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Abstract. The topic is the average order of a connected induced subgraph of a graph. This

generalizes, to graphs in general, the average order of a subtree of a tree. In 1984, Jamison proved
that the average order, over all trees of order n, is minimized by the path Pn. In 2018, Kroeker,

Mol, and Oellermann conjectured that Pn minimizes the average order over all connected graphs.

The main result of this paper confirms this conjecture.

1. Introduction

Although connectivity is a basic concept in graph theory, problems involving the enumeration
of the connected induced subgraphs of a graph have only recently received attention. The topic of
this paper is the average order of a connected induced subgraph of a graph. Let G be a connected
finite simple graph with vertex set V , and let U ⊆ V . The set U is said to be a connected set if
the subgraph of G induced by U is connected. Denote the collection of all connected sets, excluding
the emptyset, by C = C(G). The number of connected sets in G will be denoted by N(G). Let

S(G) =
∑
U∈C
|U |

be the sum of the sizes of the connected sets. Further, let

A(G) =
S(G)

N(G)
and D(G) =

A(G)

n

denote, respectively, the average size of a connected set of G and the proportion of vertices in an
average size connected set. The parameter D(G) is referred to as the density of connected sets of
vertices. The density allows us to compare the average size of connected sets of graphs of different
orders. The density is also the probability that a vertex chosen at random from G will belong to a
randomly chosen connected set of G. If, for example, G is the complete graph Kn, then A(Kn) is
the average size of a subset of an n-element set, which is n/2 (counting the empty set for simplicity),
the density then being 1/2.

There are a number of papers on the average size and density of connected sets in trees. The
invariant A(G), in this case, is the average order of a subtree of a tree. Although results are known
for trees, beginning with Jamison’s 1984 paper [4], nearly nothing is known for graphs in general.
We review the literature in Section 2. Concerning lower bounds, Jamison proved that the density,
over all trees of order n, is minimized by the path Pn. In particular A(T ) ≥ (n + 2)/3 for all trees
T with equality only for Pn; therefore D(T ) > 1/3 for all trees. Kroeker, Mol, and Oellermann
conjectured in their 2018 paper [6] that Pn minimizes the average size of a connected set over all
connected graphs. The main result of this paper confirms this conjecture.

Theorem 1.1. If G is a connected graph of order n, then

A(G) ≥ n + 2

3
,

2010 Mathematics Subject Classification. 05C30.

Key words and phrases. graph, connectedness, average order.
This work was partially supported by a grant from the Simons Foundation (322515 to Andrew Vince).

1

ar
X

iv
:2

10
3.

15
17

4v
1 

 [
m

at
h.

C
O

] 
 2

8 
M

ar
 2

02
1



2 A. VINCE

with equality if and only if G is a path. In particular, D(G) > 1/3 for all connected graphs G.

After reviewing the relevant literture in Section 2, each of the Sections 3, 4, 5 and 6 contain a
preliminary result required for the proof of Theorem 1.1. In Section 5, the result (Theorem 3.1)
concerns the average size a connected set of G containing a fixed connected connected subset H.
In Section 4, the result (Corollary 4.4) is that certain very sparse graphs satisfy the inequality in
Theorem 1.1. In Section 5, the result (Theorem 5.1) gives an inequality relating the number of
connected sets containing a given vertex x to the number of connected sets not containing x. In
Section 6, the result (Theorem 6.1) is an essential inequality valid for graphs with at least one cut-
vertex. Section 7 provides the final step in the proof of Theorem 1.1. Two problems that remain
open are discussed in Section 8.

2. Previous results

Following Jamison’s study [4], a number of papers on the average order of a subtree of a tree
followed [3, 5, 7, 8, 9, 11, 12]. Concerning upper bounds, Jamison [4] provided a sequence of trees
(certain “batons”) showing that there are trees with density arbitrarily close to 1. However, if the
density D(Tn) of a sequence Tn of trees tends to 1, then the proportion of vertices of degree 2
must also tend to 1. This led to the question of upper and lower bounds on the density for trees
whose internal vertices have degree at least three. Vince and Wang [9] proved that if T is a tree
all of whose internal vertices have degree at least three, then 1

2 ≤ D(T ) < 3
4 . Both bounds are best

possible in the sense that there exists an infinite sequence {STn} of trees (stars, for example) such
that limn→∞D(STn) = 1/2 and an infinite sequence {CATn} of trees (certain “caterpillers”) such
that limn→∞D(CATn) = 3/4.

