A LOWER BOUND ON THE AVERAGE SIZE OF A CONNECTED VERTEX SET OF A GRAPH

ANDREW VINCE

Abstract

The topic is the average order of a connected induced subgraph of a graph. This generalizes, to graphs in general, the average order of a subtree of a tree. In 1984, Jamison proved that the average order, over all trees of order n, is minimized by the path P_{n}. In 2018, Kroeker, Mol, and Oellermann conjectured that P_{n} minimizes the average order over all connected graphs. The main result of this paper confirms this conjecture.

1. Introduction

Although connectivity is a basic concept in graph theory, problems involving the enumeration of the connected induced subgraphs of a graph have only recently received attention. The topic of this paper is the average order of a connected induced subgraph of a graph. Let G be a connected finite simple graph with vertex set V, and let $U \subseteq V$. The set U is said to be a connected set if the subgraph of G induced by U is connected. Denote the collection of all connected sets, excluding the emptyset, by $\mathcal{C}=\mathcal{C}(G)$. The number of connected sets in G will be denoted by $N(G)$. Let

$$
S(G)=\sum_{U \in \mathcal{C}}|U|
$$

be the sum of the sizes of the connected sets. Further, let

$$
A(G)=\frac{S(G)}{N(G)} \quad \text { and } \quad D(G)=\frac{A(G)}{n}
$$

denote, respectively, the average size of a connected set of G and the proportion of vertices in an average size connected set. The parameter $D(G)$ is referred to as the density of connected sets of vertices. The density allows us to compare the average size of connected sets of graphs of different orders. The density is also the probability that a vertex chosen at random from G will belong to a randomly chosen connected set of G. If, for example, G is the complete graph K_{n}, then $A\left(K_{n}\right)$ is the average size of a subset of an n-element set, which is $n / 2$ (counting the empty set for simplicity), the density then being $1 / 2$.

There are a number of papers on the average size and density of connected sets in trees. The invariant $A(G)$, in this case, is the average order of a subtree of a tree. Although results are known for trees, beginning with Jamison's 1984 paper [4, nearly nothing is known for graphs in general. We review the literature in Section 2. Concerning lower bounds, Jamison proved that the density, over all trees of order n, is minimized by the path P_{n}. In particular $A(T) \geq(n+2) / 3$ for all trees T with equality only for P_{n}; therefore $D(T)>1 / 3$ for all trees. Kroeker, Mol, and Oellermann conjectured in their 2018 paper [6] that P_{n} minimizes the average size of a connected set over all connected graphs. The main result of this paper confirms this conjecture.

Theorem 1.1. If G is a connected graph of order n, then

$$
A(G) \geq \frac{n+2}{3}
$$

2010 Mathematics Subject Classification. 05C30.
Key words and phrases. graph, connectedness, average order.
This work was partially supported by a grant from the Simons Foundation (322515 to Andrew Vince).
with equality if and only if G is a path. In particular, $D(G)>1 / 3$ for all connected graphs G.
After reviewing the relevant literture in Section 2, each of the Sections 3, 4, 5 and 6 contain a preliminary result required for the proof of Theorem 1.1. In Section 5, the result (Theorem 3.1) concerns the average size a connected set of G containing a fixed connected connected subset H. In Section 4, the result (Corollary 4.4) is that certain very sparse graphs satisfy the inequality in Theorem 1.1. In Section 5 the result (Theorem 5.1) gives an inequality relating the number of connected sets containing a given vertex x to the number of connected sets not containing x. In Section 6, the result (Theorem 6.1) is an essential inequality valid for graphs with at least one cutvertex. Section 7 provides the final step in the proof of Theorem 1.1. Two problems that remain open are discussed in Section 8 .

2. Previous Results

Following Jamison's study [4, a number of papers on the average order of a subtree of a tree followed [3, 5, 7, 8, 9, 11, 12]. Concerning upper bounds, Jamison [4] provided a sequence of trees (certain "batons") showing that there are trees with density arbitrarily close to 1 . However, if the density $D\left(T_{n}\right)$ of a sequence T_{n} of trees tends to 1 , then the proportion of vertices of degree 2 must also tend to 1 . This led to the question of upper and lower bounds on the density for trees whose internal vertices have degree at least three. Vince and Wang 9 proved that if T is a tree all of whose internal vertices have degree at least three, then $\frac{1}{2} \leq D(T)<\frac{3}{4}$. Both bounds are best possible in the sense that there exists an infinite sequence $\left\{S T_{n}\right\}$ of trees (stars, for example) such that $\lim _{n \rightarrow \infty} D\left(S T_{n}\right)=1 / 2$ and an infinite sequence $\left\{C A T_{n}\right\}$ of trees (certain "caterpillers") such that $\lim _{n \rightarrow \infty} D\left(C A T_{n}\right)=3 / 4$.

A subtree of a tree T is a connected induced subgraph of T. So it is natural to extend from trees to graphs G by asking about the average order of a connected induced subgraph of G - or, in our terminology, the average size of a connected set of vertices of G. Kroeker, Mol, and Oellermann [6] carried out such an investigation for cographs, i.e., graphs that contain no induced P_{4}. For a connected cograph G of order n, they proved that $n / 2<A(G) \leq(n+1) / 2$, with equality on the right if and only if $n=1$. Complete bipartite graphs are examples of cographs. In fact, cographs have the following known characterization: a graph G is a cograph if and only if $G=K_{1}$ or there exist two cographs G_{1} and G_{2} such that either G is the disjoint union of G_{1} and G_{2} or G is obtained from the disjoint union by adding all edges joining the vertices of G_{1} and G_{2}. Proving bounds on $A(G)$ for cographs is therefore amenable to an inductive approach not applicable to graphs in general. Balodis, Mol, and Oellermann [1] proved that for block graphs of order n, i.e., graphs for which each maximal 2-connected component is a complete graph, the path P_{n} minimizes the average size of connected set. A tree is a block graph, thus their result extends Jamison's lower bound from trees to block graphs. Theorem 1.1 extends this lower bound to all connected graphs.

