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A Lower Bound on the Angles

of Triangles Constructed by Bisecting the Longest Side

By Ivo G. Rosenberg and Frank Stenger

Abstract. Let AA A A be a triangle with vertices at A1, A2 and A3. The process of

"bisecting AA A A is defined as follows. We first locate the longest edge, A'Ai+i

of AA 1A2A3 where A'+3 = Al, set D = (A' + Ai+l)/2, and then define two new tri-

angles, AA'DAi+2 and ADAi+1Ai+2.

Let Aqq be a given triangle, with smallest interior angle a > 0.  Bisect AQ0

into two new triangles, Aj.,  í = 1, 2. Next, bisect each triangle A,., to form four

new triangles Aj,-, í = 1, 2, 3, 4, and so on, to form an infinite sequence T of tri-

angles.  It is shown that if A £ T, and 6 is any interior angle of A, then 8 > a/2.

Results.   Let AABC be a triangle with vertices at A, B and C.  The procedure

"bisect AABC is defined as follows.  We form two triangles from AABC by locating

the midpoint of the longest side of AABC and drawing a straight line segment from

this midpoint to the vertex of AABC which is opposite the longest side.    (If there

is more than one side of greatest length, we bisect any one of them.)  For example,

if BC is the longest side of AABC, we set D = (B + C)/2 to form two new triangles

AABD and AADC.

Let AABC be a given triangle with interior angles a, ß and y located at A, B

and C, respectively.  We form an infinite family T(A, B, C) of triangles as follows.

We first bisect A0Q = AABC to form two new triangles Alt,   i = 1, 2.   We next bisect

each of these two triangles to form four new triangles A2i,  i= 1,2,3,4.  Next,

we bisect each of these four triangles to form eight new triangles A3/,  i = 1, 2, 3, ...,

8, and so on.

It is convenient to apply this procedure of bisections in order to refine the mesh

in the finite element approximations of solutions of differential equations (see, e.g., [1]).

Recently [2], this procedure of bisecting triangles was used to obtain a two-dimen-

sional analogue of the one-dimensional method of bisections for solving nonlinear

equations.  A criterion of convergence of the above procedures is that the interior

angles of An¡ do not go to zero as n —> °°. The Schwarz paradox [3, pp. 373-374]

provides an explicit example of a situation in which triangles are used to approximate

the area of a cylinder.  In this case, the sum of the areas may not converge to the

area of the cylinder as the length of each side of the triangles approaches zero, and

the number of triangles approaches infinity, if the smallest interior angle of each

triangle approaches zero.
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In this note, we prove the following theorem, which ensures that the interior

angles of Ani do not go to zero as « —> °°.

Theorem.   Let the smallest interior angle of AABC be X, and let 0 < xx < tt/4

be the solution of

(1) tan x. =■■
x    2 - cos X'

// A is a triangle in T(A, B, C), and 6 is an interior angle of A, then 6 > xx.

Corollary.  If A G T{A, B, C) and 6 is an interior angle of A, then 0 > X/2.

In the case when X is small, xx is a better lower bound than X/2, since x^/X —►

1 as X —► 0.  For example, when X = tt/6, xx S .777(?r/6) > .5(tt/6) = X/2.

Before we start the proof of the above theorem and corollary, we introduce

the following notation.

Let ARST be a triangle with interior angles p, a and t at R, S and T, respec-

tively.  If ARST is bisected into two triangles AR^SjTj with interior angles p¡, a¡ and

7(. located at R., S¡ and T¡, respectively,  i = 1,2,  we use both the notations

(2) (P, o, t) —> (p., a., t.),      (p., a., r.) *— (p, a, r).

As the notation suggests, (p, a, t) actually denotes a similarity class in T(A, B, C)

and "—►" is a binary relation, or graph,on the set of all these similarity classes.  We

also use the notation \M - N\ to denote the Euclidean distance between the points

M and N.

Figure 1.  Bisections of a triangle ARST

Proof of the Theorem.   Let ARST (see Fig. 1) belong to the family

A(A, B, C), and let ARST have interior angles p at R, a at S, and r at T.  Let us

also assume without loss of generality that 0 < r < o < p.  Since also p + a + t = tt,

it follows that

(3) t < tt/3 < p < tt     and    a < tt/2.
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From Fig. 1, we obtain

(4) (x, t, p + a - x) <— (p, a, r) —> (p - x, a, x + r).

Since the sizes of the sides of ARST are in the same relation as the opposite angles,

from a > r we first get \T - R\ > \S - R\, and then, applying the same principle to

AR VU, the relations \V - R\ = 1A\T - R\> lA\S - R\ = \V - U\ yield

(5) x < p - x.

Lemma 1.   Let t < n/3 and p = a = it¡2 - t/2.  Then the angle xT in Fig. 2

satisfies

(6)
sin t     ^ .       /0

tan x  =-> tan r/2.
T     2 — cos r

Figure 2. ARST when \R - T\ = \S - T\

Proof.  The law of sines in ARUV and ARST yields

sinxT      \V - U\     \S - R\  . sinr

siny       \V-R\     \T - R\    sin(7i/2 - r/2)'

Since y = tt/2 - t/2 - xT, we obtain

sin xT cos 1At = sin r cos(r/2 + xT).