A subtree of a tree T is a connected induced subgraph of T . So it is natural to extend from trees
to graphs G by asking about the average order of a connected induced subgraph of G - or, in our
terminology, the average size of a connected set of vertices of G. Kroeker, Mol, and Oellermann
[6] carried out such an investigation for cographs, i.e., graphs that contain no induced P4. For a
connected cograph G of order n, they proved that n/2 < A(G) ≤ (n+1)/2, with equality on the right
if and only if n = 1. Complete bipartite graphs are examples of cographs. In fact, cographs have
the following known characterization: a graph G is a cograph if and only if G = K1 or there exist
two cographs G1 and G2 such that either G is the disjoint union of G1 and G2 or G is obtained from
the disjoint union by adding all edges joining the vertices of G1 and G2. Proving bounds on A(G)
for cographs is therefore amenable to an inductive approach not applicable to graphs in general.
Balodis, Mol, and Oellermann [1] proved that for block graphs of order n, i.e., graphs for which
each maximal 2-connected component is a complete graph, the path Pn minimizes the average size
of connected set. A tree is a block graph, thus their result extends Jamison’s lower bound from
trees to block graphs. Theorem 1.1 extends this lower bound to all connected graphs.

3. The Average Size of Connected Sets Containing a Given Connected Set

If V is the set of vertices of a connected graph G and H is a connected subset of V , let
N(G,H), S(G,H), and A(G,H) denote the number of connected sets in G containing H, the sum
of the sizes of all connected sets containing H, and the average size of a connected set containing
H, respectively.

Theorem 3.1. If H ⊆ V is a connected subset of size h ≥ 1 of a connected graph G of order n,
then

A(G,H) ≥ n + h

2
.

Proof. The proof is by induction on the integer d = n − h. If d = 0, then H = V, N(G,H) = 1
and S(G,H) = n. Therefore S(G,H) = n = n+n

2 · 1 = n+h
2 N(G,H). This is the base case of the

induction. Assume that the statement is true for d− 1 and let (G,H) be such that n− h = d. The
remainder of the proof is divided into two cases. Let Q be the set of vertices that are adjacent to
some vertex in H but are not in H.
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Case 1. Assume that there is a vertex x in Q that is not a cut-vertex of G. Let G′ = G \ {x},
which is a connected graph. For simplicity we use the notation H + x = H ∪{x}. By the induction
hypothesis

S(G,H) = S(G′, H) + S(G,H + x) ≥ (n− 1) + h

2
N(G′, H) +

n + (h + 1)

2
N(G,H + x)

=
n + h

2
(N(G′, H) + N(G,H + x)) +

1

2
(N(G,H + x)−N(G′, H))

=
n + h

2
N(G,H) +

1

2
(N(G,H + x)−N(G′, H)) ≥ n + h

2
N(G,H).

The last inequality follows because, for each connected set U counted in N(G′, H), the connected
set U + x is counted in N(G,H + x). (Note that this is not true if h = 0.)

Case 2. Assume that all vertices in Q are cut-vertices of G, and let x be one of these vertices.
Let G′ = G − x. Let G1 be the connected component of G − x containing H and let G2 be the
union of the other components. Denote the vertex set of G2 by V2, and let m = |V2|. Then

N(G,H) = N(G,H + x) + N(G′, H) = N(G,H + x) + N(G1, H)

S(G,H) = S(G,H + x) + S(G′, H) = S(G,H + x) + S(G1, H).