3. The Average Size of Connected Sets Containing a Given Connected Set

If V is the set of vertices of a connected graph G and H is a connected subset of V, let $N(G, H), S(G, H)$, and $A(G, H)$ denote the number of connected sets in G containing H, the sum of the sizes of all connected sets containing H, and the average size of a connected set containing H, respectively.
Theorem 3.1. If $H \subseteq V$ is a connected subset of size $h \geq 1$ of a connected graph G of order n, then

$$
A(G, H) \geq \frac{n+h}{2}
$$

Proof. The proof is by induction on the integer $d=n-h$. If $d=0$, then $H=V, N(G, H)=1$ and $S(G, H)=n$. Therefore $S(G, H)=n=\frac{n+n}{2} \cdot 1=\frac{n+h}{2} N(G, H)$. This is the base case of the induction. Assume that the statement is true for $d-1$ and let (G, H) be such that $n-h=d$. The remainder of the proof is divided into two cases. Let Q be the set of vertices that are adjacent to some vertex in H but are not in H.

Case 1. Assume that there is a vertex x in Q that is not a cut-vertex of G. Let $G^{\prime}=G \backslash\{x\}$, which is a connected graph. For simplicity we use the notation $H+x=H \cup\{x\}$. By the induction hypothesis

$$
\begin{aligned}
S(G, H) & =S\left(G^{\prime}, H\right)+S(G, H+x) \geq \frac{(n-1)+h}{2} N\left(G^{\prime}, H\right)+\frac{n+(h+1)}{2} N(G, H+x) \\
& =\frac{n+h}{2}\left(N\left(G^{\prime}, H\right)+N(G, H+x)\right)+\frac{1}{2}\left(N(G, H+x)-N\left(G^{\prime}, H\right)\right) \\
& =\frac{n+h}{2} N(G, H)+\frac{1}{2}\left(N(G, H+x)-N\left(G^{\prime}, H\right)\right) \geq \frac{n+h}{2} N(G, H)
\end{aligned}
$$

The last inequality follows because, for each connected set U counted in $N\left(G^{\prime}, H\right)$, the connected set $U+x$ is counted in $N(G, H+x)$. (Note that this is not true if $h=0$.)

Case 2. Assume that all vertices in Q are cut-vertices of G, and let x be one of these vertices. Let $G^{\prime}=G-x$. Let G_{1} be the connected component of $G-x$ containing H and let G_{2} be the union of the other components. Denote the vertex set of G_{2} by V_{2}, and let $m=\left|V_{2}\right|$. Then

$$
\begin{aligned}
N(G, H) & =N(G, H+x)+N\left(G^{\prime}, H\right)=N(G, H+x)+N\left(G_{1}, H\right) \\
S(G, H) & =S(G, H+x)+S\left(G^{\prime}, H\right)=S(G, H+x)+S\left(G_{1}, H\right)
\end{aligned}
$$

By the induction hypothesis

$$
\begin{aligned}
S(G, H) & =S(G, H+x)+S\left(G_{1}, H\right) \geq \frac{n+(h+1)}{2} N(G, H+x)+\frac{(n-1-m)+h}{2} N\left(G_{1}, H\right) \\
& =\frac{n+h}{2}\left(N(G, H+x)+N\left(G_{1}, H\right)\right)+\frac{1}{2}\left(N(G, H+x)-(m+1) N\left(G_{1}, H\right)\right) \\
& =\frac{n+h}{2} N(G, H)+\frac{1}{2}\left(N(G, H+x)-(m+1) N\left(G_{1}, H\right)\right) \geq \frac{n+h}{2} N(G, H)
\end{aligned}
$$

The last inequality is proved as follows. Denote the vertices in V_{2} by $x_{1}, x_{2}, \ldots, x_{m}$. Let $x_{0}=x$, and let $p_{i}, 0 \leq i \leq m$, be a path from a point in H adjacent to x to x_{i}. These paths all contain x. For each connected set W counted by $N\left(G_{1}, H\right)$, let $W_{i}, 0 \leq i \leq m$, be the union of W and the vertices of p_{i}. Therefore, for each connected set counted by $N\left(G_{1}, H\right)$, there are at least $m+1$ connected sets counted by $N(G, H+x)$.

Corollary 3.2. If x is any vertex of a connected graph G of order n, then

$$
A(G, x) \geq \frac{n+1}{2}
$$

Proof. This is the case $h=1$ in Theorem 3.1.

4. Near Trees

It will be helpful in investigating graphs with at least one cut-vertex to consider the block-cut tree $\mathbb{T}=\mathbb{T}(G)$ of a graph G. The vertex set of \mathbb{T} is the union of the cut-vertices of G and the blocks, i.e., the maximal 2-connected components, of G. The latter include the edges of G. A cut-vertex x and a block B are adjacent in \mathbb{T} if x lies in B. Call a block B of G a leaf if it is a leaf of the tree $\mathbb{T}(G)$; otherwise call B interior. Color the vertices v in \mathbb{T} corresponding to cut-vertices in G blue if $\operatorname{deg}_{\mathbb{T}}(v) \geq 3$. Color the corresponding vertices in G also blue. Color the vertices in \mathbb{T} corresponding to a block B in G red if the order of B is at least 3. Color the corresponding blocks in G also red.
Lemma 4.1. Assume that G is a connected graph of order n with exactly one red block B. If B has order 3 , then $A(G)>(n+2) / 3$.

Proof. Let v_{1}, v_{2}, v_{3} be the three vertices of B, and let G_{1}, G_{2}, G_{3} be the corresponding connected components of $G \backslash\left\{v_{1}, v_{2}, v_{3}\right\}$. For $i=1,2,3$, let G_{i}^{\prime} be the tree induced by $V\left(G_{i}\right) \cup\left\{v_{i}\right\}$. It is possible that G_{i} is empty, in which case $G_{i}^{\prime}=\left\{v_{i}\right\}$. Without loss of generality, let $G_{1}^{\prime}, G_{2}^{\prime}$ be the two with largest order. Hence if $G_{1}^{\prime}, G_{2}^{\prime}$ have orders n_{1}, n_{2}, respectively, then $n_{1}+n_{2} \geq 2 n / 3$. Let e be the edge $\left\{v_{1}, v_{2}\right\}$ and let T be the tree obtained by deleting e from G. From [4], we know that
$A(T) \geq(n+2) / 3$. If $\mathcal{C}:=\mathcal{C}(G) \backslash \mathcal{C}(T)$, then let $N(\mathcal{C})=|\mathcal{C}|$ and let $S(\mathcal{C})$ be the sum of the sizes of the sets in \mathcal{C}. We claim that $S(\mathcal{C}) / N(\mathcal{C})>(n+2) / 3$, which would prove Lemma 4.1. To simplify notation, let $N_{i}=N\left(G_{i}^{\prime}, v_{i}\right)$ and $S_{i}=S\left(G_{i}^{\prime}, v_{i}\right)$ for $i=1,2$. Using Corollary 3.2 we have

$$
\frac{S(\mathcal{C})}{N(\mathcal{C})}=\frac{S_{1} N_{2}+S_{2} N_{1}}{N_{1} N_{2}} \geq \frac{\left(n_{1}+1\right) N_{1} N_{2}+\left(n_{2}+1\right) N_{1} N_{2}}{2 N_{1} N_{2}} \geq \frac{2 n / 3+2}{2}=\frac{n+3}{3}>\frac{n+2}{3}
$$

Figure 1. Figure used in the proof of Lemma 4.2

Lemma 4.2. Let G be a graph that has no red interior blocks, and all red leaf blocks have order 3 or 4. In addition, assume that all leaf blocks of order 4 are of the form in Figure 1 where vertex a is the cut-vertex. Then $A(G)>(n+2) / 3$.

