometrically perfect and suffers from local flexural buckling (Figures 20(a)

to 20(c)) at load values below those achieved in the case of the concentrated

load.

These higher buckling modes may deflect upward at the midpoint even as

global stability is lost, so we can no longer assume that ∂P/∂d = 0 indicates a

snap-through point, at least at elevated temperatures. Similarly, ∂3E/∂d3 =

0 does not occur in the distributed load case at high temperatures and can

therefore no longer be related to the maximally unstable configuration as it

can in the concentrated load case. Nonetheless, the energy derivatives are

still zero at the monotonic temperature (Figure 19).

The distributed load case reinforces the earlier observation that the value

of the monotonic temperature depends on the pattern of applied load : for

the R = 2438.4 mm beam, the symmetric point load leads to a monotonic

temperature of ∆T = −22 K, while for the distributed load case the mono-

tonic temperature is approximately ∆T = −28 K. The decreased monotonic
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(a) ∆T = 0 K
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(b) ∆T = 5 K
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(c) ∆T = 10 K

Figure 20: Beam 5 (R = 2438.4 mm) with distributed load.

temperature for the distributed load case indicates that it is possible to find

a loading such that a “worst-case” monotonic temperature is obtained and

a lower bound on the thermoelastic instability for all possible loadings of

a system is established. This requires the solution of an inverse problem

to determine the worst-case loading, which entails more complexity than is

typically worth the effort, especially if the actual load patterns a structure

is subject to can be known in advance with reasonable certainty. This con-

cept is not developed further in this paper, and all monotonic temperatures

reported are limited to the specific load cases considered.

In all these examples, due to symmetry, the derivatives with respect to

d (the midpoint deflection) provide clear information about the stability of

the system. In general, there will not be a simple line of symmetry that will

allow us to obtain meaningful information, as is apparent from the higher

buckling mode load-deflection curves in Figure 20. It would be preferable to

develop an analytical test for the third derivative of energy that will let us

circumvent the process of taking numerical derivatives entirely and allow us

to determine the monotonic temperature for any given system.

Before assuming that the monotonic temperature obtained from static
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simulations is truly effective in eliminating snap-induced vibrations, we must

first demonstrate that it eliminates snap-through in dynamic systems. The

next section is devoted to establishing the validity of generalizing from the

static, mechanical-only solution to the dynamic, thermomechanically coupled

case. Then, we outline a test for establishing the monotonic temperature for

arbitrary loading and member geometries in the final section.

4. Dynamic Simulation of Snap-Through
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Figure 21: Ramp load target values.
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Figure 22: Beam shapes at varied initial
temperatures.

In order to determine if the monotonic temperature estimated via static

simulations successfully eliminates snap-through, dynamic simulations are

conducted. We present here the results obtained for one beam only (R =

1828.8 mm), with the same reference temperature Θref = 300 K used in the

static simulations. Consequently, the beam number is no longer mentioned in

the figure captions. This particular beam has a large initial curvature but still

possesses an estimated monotonic temperature that could be easily obtained
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in the laboratory (∆T = −38 K relative or Θ = −11◦C /12◦F absolute). A

concentrated force is applied at an effectively quasi-static rate at midspan

and then held constant at a fixed target value greater than the static snap-

through load Ps. The target load is P = 2.0 N for temperatures below

T = 30 K, but the increase in snap-through load at increased temperature

necessitated higher target loads of P = 2.5 and 3.0 N for T = 50 and 100 K

respectively (Figure 21).

Initial static simulations were conducted to obtain the thermally-deformed

initial configuration of the beam at each target temperature prior to dynamic

simulation (Figure 22). The initial temperature was applied as a perfectly

uniform nodal initial condition and the surfaces of the beam were treated

as perfectly insulated. Though this zero-heat-flux boundary condition is

not feasible in an experimental setting, it allows us to isolate the temper-

ature change due to thermomechanical coupling in our simulations. Purely

mechanical dynamic simulations [20] had earlier indicated that a problem-

specific critical time step of ∆t = 10−4 s or smaller must be used for accurate

modeling of snap-through. Values of ∆t above this critical value could lead to

spurious solutions that are clearly nonphysical but nonetheless numerically

converged.

The monotonic temperature estimated from static simulations success-

fully eliminated snap-through from dynamic simulations at quasi-static load

rates. The maximum amplitude of displacement does clearly approach zero

as the temperature approaches the monotonic temperature, and effectively

reaches zero for ∆T = −50 K (Figure 23). The maximum displacement ap-

proaches a limit as the temperature increased; however, the maximum kinetic
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energy over all time values continues to increase linearly as the temperature

increases (Figure 24). This “excess” kinetic energy is present in asymmetric

deformation modes not apparent from examination of the midpoint displace-

ment alone.
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Figure 23: Maximum ampltiude of vibra-
tions at various temperatures. Vibrations
disappear near monotonic temperature and
level off at elevated temperature.
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Figure 24: Maximum kinetic energy at var-
ious temperatures. Kinetic energy disap-
pears near monotonic temperature and in-
creases linearly at elevated temperatures.