By the induction hypothesis

S(G,H) = S(G,H + x) + S(G1, H) ≥ n + (h + 1)

2
N(G,H + x) +

(n− 1−m) + h

2
N(G1, H)

=
n + h

2
(N(G,H + x) + N(G1, H)) +

1

2

(
N(G,H + x)− (m + 1)N(G1, H)

)
=

n + h

2
N(G,H) +

1

2

(
N(G,H + x)− (m + 1)N(G1, H)

)
≥ n + h

2
N(G,H).

The last inequality is proved as follows. Denote the vertices in V2 by x1, x2, . . . , xm. Let x0 = x,
and let pi, 0 ≤ i ≤ m, be a path from a point in H adjacent to x to xi. These paths all contain
x. For each connected set W counted by N(G1, H), let Wi, 0 ≤ i ≤ m, be the union of W and
the vertices of pi. Therefore, for each connected set counted by N(G1, H), there are at least m + 1
connected sets counted by N(G,H + x). �

Corollary 3.2. If x is any vertex of a connected graph G of order n, then

A(G, x) ≥ n + 1

2
.

Proof. This is the case h = 1 in Theorem 3.1. �

4. Near Trees

It will be helpful in investigating graphs with at least one cut-vertex to consider the block-cut
tree T = T(G) of a graph G. The vertex set of T is the union of the cut-vertices of G and the blocks,
i.e., the maximal 2-connected components, of G. The latter include the edges of G. A cut-vertex x
and a block B are adjacent in T if x lies in B. Call a block B of G a leaf if it is a leaf of the tree
T(G); otherwise call B interior. Color the vertices v in T corresponding to cut-vertices in G blue if
degT(v) ≥ 3. Color the corresponding vertices in G also blue. Color the vertices in T corresponding
to a block B in G red if the order of B is at least 3. Color the corresponding blocks in G also red.

Lemma 4.1. Assume that G is a connected graph of order n with exactly one red block B. If B
has order 3, then A(G) > (n + 2)/3.

Proof. Let v1, v2, v3 be the three vertices of B, and let G1, G2, G3 be the corresponding connected
components of G \ {v1, v2, v3}. For i = 1, 2, 3, let G′i be the tree induced by V (Gi) ∪ {vi}. It is
possible that Gi is empty, in which case G′i = {vi}. Without loss of generality, let G′1, G

′
2 be the

two with largest order. Hence if G′1, G
′
2 have orders n1, n2, respectively, then n1 + n2 ≥ 2n/3. Let

e be the edge {v1, v2} and let T be the tree obtained by deleting e from G. From [4], we know that
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A(T ) ≥ (n + 2)/3. If C := C(G) \ C(T ), then let N(C) = |C| and let S(C) be the sum of the sizes of
the sets in C. We claim that S(C)/N(C) > (n + 2)/3, which would prove Lemma 4.1. To simplify
notation, let Ni = N(G′i, vi) and Si = S(G′i, vi) for i = 1, 2. Using Corollary 3.2, we have

S(C)
N(C)

=
S1N2 + S2N1

N1N2
≥ (n1 + 1)N1N2 + (n2 + 1)N1N2

2N1N2
≥ 2n/3 + 2

2
=

n + 3

3
>

n + 2

3
.

�

Figure 1. Figure used in the proof of Lemma 4.2.

Lemma 4.2. Let G be a graph that has no red interior blocks, and all red leaf blocks have order 3
or 4. In addition, assume that all leaf blocks of order 4 are of the form in Figure 1 where vertex a
is the cut-vertex. Then A(G) > (n + 2)/3.

Proof. The proof is by induction on the number m of red leaf blocks. If m = 0, then G is a tree,
and the result follows from [4]. Assume that the statement is true for m− 1 and let G be a graph
with m red leaf blocks.

Case 1. Let B be red leaf block of the type on the left in Figure 1. If H is the graph obtained from
G by deleting edge e, then H has m−1 red blocks, and by the induction hypothssis A(H) ≥ (n+2)/3
with equality if and only if H is a path. If C := C(G) \ C(H), then let N(C) = |C| and let S(C) be
the sum of the sizes of the sets in C. We claim that S(C)/N(C) > (n + 2)/3, which would prove
Lemma 4.2. Let G′ be the graph obtained from G by deleting vertices b, c, d. To simplify notation,
let N = N(G′, a) and S = S(G′, a). Using Corollary 3.2, we have

S(C)
N(C)

=
(S + N) + (S + 2N) + (S + 2N)

3N
=

S

N
+

5

3
≥ (n− 3) + 1

2
+

5

3
=

n

2
+

2

3
>

n + 2

3
.