Proof. The proof is by induction on the number m of red leaf blocks. If $m=0$, then G is a tree, and the result follows from [4]. Assume that the statement is true for $m-1$ and let G be a graph with m red leaf blocks.

Case 1. Let B be red leaf block of the type on the left in Figure 1 If H is the graph obtained from G by deleting edge e, then H has $m-1$ red blocks, and by the induction hypothssis $A(H) \geq(n+2) / 3$ with equality if and only if H is a path. If $\mathcal{C}:=\mathcal{C}(G) \backslash \mathcal{C}(H)$, then let $N(\mathcal{C})=|\mathcal{C}|$ and let $S(\mathcal{C})$ be the sum of the sizes of the sets in \mathcal{C}. We claim that $S(\mathcal{C}) / N(\mathcal{C})>(n+2) / 3$, which would prove Lemma 4.2. Let G^{\prime} be the graph obtained from G by deleting vertices b, c, d. To simplify notation, let $N=N\left(G^{\prime}, a\right)$ and $S=S\left(G^{\prime}, a\right)$. Using Corollary 3.2, we have

$$
\frac{S(\mathcal{C})}{N(\mathcal{C})}=\frac{(S+N)+(S+2 N)+(S+2 N)}{3 N}=\frac{S}{N}+\frac{5}{3} \geq \frac{(n-3)+1}{2}+\frac{5}{3}=\frac{n}{2}+\frac{2}{3}>\frac{n+2}{3}
$$

In the first equality above, the term $(S+N)$ is for the connected sets containing just vertices a and d; the first term $(S+2 N)$ is for the connected sets containing just vertices a, b, and d; and the second $(S+2 N)$ is for the connected sets containing just vertices a, c, and d.

Case 2. Let B be red leaf block of the type on the right in Figure 1. If H is the graph obtained from G by deleting edges $e . f$, then H has $m-1$ red blocks, and by the induction hypothssis $A(H)>(n+2) / 3$ (it cannot be a path). If $\mathcal{C}:=\mathcal{C}(G) \backslash \mathcal{C}(H)$, then let $N(\mathcal{C})=|\mathcal{C}|$ and let $S(\mathcal{C})$ be the sum of the sizes of the sets in \mathcal{C}. We claim that $S(\mathcal{C}) / N(\mathcal{C}) \geq(n+2) / 3$, which would prove Lemma 4.2. Let G^{\prime} be the graph obtained from G by deleting vertices b, c, d. To simplify notation, let $N=N\left(G^{\prime}, a\right)$ and $S=S\left(G^{\prime}, a\right)$. Using Corollary 3.2, we have

$$
\frac{S(\mathcal{C})}{N(\mathcal{C})}=\frac{(S+N)+2}{N+1} \geq \frac{((n-3)+1) N / 2+N+2}{N+1}=\frac{n N+4}{2(N+1)}
$$

In the first equality above, the term $(S+N)$ is for the connected sets containing just vertices a and b, and the term 2 is for the single connected set $\{b, c\}$. It remains to show that $(n N+4)(2 N+2) \geq$ $(n+2) / 3$, which is equivalent to $(N-2)(n-4) \geq 0$, which holds.

Case 3. Let B be a leaf block that is a K_{3}. The proof in this case is a much simpler version of the proofs in cases 1 and 2.
Definition 4.3. A near tree is a graph G such that one of the following holds:
(1) G is a tree;
(2) G has exactly one red block and that block is a K_{3}; or
(3) G has no interior red blocks and all leaf blocks have order 3 or 4 .

Corollary 4.4. If G is a near tree, then $A(G) \geq(n+2) / 3$, with equality if and only if G is a path.
Proof. This is an immediate consequence of Lemmas 4.1 and 4.2 , and the fact from 4 that the statement is true for trees.
5. An inequality relating the number of connected sets containing a given vertex TO THE NUMBER OF CONNECTED SETS NOT CONTAINING THE VERTEX
Let G be a connected graph and x a vertex of G. For ease of notation, let $G-x$ denote the subgraph of G induced by $V(G) \backslash\{x\}$. Let T be a shortest distance spanning tree of G rooted at x. For each connected set $U \in \mathcal{C}(G-x)$ of vertices in $G-x$, choose a vertex v_{U} that is closest to x, with distance being the length of the path p_{U} in T between v_{U} and x. Let $\bar{U}=U \cup p_{U}$, where we regard a path as its set of vertices. Let $\mathcal{C}(G, x)$ denote the set of connected sets in G containing vertex x. For $Q \in \mathcal{C}(G, x)$, let

$$
W(Q)=\{U: U \in \mathcal{C}(G-x) \text { and } \bar{U}=Q\}
$$

If $W(Q) \neq \emptyset$, there is a linear order on $W(Q)$ defined by $U \preceq U^{\prime}$ if $p_{U^{\prime}} \subseteq p_{U}$. Note that $U \preceq U^{\prime}$ implies that $U \subseteq U^{\prime}$. Let U_{Q} denote the minimal set in $W(Q)$ with respect to this order, and let

$$
\mathcal{M}(G-x)=\left\{U_{Q}: Q \in \mathcal{C}(G, x)\right\}
$$

be the collection of all minimals. Note that $\{v\}$ is a minimal set for all $v \in V(G)$. Let

$$
a v=a v(G, x)=\frac{1}{|\mathcal{M}(G-x)|} \sum_{U \in \mathcal{M}(G-x)}\left|p_{U}\right|
$$

be the average length of the paths p_{U} over all minimals U. Here $\left|p_{U}\right|$ denotes the length of path p_{U}, i.e., the number of edges.