Note that the ramp load continues to increase prior to reaching a con-

stant value after snap-through, hence, the centerline of the vibrations moves

downward on the plot prior to t = 2.0 s (Figure 26). This component of

the vibration must be filtered out in order to determine the amplitudes of

vibration correctly. This was done by fitting a sixth-order polynomial to the

post-snap midpoint displacement time history data and finding the value of

the maximum difference between the smooth curve and the displacement.

The y-direction displacement at the midpoint is represented in Figures 25

to 27 as a function of time for various initial temperatures and the static sim-

ulation results are superposed at the same scale. Thermoelastic damping is
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clearly apparent in these plots; by comparison, purely mechanical simulations

of snap-through using the trapezoidal Newmark method showed no damping

of the post-snap vibrations, as is expected for this energy-conserving time

integration algorithm. Visual inspection of the graphs also indicates that

the large-amplitude vibrations characteristic of snap-through are strongly

attenuated below the monotonic temperature of ∆T = −38 K (Figure 26),

dropping to nearly zero at ∆T = −50 K (Figure 27).
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Figure 25: Displacement at ∆T = 0 K.
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Figure 26: Displacement at ∆T = −38 K.

A measure of the asymmetry of vibration can be constructed by plot-

ting the difference between the y-direction displacement w(x) at the points

x = L/4 and x = 3L/4. This difference will be zero if the vibration is

symmetric, or otherwise can give an estimate of the frequency and magnitude

of the asymmetric vibration. For ∆T = 0 K and below, the post-snap vibra-

tion remains perfectly symmetric for the beam considered. For ∆T = 30 K,

the post-snap vibration is initially symmetric, but after the load reaches a

constant value the response develops an antisymmetric vibration (Figure 28).

This vibration damps out relatively quickly at ∆T = 30 K, but at ∆T = 50
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K a similar mode of vibration is present at a higher amplitude and for a

longer duration (Figure 29). For ∆T = 100 K, the beam buckles asymmet-

rically immediately prior to the static snap-through load and remains in a

fully asymmetric mode after snap-through (Figure 30).
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Figure 27: Displacement at ∆T = −50 K.
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Figure 28: Low-frequency asymmetric vi-
bration damps out for ∆T = 30 K
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Figure 29: Low-frequency asymmetric vi-
bration sustains longer for ∆T = 50 K.
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Figure 30: Beam buckles asymmetrically
prior to snap-through at ∆T = 100 K.

Qualitatively, the ∆T = 30 K and ∆T = 50 K cases combine a sym-
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metric mode (Figure 31a) and an extremely low frequency asymmetric mode

(Figure 31b). The ∆T = 100 K case buckles asymmetrically prior to snap-

through (Figure 32a) and remains in a high-frequency asymmetric mode that

oscillates at an angle to the vertical following buckling (Figure 32b). As this

asymmetric mode is damped, a new mode emerges (following t = 3.4 s) sim-

ilar to the low-frequency asymmetric mode encountered at ∆T = 30 K and

∆T = 50 K.

Unloading the beam from an initially stationary deformed configuration

reveals that the vibration about the initial undeformed configuration is of

significantly lower amplitude than the vibration about the deformed con-

figuration. Although the initial post-snap unloading response begins as a

symmetric vibration, it develops a small asymmetry that quickly grows in

magnitude. While the initial transient mode shape is essentially similar to the

low-order symmetric mode of the loading response (Figure 33a), inspection

of the deformed configurations reveals that the asymmetric mode behaves

like a low-frequency “wave” reflecting back and forth between the supports

(Figure 33b). Figure 34 shows the loading and unloading responses.

These various modes interact nonlinearly in the finite-deformation model,

and the resulting transient behavior can become difficult to quantify, espe-

cially as higher modes are activated and the post-snap motion increases in

complexity. However, the higher modes diminish with decreasing temper-

ature and eventually disappear at the monotonic temperature, making the

monotonic temperature a solid point of reference in an otherwise convoluted

post-buckling regime.

The monotonic temperature also holds for the distributed load case. The
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b.)

a.)

Figure 31: Mode shapes for
∆T = 30 and 50 K (a)
Symmetric and (b) Asym-
metric.

b.)

a.)

Figure 32: ∆T = 100 K (a)
Initial asymmetric buck-
ling and (b) Asymmet-
ric “sideways” postbuck-
ling mode.

b.)

a.)

Figure 33: Modes at un-
loading for ∆T = 0 K (a)
Symmetric and (b) Travel-
ling wave.