In the first equality above, the term (S + N) is for the connected sets containing just vertices a
and d; the first term (S + 2N) is for the connected sets containing just vertices a, b, and d; and the
second (S + 2N) is for the connected sets containing just vertices a, c, and d.

Case 2. Let B be red leaf block of the type on the right in Figure 1. If H is the graph obtained
from G by deleting edges e.f , then H has m − 1 red blocks, and by the induction hypothssis
A(H) > (n + 2)/3 (it cannot be a path). If C := C(G) \ C(H), then let N(C) = |C| and let S(C)
be the sum of the sizes of the sets in C. We claim that S(C)/N(C) ≥ (n + 2)/3, which would prove
Lemma 4.2. Let G′ be the graph obtained from G by deleting vertices b, c, d. To simplify notation,
let N = N(G′, a) and S = S(G′, a). Using Corollary 3.2, we have

S(C)
N(C)

=
(S + N) + 2

N + 1
≥
(
(n− 3) + 1

)
N/2 + N + 2

N + 1
=

nN + 4

2(N + 1)
.

In the first equality above, the term (S +N) is for the connected sets containing just vertices a and
b, and the term 2 is for the single connected set {b, c}. It remains to show that (nN + 4)(2N + 2) ≥
(n + 2)/3, which is equivalent to (N − 2)(n− 4) ≥ 0, which holds.

Case 3. Let B be a leaf block that is a K3. The proof in this case is a much simpler version of
the proofs in cases 1 and 2. �

Definition 4.3. A near tree is a graph G such that one of the following holds:

(1) G is a tree;
(2) G has exactly one red block and that block is a K3; or
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(3) G has no interior red blocks and all leaf blocks have order 3 or 4.

Corollary 4.4. If G is a near tree, then A(G) ≥ (n+ 2)/3, with equality if and only if G is a path.

Proof. This is an immediate consequence of Lemmas 4.1 and 4.2, and the fact from [4] that the
statement is true for trees. �

5. An inequality relating the number of connected sets containing a given vertex
to the number of connected sets not containing the vertex

Let G be a connected graph and x a vertex of G. For ease of notation, let G − x denote the
subgraph of G induced by V (G) \ {x}. Let T be a shortest distance spanning tree of G rooted at
x. For each connected set U ∈ C(G− x) of vertices in G− x, choose a vertex vU that is closest to
x, with distance being the length of the path pU in T between vU and x. Let U = U ∪ pU , where
we regard a path as its set of vertices. Let C(G, x) denote the set of connected sets in G containing
vertex x. For Q ∈ C(G, x), let

W (Q) = {U : U ∈ C(G− x) and U = Q}.

If W (Q) 6= ∅, there is a linear order on W (Q) defined by U � U ′ if pU ′ ⊆ pU . Note that U � U ′

implies that U ⊆ U ′. Let UQ denote the minimal set in W (Q) with respect to this order, and let

M(G− x) = {UQ : Q ∈ C(G, x)}

be the collection of all minimals. Note that {v} is a minimal set for all v ∈ V (G). Let

av = av(G, x) =
1

|M(G− x)|
∑

U∈M(G−x)

|pU |

be the average length of the paths pU over all minimals U . Here |pU | denotes the length of path
pU , i.e., the number of edges.

Theorem 5.1. For a connected graph G and vertex x, we have

av(G, x) · (N(G, x)− 1) ≥ N(G− x).

Proof. For a minimal set U ∈ M(G − x), let pU = {vU = p0, p1, p2, . . . , pk = x}, vetices of pU in
succession, where k := kU depends on U . Let

Y (U) = {U ∪ {p0, p1, p2, . . . , pj} : 0 ≤ j < kU}.

Clearly |Y (U)| = |pU |. Note that the sets Y (U) are pairwise disjoint, i.e., if U 6= U ′, then Y (U) 6=
Y (U ′), and

C(G− x) =
⋃

U∈M(G−x)

Y (U).

Thus {Y (U) : U ∈ M(G − x)} partitions C(G − x). Consider the map f : C(G − x) → C(G, x)
defined by f(U) = U . For U ∈ M(G− x), each set in Y (U) is mapped to the same set in C(G, x);
for distinct U,U ′ ∈ M(G − x) each pair of sets A ∈ Y (U) and B ∈ Y (U ′) are mapped to distinct
sets in C(G, x). Therefore

N(G− x) =
∑

U∈M(G−x)

|pU | = av(G, x) · |M(G− x)| and N(G, x) ≥ |M(G− x)|+ 1.