Theorem 5.1. For a connected graph G and vertex x, we have

$$
\operatorname{av}(G, x) \cdot(N(G, x)-1) \geq N(G-x)
$$

Proof. For a minimal set $U \in \mathcal{M}(G-x)$, let $p_{U}=\left\{v_{U}=p_{0}, p_{1}, p_{2}, \ldots, p_{k}=x\right\}$, vetices of p_{U} in succession, where $k:=k_{U}$ depends on U. Let

$$
Y(U)=\left\{U \cup\left\{p_{0}, p_{1}, p_{2}, \ldots, p_{j}\right\}: 0 \leq j<k_{U}\right\}
$$

Clearly $|Y(U)|=\left|p_{U}\right|$. Note that the sets $Y(U)$ are pairwise disjoint, i.e., if $U \neq U^{\prime}$, then $Y(U) \neq$ $Y\left(U^{\prime}\right)$, and

$$
\mathcal{C}(G-x)=\bigcup_{U \in \mathcal{M}(G-x)} Y(U)
$$

Thus $\{Y(U): U \in \mathcal{M}(G-x)\}$ partitions $\mathcal{C}(G-x)$. Consider the map $f: \mathcal{C}(G-x) \rightarrow \mathcal{C}(G, x)$ defined by $f(U)=\bar{U}$. For $U \in \mathcal{M}(G-x)$, each set in $Y(U)$ is mapped to the same set in $\mathcal{C}(G, x)$; for distinct $U, U^{\prime} \in \mathcal{M}(G-x)$ each pair of sets $A \in Y(U)$ and $B \in Y\left(U^{\prime}\right)$ are mapped to distinct sets in $\mathcal{C}(G, x)$. Therefore

$$
N(G-x)=\sum_{U \in \mathcal{M}(G-x)}\left|p_{U}\right|=a v(G, x) \cdot|\mathcal{M}(G-x)| \quad \text { and } \quad N(G, x) \geq|\mathcal{M}(G-x)|+1
$$

The +1 is to count the vertex x itself. Therefore $N(G, x) \geq N(G-x) / a v(G, x)+1$ and hence $\operatorname{av}(G, x) \cdot(N(G, x)-1) \geq N(G-x)$.

Theorem 5.2. For any 2-connected graph G of order n and any vertex x of G, we have $\operatorname{av}(G, x) \leq$ $(n-1) / 2$, with equality if and only if $G=K_{3}$.

Proof. According to [2, Theorem 1], the diameter of a 2-connected graph is at most $\lceil(n-1) / 2\rceil$. If n is odd, then the diameter is at most $(n-1) / 2$. Then clearly average $a v(G, x)<(n-1) / 2$ unless $G=K_{3}$, in which case $\operatorname{av}(G, x)=1=(n-1) / 2$.

If n is even, let y be a vertex of G furthest from x. If the the distance from x to y is less than $n / 2$, then it is clear that $\operatorname{av}(G, x) \leq n / 2-1<(n-1) / 2$. So assume that the distance between x and y is exactly $n / 2$. Since G is 2 -connected, there is a cycle C containing x and y. Because the distance between x and y is exactly $n / 2$, the cycle C contains all the vertices of G. A minimum distance spanning tree T of G contains all edges of C except one that is incident to y, say $\{y, w\}$. In this case $\mathcal{M}(G-x)=\{\{v\}: v \in V(G), v \neq y\} \cup\{\{w, y\}\}$. A simple calculation shows that $a v(G . x)=n / 4+(1 / 2-1 / n)<(n-1) / 2$.

Corollary 5.3. Let H be a maximal 2-connected subgraph of order at least 3 of a graph G of order n. Let x be a vertex of H such that the set of all neighbors of x induce a complete subgraph of H. Then av $(G, x) \leq(n-1) / 2$, with equality if and only if $G=K_{3}$.
Proof. Theorem 5.2 settles the case $G=H$, so assume that H is a proper subgraph of G. Construct a shortest distance spanning tree T of G by first constructing a shortest distance spanning tree T of H and extending it to G. Denote the order of H by h. Let K denote the complete graph induced by the neighbors of x. Note that no edge of K is in T.

Consider a set $U \in \mathcal{M}(G-x)$ such that U has a vertex in H. As in the proof of Theorem 5.2, if h is odd, then $\left|p_{U}\right| \leq(n-1) / 2$. If h is even, then either $\left|p_{U}\right| \leq n / 2-1$ or $U \cap H=\{y\}$, where y is the unique vertex of H at distance $h / 2$ from x. We claim that $U \cap H=\{y\}$ is not possible. Note that all edges incident with y that are not in H must be in T. Therefore, if $U^{\prime}:=U \backslash\{y\}$, then $U^{\prime} \prec U$, which implies that $U \notin \mathcal{M}(G-x)$, a contradiction.

Next partition $\mathcal{M}(G)$ into three sets A, B, C as follows. We will consider the average of the $\left|p_{U}\right|$ for U in each of the sets A, B, C. Let A consist of all those connected sets $U \in \mathcal{M}(G)$ such that U has a vertex in H but does not contain all vertices in K. Let B^{\prime} consist of all those connected sets $U \in \mathcal{M}(G-x)$ with no vertex in H. For $U \in B^{\prime}$ let p be the subpath of p_{U} with one end vertex in K and the other in U. Let $U^{\prime}=U \cup p \cup K$, and note that $U^{\prime} \in \mathcal{M}(G)$ and $\left|p_{U^{\prime}}\right|=1$. The map $f: B^{\prime} \rightarrow \mathcal{M}(G)$ defined by $f(U)=U^{\prime}$ is an injection. Let $B=B^{\prime} \cup f\left(B^{\prime}\right)$. Let C be the complement of $A \cup B$ in $\mathcal{M}(G)$, and note that $\left|p_{U}\right|=1$ for all $U \in C$.

We have aleady shown that the average of the path distances $\left|p_{U}\right|$ for $U \in A$ is at most $(n-1) / 2$ if h is odd and at most ess than $(n-2) / 2$ if h is even. Concerning the set B, the average

$$
\left(|p(U)|+\left|p\left(U^{\prime}\right)\right|\right) / 2 \leq\left\{\begin{array}{l}
\frac{1}{2}\left((n-h)+\frac{h}{2}+1\right)=\frac{1}{2}\left(n-\frac{h}{2}+1\right) \leq \frac{n-1}{2} \quad \text { if } h \text { is even } \\
\frac{1}{2}\left((n-h)+\frac{h-1}{2}+1\right)=\frac{1}{2}\left(n-\frac{h}{2}+\frac{1}{2}\right)<\frac{n-1}{2} \quad \text { if } h \text { is odd. }
\end{array}\right.
$$

Therefore, the average of the path distances $\left|p_{U}\right|$ for $U \in B$ is at most $(n-1) / 2$. The path distance $\left|p_{U}\right|=1$ for all connected sets in C. Therefore we have $\operatorname{av}(G, x)<(n-1) / 2$ unless $G=K_{3}$.