R = 2438.4 mm beam displays the same sort of asymmetric buckling prior

to the static snap-through load at ∆T = 0 K under distributed loading that

is seen at ∆T = 100 K for the R = 1828.8 mm beam under concentrated

loading. At the estimated monotonic temperature nonetheless, post-snap

vibration are attenuated as effectively in the distributed load case as they

are in the concentrated load case (Figure 35).

There are some caveats on the generality of the monotonic temperature.

The softening response seen in the static solution paths even for temperatures

below the monotonic temperature can still lead to snap-like behavior if the

loading rate is high enough to force the system to dynamically jump off

the static solution curve as the system softens with increasing load. More

generally, the system must be dissipative for the temperature to remain below

the monotonic temperature. This is true in our case, but it is no longer

valid if body heat sources or applied surface heat fluxes are present. We are

therefore limited to saying that the monotonic temperature provides a lower
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Figure 34: Beam 3 (R = 1828.8 mm).
Asymmetry of loading and unloading re-
sponse at ∆T = 0 K.
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Figure 35: Beam 5 (R = 2438.4 mm).
Static monotonic temperature estimate
holds for distributed load case.

bound below which snap-through will never occur at any applied load level

if the loading rate is effectively quasi-static and the system is dissipative.

The monotonic temperature estimated from static simulations is not per-

fectly precise; it does not completely eliminate the oscillations even for dy-

namic systems with effectively quasi-static loading. Some of this error is due

to the simple approach that was undertaken to find this temperature, where

the monotonicity of the curve was determined only approximately. Another

source for the discrepancy is due to the physical fact that the ramp loading

can never be truly quasi-static in a dynamic simulation. The amplitude of

vibration will go to zero nearer the monotonic temperature (refer to Fig-

ure 23) if the loading rate is decreased, but there will always exist some

small dynamic jump as the system approaches the limit point on the static

load-deflection curves.

One additional practical observation can be made. We have modeled the

curved beam with an edge that is free to move in the z-direction (out-of-plane)
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between the fixed supports. In many practical engineering applications, such

as stressed-skin monocoque aircraft construction, the z-direction will be re-

strained as well, and we expect this additional boundary condition to have

a stabilizing effect. These additional boundary conditions increase the snap-

through load (Figure 36) as well as the monotonic temperature itself (Figure

37). The monotonic temperatures obtained from the static simulations with-

out these boundary conditions are therefore conservative values relative to

systems that include such constraints.
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Figure 36: Beam 3 (R = 1828.8 mm).
Full z-direction edge boundary condition
increases snap-through load.
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Figure 37: Beam 3 (R = 1828.8 mm).
Full z-direction edge boundary condition
increases monotonic temperature.

Note that, in the static simulations, we have omitted heat conduction

and treated temperature as a purely mechanical expansion or contraction

of the material, which provided a valid estimate of the snap-free monotonic

temperature for the dynamic thermomechanically coupled case. This anal-

ogy between mechanical strain and thermal strain indicates that an applied

mechanical prestress will have a mechanical effect similar to lowering the tem-

perature. For example, for the unloaded R = 1270 mm beam, the reaction
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at the supports has no vertical component and has a horizontal component

of Px = 9.42 N at the monotonic temperature ∆T = −82 K; the horizontal

reaction is Px = 15.4 N for ∆T = −100 K. Given the out-of plane depth

of d = 28.7 mm and beam thickness t = 1.27 mm, and assuming a uni-

form stress over the cross-section, the axial stress in the beam is therefore

only σ/dt = 0.4225 MPa for ∆T = −100 K, which is only a minute frac-

tion of the yield stress of σy = 250 MPa for A36 structural steel. Although

∆T = −100 K is clearly an unrealistic temperature, σ = 0.4225 MPa is a per-

fectly realistic prestress. Consequently, an applied mechanical prestress will

have a mechanical effect similar to lowering the temperature, and therefore

we could eliminate quasi-static snap-through by applying a purely mechani-

cal pre-tension sufficient to achieve a tensile strain identical to or greater than

that produced by the monotonic temperature. Moreover, it is also possible

to apply additional initial strain sufficient to cancel the effects of thermal

expansion, so that a heated beam can be “snap-proofed” for temperatures

below a given elevated target temperature.

In practical aerospace applications, significant prestress is introduced to

thin structural members to provide increased structural stiffness, indepen-

dent of any thermal considerations. This prestress is sufficient to introduce

tensile strains equivalent or greater than those introduced by the monotonic

temperature, as is apparent from the above example. It is therefore unlikely

that typical aerospace structures will experience snap-through under stan-

dard operating conditions. However, as the operating conditions of the struc-

ture become more severe, as in hypersonic flight, much larger thermal loads

can be expected. Additional mechanical pre-tension could therefore prove
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useful in providing additional protection against snap-through in aerospace

structures in extreme operating environments, although more research would

be required to determine the effectiveness, applicability, and limitations of

this approach.