The +1 is to count the vertex x itself. Therefore N(G, x) ≥ N(G − x)/av(G, x) + 1 and hence
av(G, x) · (N(G, x)− 1) ≥ N(G− x). �

Theorem 5.2. For any 2-connected graph G of order n and any vertex x of G, we have av(G, x) ≤
(n− 1)/2, with equality if and only if G = K3.
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Proof. According to [2, Theorem 1], the diameter of a 2-connected graph is at most d(n− 1)/2e. If
n is odd, then the diameter is at most (n− 1)/2. Then clearly average av(G, x) < (n− 1)/2 unless
G = K3, in which case av(G, x) = 1 = (n− 1)/2.

If n is even, let y be a vertex of G furthest from x. If the the distance from x to y is less than
n/2, then it is clear that av(G, x) ≤ n/2 − 1 < (n − 1)/2. So assume that the distance between x
and y is exactly n/2. Since G is 2-connected, there is a cycle C containing x and y. Because the
distance between x and y is exactly n/2, the cycle C contains all the vertices of G. A minimum
distance spanning tree T of G contains all edges of C except one that is incident to y, say {y, w}.
In this case M(G − x) = {{v} : v ∈ V (G), v 6= y} ∪ {{w, y}}. A simple calculation shows that
av(G.x) = n/4 + (1/2− 1/n) < (n− 1)/2. �

Corollary 5.3. Let H be a maximal 2-connected subgraph of order at least 3 of a graph G of order
n. Let x be a vertex of H such that the set of all neighbors of x induce a complete subgraph of H.
Then av(G, x) ≤ (n− 1)/2, with equality if and only if G = K3.

Proof. Theorem 5.2 settles the case G = H, so assume that H is a proper subgraph of G. Construct
a shortest distance spanning tree T of G by first constructing a shortest distance spanning tree T of
H and extending it to G. Denote the order of H by h. Let K denote the complete graph induced
by the neighbors of x. Note that no edge of K is in T .

Consider a set U ∈M(G− x) such that U has a vertex in H. As in the proof of Theorem 5.2, if
h is odd, then |pU | ≤ (n− 1)/2. If h is even, then either |pU | ≤ n/2− 1 or U ∩H = {y}, where y is
the unique vertex of H at distance h/2 from x. We claim that U ∩H = {y} is not possible. Note
that all edges incident with y that are not in H must be in T . Therefore, if U ′ := U \ {y}, then
U ′ ≺ U , which implies that U /∈M(G− x), a contradiction.

Next partition M(G) into three sets A,B,C as follows. We will consider the average of the |pU |
for U in each of the sets A,B,C. Let A consist of all those connected sets U ∈ M(G) such that
U has a vertex in H but does not contain all vertices in K. Let B′ consist of all those connected
sets U ∈ M(G − x) with no vertex in H. For U ∈ B′ let p be the subpath of pU with one end
vertex in K and the other in U . Let U ′ = U ∪ p ∪ K, and note that U ′ ∈ M(G) and |pU ′ | = 1.
The map f : B′ →M(G) defined by f(U) = U ′ is an injection. Let B = B′ ∪ f(B′). Let C be the
complement of A ∪B in M(G), and note that |pU | = 1 for all U ∈ C.

We have aleady shown that the average of the path distances |pU | for U ∈ A is at most (n− 1)/2
if h is odd and at most ess than (n− 2)/2 if h is even. Concerning the set B, the average

(|p(U)|+ |p(U ′)|)/2 ≤

{
1
2

(
(n− h) + h

2 + 1
)

= 1
2

(
n− h

2 + 1
)
≤ n−1

2 if h is even
1
2

(
(n− h) + h−1

2 + 1
)

= 1
2

(
n− h

2 + 1
2

)
< n−1

2 if h is odd.