6. An Inequality For Graphs With A Cut-Vertex

Let x be a cut-vertex of a connected graph G of order n, and let $M=M(x)=M(G, x)$ denote the number of connected components of $G-x$. Denote these components by G_{1}, \ldots, G_{M}, and let n_{1}, \ldots, n_{M} be their respective orders. Note that $n=1+n_{1}+n_{2}+\cdots+n_{M}$. For $i=1,2, \ldots, M$, denote by G_{i}^{\prime} the subgraph of G induced by the vertices $V\left(G_{i}\right) \cup\{x\}$. To simplify notation, let $N_{i}=N\left(G_{i}\right)$ and $N_{i}(x)=N\left(G_{i}^{\prime}, x\right)$. Let $a_{i}=a v\left(G_{i}^{\prime}, x\right) / n_{i}$.

The main result of this section is the following inequality, which is essential to our proof of Theorem 1.1. The proof of Theorem 6.1 appears at the end of this section, after several lemmas.

Theorem 6.1. If G is a connected graph with at least one cut-vertex, but not a near tree, then there is a cut-vertex x such that following inequality holds:

$$
\begin{equation*}
(n-1) \prod_{i=1}^{M} N_{i}(x)>2 \sum_{i=1}^{M}\left(n-n_{i}\right) N_{i} \tag{6.1}
\end{equation*}
$$

The cut-vertex x in Therorem 6.1 will be called the root vertex of G. The theorem states that we can choose a root vertex that satisfies inequality (6.1).

Lemma 6.2. If x is a vertex of degree at least 2 in a tree T of order n, then $N(T, x) \geq 2 n$ unless T is one of the trees in Figure 2.

Proof. It is routine to check that if T is a tree of order at most 6 with $\operatorname{deg}(x) \geq 2$, not a tree in Figure 2, then $N(T, x) \geq 2 n$. Proceeding by induction on n, assume the statement is true for all trees of order n with $n \geq 6$ and not in Figure 2, and let T be tree of order $n+1$. Remove a leaf y of T, not a child of x, to obtain a tree T^{\prime} of order n. By the induction hypothesis, either $N\left(T^{\prime}, x\right) \geq 2 n$ or T^{\prime} is a graph of the form on the left in Figure 2. In the first case, adding y back adds at least two new connected subtrees containing x, the path p from x to y and the union of p and a child of x not on p. Therefore $N(T, x) \geq N\left(T^{\prime}, x\right) \geq 2(n+1)$. In the second case, T is of the type on the left in Figure 2.

Figure 2. A dashed line indicates any number of vertices.

Corollary 6.3. If x is a vertex in a graph G of order n, and x is contained in a 2 -connected subgraph of G, then $N(G, x) \geq 2 n$ unless G is a subgraph containing x of one of the graphs in Figure 3.

Proof. Let T be a spanning tree of G containing all edges incident to x. By Lemma 6.2 we have $N(G, x) \geq N(T, x) \geq 2 n$ unless T is one of the trees in Figure 1. In this latter case, however, the fact that x lies in a 2 connected graph implies the existence of sufficiently many additional edges to insure that $N(G, x) \geq 2 n$.

If $M(x)=2$ in the statement of Theorem 1.1, then inequality (6.1) reduces to

$$
\begin{equation*}
(n-1) N_{1}(x) N_{2}(x)>2\left(n_{2}+1\right) N_{1}+2\left(n_{1}+1\right) N_{2} . \tag{6.2}
\end{equation*}
$$

Lemma 6.4. If x is a cut-vertex of G such that $M(x)=2$ and both $N\left(G_{i}^{\prime}, x\right) \geq 2\left(n_{i}+1\right)$ and $a_{i} \leq 1 / 2$ for either $i=1$ or $i=2$, then

$$
(n-1) N_{1}(x) N_{2}(x)>2\left(n_{2}+1\right) N_{1}+2\left(n_{1}+1\right) N_{2} .
$$

Proof. Without loss of generality, assume that $N_{1}(x) \geq 2\left(n_{1}+1\right)$ and $a_{1} \leq 1 / 2$. Then using Theorem 5.1 and the obvious fact that $N_{2}(x) \geq n_{2}+1$ we have

$$
\begin{aligned}
(n-1) & N_{1}(x) N_{2}(x)-\left(2\left(n_{2}+1\right) N_{1}+2\left(n_{1}+1\right) N_{2}\right) \\
& =\left(n_{1} N_{1}(x) N_{2}(x)-2\left(n_{2}+1\right) N_{1}\right)+\left(n_{2} N_{1}(x) N_{2}(x)-2\left(n_{1}+1\right) N_{2}\right) \\
& \geq\left(n_{1} N_{1}(x) N_{2}(x)-2\left(n_{2}+1\right) a_{1} n_{1}\left(N_{1}(x)-1\right)\right)+\left(n_{2} N_{1}(x) N_{2}(x)-2\left(n_{1}+1\right) n_{2} N_{2}(x)\right) \\
& >\left(n_{1} N_{1}(x) N_{2}(x)-2\left(n_{2}+1\right) a_{1} n_{1} N_{1}(x)\right)+\left(n_{2} N_{1}(x) N_{2}(x)-2\left(n_{1}+1\right) n_{2} N_{2}(x)\right) \\
& =n_{1} N_{1}(x)\left(N_{2}(x)-2\left(n_{2}+1\right) a_{1}\right)+n_{2} N_{2}(x)\left(N_{1}(x)-2\left(n_{1}+1\right)\right) \\
& \geq n_{1} N_{1}(x)\left(N_{2}(x)-\left(n_{2}+1\right)\right)+n_{2} N_{2}(x)\left(N_{1}(x)-2\left(n_{1}+1\right)\right) \geq 0 .
\end{aligned}
$$