Simplifying, we get tan xT = sin t/(2 — cos r).  From the relation 2z = t < tt/3, we

get cos2z - sin2z = cos 2z > 1/4, and hence 2 cos2z > 1 + 2 sin2z = 2 — cos 2z.

This yields 2 sin z cos z/(2 - cos 2z) > tan z, which proves Lemma 1.
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Figure 3.  Various values of the angle xT

With reference to Fig. 3, let us fix S, T, and the angle r, and change a so that

p> o > t.  Clearly, a changes from amin = r to ffmax - t/2 — t/2, when ARST be-

comes an isosceles triangle.  Clearly, x = x(o) is a decreasing function of o in the

region amin < a < amaii, whose range of values are

xr = *(amax) < *(<0 < *(amin) " *& ~ T'

where xT is defined in (6).  Thus by Lemma 1,

(7) x > xT > t/2.

Notice also that when p = 7T//2, a = 7t/2 — t, and x(o) = x(ir/2 — t) = t.   It is

thus evident from Fig. 3, that

(8) x>T<=>p> tt/2.

Finally, we remark that xT is an increasing function of t in the region 0 < t < tt/3,

which can be easily verified by computing the derivative of xT using (6).

We next show that

(9) x + t<tt/2,    p + o-x>iil2.

For if x + t > tt/2, then, since the interior angles of ARSU in Fig. 1 add up to

7T, it would follow that p + a - x < tt/2.  However, from (5), we get p - x > p/2,

and so a + p/2 < 7i/2, i.e., p + 2a <ir.  Since, however, p + 2a>p + a + T = 7i,

we arrive at a contradiction, i.e., (9) is valid.

In view of (9), we establish
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Lemma 2.   The following situation

(p,a,t) ( (x,T,p + o-x)

(10)

(p - X, O, X + T) (X, p - X, 7T - p)

is va/z'<2 in general.

Lemma 3.  //

(11) ti-p>p-x,

then

(p, o, t) <..      '(x, t, p + a - x)

(12)

(p - X, 0,X + T)<— (x, p - X, IT - p)

Proof of Lemma 3.  By combining (11) and (5), it follows that n - p> p - x

> x, and (12) now follows by inspection of ARXU or ARUV.

We next consider the bisection of AWUV or ARSU.

Lemma 4.   Let (11) hold.  If

(13) x + T>a  and x + t>p - x

or else if

(14) p-x<T,

then

(p, a, t) <-i (x, r, p + r - x)

(15)

(P - X, a, X + T) i=i (X, p - JC, 7T - p)

/Voo/.   If (13) is satisfied, then (15) clearly follows from (12) and inspection

of AWUV in Fig. 1.   If (14) holds, then p - x <t <x + r, so that the second

relation in (13) is satisfied.   If the first relation of (13) were not satisfied, then

a > x + T, and, by (14), x + T>x + p-x = p, i.e., a > p, which contradicts our

original assumption, that t < a < p.  This proves Lemma 4.

Let us now complete the proof of the theorem.  Let us set v = v{p, a, t) =

min(p, a, t).  We shall show that, along the transition —>, either (i) v is nondecreasing,

or (ii) we get four triples t¡ = (p¡, a¡, r¡) such that v = v(t¡) > xT,   i = 1, 2, 3, 4, and

such that if an arrow emanates from one of the four triples, f-, to a triple t where
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t =£ t¡,  i = 1, 2, 3, 4, then í>(f) > t.  Since xT is an increasing function of r, it will

therefore be impossible to get v(An¡) < xx for any An¡ G T(A, B, C).

Let us assume that ARST is an arbitrary triangle in the family T(A, B, C), such

that p> a> t.  In (10), p + a - x > tt/2 >t, a > t, x + t > t, and tt - p = o +

t> t. Thus, the only candidates for angles < r are x and p - x.   If p> tt/2, it

follows from (5) and (8) that p - x > x 3* t, and hence y(p - x, a, x + t)> v(x, r,p + a-x)

>v(p,o,T).

Let us assume, therefore, that p < tt/2. Then tt — p > tt/2 > p> p - x, so that

(11) is satisfied, and, by Lemma 3, we get the situation (12). In (12), the inequalities

a>T,p + o - x>ir/2,and ti — p>n/2 are valid, and so only the anglesx andp - x

can be less than t. By (7) and (5) p - x >x >xT. The configuration (12) is such that

arrows going outside of it can originate only at (p - x, o, x + t). If p - x > t, then

v{p - x, a, x + t) > T.

Finally, if p - x < t, we have the situation of Lemma 4, that is the four triples

(p(-, a-, t() form a "trap" in the sense that there are no arrows emanating from them,

and such that v{p¡, a¡, t¡) >xt, z = 1,2,3,4.

This clearly completes the proof.
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