Therefore, the average of the path distances |pU | for U ∈ B is at most (n− 1)/2. The path distance
|pU | = 1 for all connected sets in C. Therefore we have av(G, x) < (n− 1)/2 unless G = K3. �

6. An Inequality For Graphs With A Cut-Vertex

Let x be a cut-vertex of a connected graph G of order n, and let M = M(x) = M(G, x) denote
the number of connected components of G − x. Denote these components by G1, . . . , GM , and let
n1, . . . , nM be their respective orders. Note that n = 1 + n1 + n2 + · · ·+ nM . For i = 1, 2, . . . ,M ,
denote by G′i the subgraph of G induced by the vertices V (Gi) ∪ {x}. To simplify notation, let
Ni = N(Gi) and Ni(x) = N(G′i, x). Let ai = av(G′i, x)/ni.

The main result of this section is the following inequality, which is essential to our proof of
Theorem 1.1. The proof of Theorem 6.1 appears at the end of this section, after several lemmas.

Theorem 6.1. If G is a connected graph with at least one cut-vertex, but not a near tree, then
there is a cut-vertex x such that following inequality holds:

(6.1) (n− 1)

M∏
i=1

Ni(x) > 2

M∑
i=1

(n− ni)Ni.
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The cut-vertex x in Therorem 6.1 will be called the root vertex of G. The theorem states that
we can choose a root vertex that satisfies inequality (6.1).

Lemma 6.2. If x is a vertex of degree at least 2 in a tree T of order n, then N(T, x) ≥ 2n unless
T is one of the trees in Figure 2.

Proof. It is routine to check that if T is a tree of order at most 6 with deg(x) ≥ 2, not a tree in
Figure 2, then N(T, x) ≥ 2n. Proceeding by induction on n, assume the statement is true for all
trees of order n with n ≥ 6 and not in Figure 2, and let T be tree of order n+ 1. Remove a leaf y of
T , not a child of x, to obtain a tree T ′ of order n. By the induction hypothesis, either N(T ′, x) ≥ 2n
or T ′ is a graph of the form on the left in Figure 2. In the first case, adding y back adds at least
two new connected subtrees containing x, the path p from x to y and the union of p and a child of
x not on p. Therefore N(T, x) ≥ N(T ′, x) ≥ 2(n + 1). In the second case, T is of the type on the
left in Figure 2. �

Figure 2. A dashed line indicates any number of vertices.

Corollary 6.3. If x is a vertex in a graph G of order n, and x is contained in a 2-connected
subgraph of G, then N(G, x) ≥ 2n unless G is a subgraph containing x of one of the graphs in
Figure 3.

Proof. Let T be a spanning tree of G containing all edges incident to x. By Lemma 6.2 we have
N(G, x) ≥ N(T, x) ≥ 2n unless T is one of the trees in Figure 1. In this latter case, however, the
fact that x lies in a 2 connected graph implies the existence of sufficiently many additional edges to
insure that N(G, x) ≥ 2n. �

Figure 3. The dashed line indicates any number of vertices.

If M(x) = 2 in the statement of Theorem 1.1, then inequality (6.1) reduces to

(6.2) (n− 1)N1(x)N2(x) > 2(n2 + 1)N1 + 2(n1 + 1)N2.

Lemma 6.4. If x is a cut-vertex of G such that M(x) = 2 and both N(G′i, x) ≥ 2(ni + 1) and
ai ≤ 1/2 for either i = 1or i = 2, then

(n− 1)N1(x)N2(x) > 2(n2 + 1)N1 + 2(n1 + 1)N2.
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Proof. Without loss of generality, assume that N1(x) ≥ 2(n1 + 1) and a1 ≤ 1/2. Then using
Theorem 5.1 and the obvious fact that N2(x) ≥ n2 + 1 we have

(n− 1)N1(x)N2(x)−
(
2(n2 + 1)N1 + 2(n1 + 1)N2

)
=
(
n1N1(x)N2(x)− 2(n2 + 1)N1

)
+
(
n2N1(x)N2(x)− 2(n1 + 1)N2

)
≥
(
n1N1(x)N2(x)− 2(n2 + 1)a1n1(N1(x)− 1)

)
+
(
n2N1(x)N2(x)− 2(n1 + 1)n2N2(x)

)
>
(
n1N1(x)N2(x)− 2(n2 + 1)a1n1N1(x)

)
+
(
n2N1(x)N2(x)− 2(n1 + 1)n2N2(x)

)
= n1N1(x)

(
N2(x)− 2(n2 + 1)a1

)
+ n2N2(x)

(
N1(x)− 2(n1 + 1)

)
≥ n1N1(x)

(
N2(x)− (n2 + 1)

)
+ n2N2(x)

(
N1(x)− 2(n1 + 1)

)
≥ 0.