5. Maximum Instability and Bounds on Snap-Through

In the previous sections, we have established that (1) the monotonic tem-

perature represents a lower bound on static instability in curved beams sub-

ject to snap-through, and (2) for the simple symmetric beam with a con-

centrated load, the second and third derivatives of energy with respect to

the midpoint displacement are both zero at the snap-through point at this

temperature. We surmised that the unstable region shrinks as the tempera-

ture is lowered until it becomes a point at the monotonic temperature, and

that at this point the minimally stable configuration (∂2E/∂d2 = 0) and

maximally unstable configuration (∂3E/∂d3 = 0) are identical. This shrink-

age of the unstable region to a point as temperature is lowered is illustrated

conceptually in Figure 38. We also observed that, although multiple modes

may exist corresponding in some cases to multiple paths within the unstable

region (Figure 39), in static simulations these modes tend to disappear as

the monotonic temperature is approached.

These observations suggest a mathematical definition of the monotonic

temperature. We do not attempt to prove the following conjectures, but the

simulation results support them. If we are able to shrink the unstable re-

gion along the equilibrium path of our system by altering some parameters

(such as temperature), then the configuration where the critical parameters
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are such that snap-through no longer occurs is exactly the point where the

minimally stable configurations at the boundaries of the unstable region co-

incide with the maximally unstable configuration. Such conditions should

therefore give us a set of equations that provide a bound of the domain of

unstable behavior. Without attempting to prove them, we state here these

conditions.

Conjecture : Let d be the displacement field in a continuum, and let p

be a vector of bifurcation parameters, which control the size of the unstable

region. Assume that the system under consideration has only one unstable

region. Let G, A, B be the first, second and third derivatives of the energy.

The unstable region ceases to exist for the particular configuration (d∗,p∗) at

which, for all virtual displacement fields δd, the functionals G, A and B are

null: G(d∗,p∗, δd) = 0, A(d∗,p∗, δd) = 0, and B(d∗,p∗, δd) = 0.

If we use a finite element approximation of the functionals from a contin-

uum problem, we obtain the version of the above conditions in matrix form:

G(d∗,p∗) = 0, detA(d∗,p∗) = 0, and detB(d∗,p∗) = 0. In this discretized
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form, G is a vector (the residual vector in finite element methods), A is a

second-order tensor (the stiffness matrix), B, is third-order tensor, and d∗ is

a vector (of nodal displacements).

A simple nonlinear Timoshenko beam model demonstrates the utility of

these conjectures and also demonstrates why limited-deflection models, such

as the von Karmann equations, are a priori incapable of determining the

monotonic temperature. The interested reader is referred to [26] for the

detailed derivation corresponding to the beam model. Unlike the fully non-

linear equilibrium equations, the third variational derivative of the linearized

beam equations is identically zero. In taking the Taylor series approximation

of the fully nonlinear Timoshenko beam equilibrium equations we have lost

information, and, as discussed in [26], the information we have lost from the

third derivative of energy is exactly the information we require to be able to

pinpoint the nontrivial snap-free configuration that exists at the monotonic

temperature. The von Karmann equations therefore do not disclose the ex-

istence of the nontrivial solution precisely because the information that is

needed to determine it has been omitted a priori.

6. Conclusions

We demonstrated the existence of a non-trivial curved beam configuration

and a corresponding critical temperature, lowered with respect to the refer-

ence temperature, that eliminates the occurrence of dynamic snap-through

under quasi-static loading rates. This monotonic temperature can be esti-

mated from static solution paths with reasonable accuracy, even for beams

of large initial curvature. An analytical test based on the third variational
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derivative of the energy that could be useful in determining the monotonic

temperature for members of general geometry and load patterns is also sug-

gested. The failure of limited-deformation thermal beam and plate models

such as the von Karmann equations to disclose the existence of a nontrivial

snap-free solution is shown to be a consequence of the omission of informa-

tion about the third variational derivative of energy from these lower-order

theories.

The analogy between purely mechanical contraction and thermal strain

that holds for these numerical experiments suggests that an applied me-

chanical prestress that introduces an initial strain equivalent to the strain

induced by the monotonic temperature eliminates the possibility of quasi-

static snap-through in beams of large initial curvature. Increasing the initial

prestress in thin-walled structures using values determined from this pro-

cedure could therefore provide a simple method of protecting against large

amplitude snap-through vibrations encountered in by aircraft and spacecraft

in extreme operating environments. Although this method would introduce

additional stresses into the supporting members and therefore has limitations

depending on the requirements of the structure, it is simpler than other meth-

ods that have been proposed in the literature [30]. Further research would

be needed to determine the potential effectiveness and practical limitations

of this proposed method of alleviating dynamic snap-through.
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