Lemma 6.5. If there is a cut-vertex x in G such that either
(1) $M(x) \geq 4$ or
(2) $M(x)=3$ with $\min \left\{n_{1}, n_{2}, n_{3}\right\} \geq 2$ and at least two of n_{1}, n_{2}, n_{3} are at least 3 , then inequality 6.1 holds with x as the root of G.
Proof. Using Theorem 5.1 and the fact that $N_{i}(x) \geq n_{i}+1$ we have

$$
\begin{aligned}
(n-1) & \prod_{i=1}^{M} N_{i}(x)-2 \sum_{i=1}^{M}\left(n-n_{i}\right) N_{i}=\sum_{i=1}^{M}\left(n_{i} N_{1}(x) N_{2}(x) \cdots N_{M}(x)-2\left(n-n_{i}\right) N_{i}\right) \\
& >\sum_{i=1}^{M}\left(n_{i} N_{1}(x) N_{2}(x) \cdots N_{M}(x)-2\left(n-n_{i}\right) a_{i} n_{i} N_{i}(x)\right) \\
& \geq \sum_{i=1}^{M} n_{i} N_{i}(x)\left(\prod_{j \neq i} N_{j}(x)-2\left(1+\sum_{j \neq i} n_{j}\right)\right) \geq \sum_{i=1}^{M} n_{i} N_{i}(x)\left(\prod_{j \neq i}\left(n_{i}+1\right)-2\left(1+\sum_{j \neq i} n_{j}\right)\right) .
\end{aligned}
$$

If $M \geq 4$, then

$$
\begin{equation*}
\prod_{j \neq i}\left(n_{i}+1\right) \geq 2\left(1+\sum_{j \neq i} n_{j}\right) \tag{6.3}
\end{equation*}
$$

verifying inequality 6.1). If $M=3$, then, without loss of generality, assume that $i=3$ in inequality (6.3), in which case

$$
\prod_{j \neq i}\left(n_{i}+1\right)-2\left(1+\sum_{j \neq i} n_{j}\right)=n_{1} n_{2}-n_{1}-n_{2}-2=\left(n_{1}-1\right)\left(n_{2}-1\right)-2
$$

which is greater than or equal to 0 if $\min \left\{n_{1}, n_{2}\right\} \geq 2$ and $\max \left\{n_{1}, n_{2}\right\} \geq 3$. Therefore

$$
(n-1) \prod_{i=1}^{M} N_{i}(x)>2 \sum_{i=1}^{M}\left(n-n_{i}\right) N_{i}
$$

if $M \geq 4$ or if $M=3$ with $\min \left\{n_{1}, n_{2}, n_{3}\right\} \geq 2$ and at least two of n_{1}, n_{2}, n_{3} at least 3 .
Lemma 6.6. Let x be a cut-vertex of G with $M(x) \geq 3$ and denote the components of $G-x$ by $G_{1}, G_{2}, \ldots, G_{M}$. Assume, without loss of generality, that $\min \left\{N_{i}: 1 \leq i \leq M\right\}=N_{M}$. If the graph G^{\prime} induced by the vertices $\{x\} \cup \bigcup_{i=1}^{M-1} V\left(G_{i}\right)$ satisfies (6.1), then G also satisfies 6.1).

Proof. Assume that $(n-1) \prod_{i=1}^{M-1} N_{i}(x)>2 \sum_{i=1}^{M-1}\left(n-n_{i}\right) N_{i}$ holds for the graph G^{\prime}. We must show that

$$
\left(n+n_{M}-1\right) \prod_{i=1}^{M} N_{i}(x)>2 \sum_{i=1}^{M-1}\left(n+n_{M}-n_{i}\right) N_{i}+2 n N_{M}
$$

i.e.,

$$
N_{M}(x)(n-1) \prod_{i=1}^{M-1} N_{i}(x)+n_{M} N_{M}(x) \prod_{i=1}^{M-1} N_{i}(x)>2 \sum_{i=1}^{M-1}\left(n-n_{i}\right) N_{i}+2 n_{M} \sum_{i=1}^{M-1} N_{i}+2 n N_{M}
$$

Because it is assumed that G^{\prime} satisfies 6.2, this reduces to showing that
$N_{M}(x) 2 \sum_{i=1}^{M-1}\left(n-n_{i}\right) N_{i}+n_{M} N_{M}(x) \frac{2 \sum_{i=1}^{M-1}\left(n-n_{i}\right) N_{i}}{n-1} \geq 2 \sum_{i=1}^{M-1}\left(n-n_{i}\right) N_{i}+2 n_{M} \sum_{i=1}^{M-1} N_{i}+2 n N_{M}$, i.e.,

$$
\sum_{i=1}^{M-1}\left(\left(N_{M}(x)-1\right)\left(n-n_{i}\right)+n_{M}\left(\frac{N_{M}(x)\left(n-n_{i}\right)}{n-1}-1\right)\right) N_{i} \geq n N_{M}
$$

By the minimality of N_{M} and the fact that $\sum_{i=1}^{M-1} n_{i}=n-1$, it now suffices to show that

$$
\begin{aligned}
\left(N_{M}(x)-1\right. & \left.+\frac{n_{M} N_{M}(x)}{n-1}\right)(M n-2 n+1)-(M-1) n_{M} \\
& =\left(N_{M}(x)-1+\frac{n_{M} N_{M}(x)}{n-1}\right) \sum_{i=1}^{M-1}\left(n-n_{i}\right)-(M-1) n_{M} \\
& =\sum_{i=1}^{M-1}\left(\left(N_{M}(x)-1\right)\left(n-n_{i}\right)+n_{M}\left(\frac{N_{M}(x)\left(n-n_{i}\right)}{n-1}-1\right)\right) \geq n
\end{aligned}
$$

Because $N_{M}(x) \geq n_{M}+1$, we have

$$
N_{M}(x)-1+\frac{n_{M} N_{M}(x)}{n-1} \geq \frac{n_{M}\left(n_{M}+n\right)}{n-1}
$$

To finish the proof, the following inequality is required:

$$
(M n-2 n+1)\left(n_{M}\left(n_{M}+n\right)\right)-\left((M-1) n_{M}+n\right)(n-1) \geq 0
$$

As a function of M, the derivative of the left hand side of the inequality above is positive. Therefore it is sufficient to prove the inequality for $M=3$, i.e.,

$$
(n+1)\left(n_{3}^{2}+n n_{3}\right)-(n-1)\left(2 n_{3}+n\right)=n^{2}\left(n_{3}-1\right)+n n_{3}\left(n_{3}+1-2\right)+n_{3}^{2}+2 n_{3}+n \geq 0
$$

which clearly holds.
Proof of Theorem 6.1. If G has a cut-vertex that satisfies condition (1) or (2) in the hypothesis of Lemma 6.5, then, by that lemma, Theoerem 6.1 is true. Therefore it can be assumed that, for all cut-vertices x of G, either
(a) $M(x)=2$, or
(b) $M(x)=3$ and at least two components of $G-x$ have order at most 2.