�

Lemma 6.5. If there is a cut-vertex x in G such that either

(1) M(x) ≥ 4 or
(2) M(x) = 3 with min{n1, n2, n3} ≥ 2 and at least two of n1, n2, n3 are at least 3,

then inequality (6.1) holds with x as the root of G.

Proof. Using Theorem 5.1 and the fact that Ni(x) ≥ ni + 1 we have

(n− 1)

M∏
i=1

Ni(x)− 2

M∑
i=1

(n− ni)Ni =

M∑
i=1

(
niN1(x)N2(x) · · ·NM (x)− 2(n− ni)Ni

)
>

M∑
i=1

(
niN1(x)N2(x) · · ·NM (x)− 2(n− ni)ainiNi(x)

)
≥

M∑
i=1

niNi(x)
(∏

j 6=i

Nj(x)− 2
(
1 +

∑
j 6=i

nj

))
≥

M∑
i=1

niNi(x)
(∏

j 6=i

(ni + 1)− 2
(
1 +

∑
j 6=i

nj

))
.

If M ≥ 4, then

(6.3)
∏
j 6=i

(ni + 1) ≥ 2
(
1 +

∑
j 6=i

nj

)
,

verifying inequality (6.1). If M = 3, then, without loss of generality, assume that i = 3 in inequal-
ity (6.3), in which case∏

j 6=i

(ni + 1)− 2
(
1 +

∑
j 6=i

nj

)
= n1n2 − n1 − n2 − 2 = (n1 − 1)(n2 − 1)− 2,

which is greater than or equal to 0 if min{n1, n2} ≥ 2 and max{n1, n2} ≥ 3. Therefore

(n− 1)

M∏
i=1

Ni(x) > 2

M∑
i=1

(n− ni)Ni

if M ≥ 4 or if M = 3 with min{n1, n2, n3} ≥ 2 and at least two of n1, n2, n3 at least 3. �

Lemma 6.6. Let x be a cut-vertex of G with M(x) ≥ 3 and denote the components of G − x by
G1, G2, . . . , GM . Assume, without loss of generality, that min{Ni : 1 ≤ i ≤M} = NM . If the graph

G′ induced by the vertices {x} ∪
⋃M−1

i=1 V (Gi) satisfies (6.1), then G also satisfies (6.1).

Proof. Assume that (n − 1)
∏M−1

i=1 Ni(x) > 2
∑M−1

i=1 (n − ni)Ni holds for the graph G′. We must
show that

(n + nM − 1)

M∏
i=1

Ni(x) > 2

M−1∑
i=1

(n + nM − ni)Ni + 2nNM ,
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i.e.,

NM (x)(n− 1)

M−1∏
i=1

Ni(x) + nMNM (x)

M−1∏
i=1

Ni(x) > 2

M−1∑
i=1

(n− ni)Ni + 2nM

M−1∑
i=1

Ni + 2nNM .

Because it is assumed that G′ satisfies (6.2), this reduces to showing that

NM (x)2

M−1∑
i=1

(n−ni)Ni +nMNM (x)
2
∑M−1

i=1 (n− ni)Ni

n− 1
≥ 2

M−1∑
i=1

(n−ni)Ni + 2nM

M−1∑
i=1

Ni + 2nNM ,

i.e.,
M−1∑
i=1

(
(NM (x)− 1)(n− ni) + nM

(NM (x)(n− ni)

n− 1
− 1
))

Ni ≥ nNM .

By the minimality of NM and the fact that
∑M−1

i=1 ni = n− 1, it now suffices to show that(
NM (x)− 1 +

nMNM (x)

n− 1

)(
Mn− 2n + 1

)
− (M − 1)nM

=
(
NM (x)− 1 +

nMNM (x)

n− 1

)M−1∑
i=1

(n− ni)− (M − 1)nM

=

M−1∑
i=1

(
(NM (x)− 1)(n− ni) + nM

(NM (x)(n− ni)

n− 1
− 1
))
≥ n.