In case (b), if x is chosen as the root of G, then by Lemma 6.6 it may be assumed that
$\left(\mathrm{b}^{\prime}\right)$ a component of $G-x$ of smallest order has been removed and $M(x)=2$ for the resulting graph.

The proof is by cases. We will show that the inequality 6.1 holds when G has:
(1) a red block of order at least 5;
(2) an interior red block of order 4;
(3) at least two red blocks, one of which is interior.

Our assumption that G is not a near tree eliminates the cases:

- G is a tree;
- G has exactly one interior block of order 3 ;
- all leaf blocks are of order 3 or 4 .

Hence cases 1-3 are exhaustive and their proof is sufficient to vertify Theorem 6.1.
Case 1. Let B be a block in G of order at least 5 , and let x a cut-vertex in B. Choose x as the root of G. By items (a) and (b^{\prime}) above, it may be assumed that $M(x)=2$. Inequality (6.2) must be verified.

Let G^{\prime} be the graph induced by the union of x and the component of $G-x$ containing B. Without loss of generality, let this be the component whose parameters have index $i=1$ in inequality (6.2). Let \widehat{G} be obtained from G^{\prime} by adding an edge between every pair of neighbors of x. Note that G^{\prime} and \widehat{G} have the same set of vertices and the same set of connected sets containing x. Also, the number of connected sets in \widehat{G} not containing x is at least as large as the number of connected sets in G^{\prime} not containing x. Therefore if inequality 6.2 holds with G^{\prime} replaced by \widehat{G}, then it also holds for G. By Corollary 5.3 we have $a_{1} \leq 1 / 2$, and by Corollary 6.3 we have $N(\widehat{G}, x) \geq 2\left(n_{1}+1\right)$ unless \widehat{G} is a subgraph containing x of one of the graphs in Figure 3 . This is not possible since the order of B is at least 5 . By Lemma 6.4, the proof of Case 1 is complete.

Case 2. Let block B in G be of order 4 and, since B is interior, let x and y be distinct cutvertices of G on B. Take x as the root of G. Let G^{\prime} be the graph induced by the union of x and the component of $G-x$ containing B. Note that G^{\prime} contains y, and therefore G^{\prime} cannot be a subgraph containing x of any graph in Figure 3. Hence $N\left(G^{\prime}, x\right) \geq 2\left(n_{1}+1\right)$ by Corollary 6.3. Now the proof proceeds as in Case 1.

Case 3. Let B_{1} be a red block that is interior; let B_{2} be another red block; and let p be the unique path in $\mathbb{T}(G)$ joining B_{1} and B_{2}. Since B_{1} is interior, by Case 2 we can assume that it has order 3. Let x^{\prime} be a vertex in $\mathbb{T}(G)$ adjacent to B_{1} that does not lie on p. Let x be the vertex in G corresponding to x^{\prime}, and choose x as the root of G. We may assume by (a) and $\left(b^{\prime}\right)$ above that $M(x)=2$, which reduces the problem to proving inequality 6.2 . Let G^{\prime} be the graph induced by the union of x and the component of $G-x$ containing B_{1} and B_{2}. By Corollaries 5.3 and 6.3 , we have $N(\widehat{G}, x) \geq 2\left(n_{1}+1\right)$ and $a_{1} \leq 1 / 2$. Lemma 6.4 completes the proof of Case 3 .

7. Proof of the Lower Bound Theorem

Proposition 7.1. If G is a connected graph with vertex set $\left\{x_{1}, \ldots, x_{n}\right\}$, then $S(G)=\sum_{i=1}^{n} N\left(G, x_{i}\right)$.
Proof. Count the number of pairs (x, U) such that $x \in V(G), U \in \mathcal{C}(G)$ and $x \in U$, in two ways to obtain

$$
S(G)=\sum_{U \in \mathcal{C}}|U|=\sum_{x \in V(G)} N(G, x)=\sum_{i=1}^{n} N\left(G, x_{i}\right)
$$

Theorem 7.2. For a connected graph G of order n we have

$$
S(G) \geq \frac{n+2}{3} N(G)
$$

with equality if and only if G is a path.
Proof. The proof is by induction on n. The statement is easily checked for $n \leq 4$. By Corollary 4.4, it is also true for near trees as in Definition 4.3. Assume it is true for graphs of order $n-1$, and let G have order n. By Proposition 7.1, the average of the numbers $N(G, x)$ over all vertices x in G is S / n. Let x be a vertex such that $N(G, x) \geq S(G) / n$. Let $G^{\prime}=G-x$. There are two cases.

Case 1. The vertex x is not a cut-vertex, hence $G-x$ is connected. From Theorem 3.1 and the induction hypothesis

$$
\begin{aligned}
S(G) & =S(G-x)+S(G, x) \geq \frac{n+1}{3} N(G-x)+\frac{n+1}{2} N(G, x) \\
& =\frac{n+2}{3}(N(G-x)+N(G, x))-\frac{1}{3} N(G-x)+\frac{n-1}{6} N(G, x) \\
& =\frac{n+2}{3} N(G)+\frac{1}{6}((n-1) N(G, x)-2 N(G-x)) \\
& \geq \frac{n+2}{3} N(G)+\frac{1}{6}((n-1) S(G) / n-2 N(G-x))
\end{aligned}
$$

It only remains to show that $(n-1) S(G) / n>2 N(G-x)$. But we have

$$
(n-1) S(G)=(n-1)(S(G-x)+S(G, x)) \geq(n-1)\left(\frac{n+1}{3} N(G-x)+\frac{n+1}{2} N(G, x)\right)
$$

which is larger than $2 n N(G-x)$ if and only if

$$
3\left(n^{2}-1\right) N(G, x)+2\left(n^{2}-6 n-1\right) N(G-x)>0
$$

The polynomial $2\left(n^{2}-6 n-1\right)$ is positive for $n \geq 7$. The inequality for smaller values of n can be checked using the facts that, for $n=4$ we have $N(G, x) \geq 4, N(G-x) \leq 7$ (the path and the complerte graphs), for $n=5$ we have $N(G, x) \geq 5, N(G-x) \leq 15$, and for $n=6$ we have $N(G, x) \geq 6, N(G-x) \leq 31$.

Case 2. Every vertex such that $N(G, x) \geq S(G) / n$ is a cut-vertex. If G is a near tree, then we are done. Otherwise, by Theorem 6.1. there is cut-vertex x that satisfies inequality (6.1). Let G_{1}, \ldots, G_{M} be the connected components of $G-x$. Note that $n=1+n_{1}+n_{2}+\cdots+n_{M}$. Now

$$
\begin{aligned}
N(G, x) & =\prod_{i=1}^{M} N\left(G_{i}^{\prime}, x\right) \\
S(G, x) & =\sum_{i=1}^{M}\left(S\left(G_{i}^{\prime}, x\right)-N\left(G_{i}^{\prime}, x\right)\right) \prod_{j \neq i} N\left(G_{j}^{\prime}, x\right)+\prod_{i=1}^{M} N\left(G_{i}^{\prime}, x\right) \\
& =\sum_{i=1}^{M} S\left(G_{i}^{\prime}, x\right) \prod_{j \neq i} N\left(G_{j}^{\prime}, x\right)-(M-1) \prod_{i=1}^{M} N\left(G_{i}^{\prime}, x\right)
\end{aligned}
$$

In the formula for $S(G, x)$, the terms $\left.-N\left(G_{i}^{\prime}, x\right)\right)$ and $\prod_{i=1}^{M} N\left(G_{i}^{\prime}, x\right)$ are to count the vertex x the correct number of times. By the induction hypothesis and Theorem 3.1 we have

$$
\begin{aligned}
S(G) & =S(G-x)+S(G, x)=\sum_{i=1}^{M} S\left(G_{i}\right)+\sum_{i=1}^{M} S\left(G_{i}^{\prime}, x\right) \prod_{j \neq i} N\left(G_{j}^{\prime}, x\right)-(M-1) \prod_{i=1}^{M} N\left(G_{i}^{\prime}, x\right) \\
& \geq \sum_{i=1}^{M} \frac{n_{i}+2}{3} N\left(G_{i}\right)+\sum_{i=1}^{M}\left(\frac{n_{i}+2}{2} N\left(G_{i}^{\prime}, x\right) \prod_{j \neq i} N\left(G_{j}^{\prime}, x\right)\right)-(M-1) \prod_{i=1}^{M} N\left(G_{i}^{\prime}, x\right) \\
& =\sum_{i=1}^{M} \frac{n_{i}+2}{3} N\left(G_{i}\right)+\frac{n+1}{2} \prod_{i=1}^{M} N\left(G_{i}^{\prime}, x\right) .
\end{aligned}
$$

It remains to show that the expression in the last line above is greater than

$$
\frac{n+2}{3} N(G)=\frac{n+2}{3}(N(G-x)+N(G, x))=\frac{n+2}{3}\left(\sum_{i=1}^{M} N\left(G_{i}\right)+\prod_{i=1}^{M} N\left(G_{i}^{\prime}, x\right)\right)
$$

This is equivalent to showing that

$$
(n-1) \prod_{i=1}^{M} N\left(G_{i}^{\prime}, x\right)>2 \sum_{i=1}^{M}\left(n-n_{i}\right) N\left(G_{i}\right)
$$

which is exactly inequality (6.1) in Theorem 6.1.

8. Two Open Problems

Although, for a general connected graph, the lower bound of Theorem 1.1 is best possible, evidence indicates that $D(G)>1 / 2$ for a large class of graphs. The result of Kroeker, Mol, and Oellermann 6] referenced in Section 2, for example, proves that this is the case for cographs. We made the following conjectured in 10].

Conjecture 1. For any graph G, all of whose vertices have degree at least 3 , we have $D(G)>\frac{1}{2}$.
One difficulty in proving this conjecture, if true, is that knowing exactly for which graphs $D(G)>$ $\frac{1}{2}$ is problematic. There are graphs, all of whose vertices have degree at least 2 , whose density is less than $1 / 2$ and some whose density is greater. Adding an edge to a graph may increase the density or it may decrease the density, similarly for adding a vertex. This makes a proof by induction challenging.

As mentioned in Section 2 there are trees whose density is arbitrarily close to 1 . For trees where every vertex has degree at least 3 , the density is bounded above by $3 / 4$ and this is best possible [9]. A family of cubic graphs appearing in [10] has asymptotic density $5 / 6$. We know of no graph, all of whose vertices have degree at least 3 , with a larger density.

Question 2. Is there an upper bound, less than 1 , on the density of graphs all of whose vertices have degree at least 3 ?

References

[1] K. J. Balodis, L. Mol, L, and R. Oellermann, On the mean order of connected induced subgraphs of block graphs, Australasian J. Comb. 76 (2020) 128-148.
[2] L. Caccetta, L and W. F. Smyth, Graphs of maximum diameter, Disc. Math. 102 (1992), 121-141.
[3] J. Haslegrave, Extremal results on average subtree density of series-reduced trees, J. Combin. Theory Ser. B 107 (2014), 26-41.
[4] R. Jamison, On the average number of nodes in a subtree of a tree. J. Combin. Theory Ser. B 35 (1983) $207-223$.
[5] R. Jamison, Monotonicity of the mean order of subtrees, J. Combin. Theory Ser. B 37 (1984), 70-78.
[6] M. E. Kroeker, L. Mol, and O. Oellermann, On the mean connected induced subgraph order of cographs, Australasian J. Combin. 71 (2018) 161-183.
[7] L. Mol and O. Oellermann, Maximizing the mean subtree order, J. Graph Theory, doi.org/10.1002/jgt.22434, 2018.
[8] A. M. Stephens and O. Oellermann, The mean order of sub-k-trees of k-trees, J. Graph Theory 88 (2018), 61-79.
[9] A. Vince and H. Wang, The average order of a subtree of a tree, J CombinTheory Ser B 100 (2010) 161-170.
[10] A. Vince, The average size of a connected vertex set of a graph - explicit formulas and open problems, J. Graph Theory, to appear.
[11] S. Wagner and H. Wang, On the local and global means of subtree orders, J. Graph Theory 81 (2016), 154-166.
[12] W. Yan and Y. Yeh, Enumeration of subtrees of trees, Theoret. Comput. Sci. 369 (2006), 256-268.
Department of Mathematics, University of Florida, Gainesville, FL 32611, USA
Email address: avince@ufl.edu