Because NM (x) ≥ nM + 1, we have

NM (x)− 1 +
nMNM (x)

n− 1
≥ nM (nM + n)

n− 1
.

To finish the proof, the following inequality is required:

(Mn− 2n + 1
)(
nM (nM + n)

)
−
(
(M − 1)nM + n

)
(n− 1) ≥ 0.

As a function of M , the derivative of the left hand side of the inequality above is positive. Therefore
it is sufficient to prove the inequality for M = 3, i.e.,

(n + 1)(n2
3 + nn3)− (n− 1)(2n3 + n) = n2(n3 − 1) + nn3(n3 + 1− 2) + n2

3 + 2n3 + n ≥ 0,

which clearly holds. �

Proof of Theorem 6.1. If G has a cut-vertex that satisfies condition (1) or (2) in the hypothesis
of Lemma 6.5, then, by that lemma, Theoerem 6.1 is true. Therefore it can be assumed that, for
all cut-vertices x of G, either

(a) M(x) = 2, or
(b) M(x) = 3 and at least two components of G− x have order at most 2.

In case (b), if x is chosen as the root of G, then by Lemma 6.6 it may be assumed that

(b′) a component of G − x of smallest order has been removed and M(x) = 2 for the resulting
graph.

The proof is by cases. We will show that the inequality (6.1) holds when G has:

(1) a red block of order at least 5;
(2) an interior red block of order 4;
(3) at least two red blocks, one of which is interior.

Our assumption that G is not a near tree eliminates the cases:

• G is a tree;
• G has exactly one interior block of order 3;
• all leaf blocks are of order 3 or 4.
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Hence cases 1-3 are exhaustive and their proof is sufficient to vertify Theorem 6.1.

Case 1. Let B be a block in G of order at least 5, and let x a cut-vertex in B. Choose x as the
root of G. By items (a) and (b′) above, it may be assumed that M(x) = 2. Inequality (6.2) must
be verified.

Let G′ be the graph induced by the union of x and the component of G−x containing B. Without
loss of generality, let this be the component whose parameters have index i = 1 in inequality (6.2).

Let Ĝ be obtained from G′ by adding an edge between every pair of neighbors of x. Note that G′

and Ĝ have the same set of vertices and the same set of connected sets containing x. Also, the

number of connected sets in Ĝ not containing x is at least as large as the number of connected sets

in G′ not containing x. Therefore if inequality (6.2) holds with G′ replaced by Ĝ, then it also holds

for G. By Corollary 5.3 we have a1 ≤ 1/2, and by Corollary 6.3 we have N(Ĝ, x) ≥ 2(n1 + 1) -

unless Ĝ is a subgraph containing x of one of the graphs in Figure 3. This is not possible since the
order of B is at least 5. By Lemma 6.4, the proof of Case 1 is complete.

Case 2. Let block B in G be of order 4 and, since B is interior, let x and y be distinct cut-
vertices of G on B. Take x as the root of G. Let G′ be the graph induced by the union of x and the
component of G−x containing B. Note that G′ contains y, and therefore G′ cannot be a subgraph
containing x of any graph in Figure 3. Hence N(G′, x) ≥ 2(n1 + 1) by Corollary 6.3. Now the proof
proceeds as in Case 1.

Case 3. Let B1 be a red block that is interior; let B2 be another red block; and let p be the
unique path in T(G) joining B1 and B2. Since B1 is interior, by Case 2 we can assume that it has
order 3. Let x′ be a vertex in T(G) adjacent to B1 that does not lie on p. Let x be the vertex in
G corresponding to x′, and choose x as the root of G. We may assume by (a) and (b′) above that
M(x) = 2, which reduces the problem to proving inequality (6.2). Let G′ be the graph induced by
the union of x and the component of G− x containing B1 and B2. By Corollaries 5.3 and 6.3, we

have N(Ĝ, x) ≥ 2(n1 + 1) and a1 ≤ 1/2. Lemma 6.4 completes the proof of Case 3. �

7. Proof of the Lower Bound Theorem

Proposition 7.1. If G is a connected graph with vertex set {x1, . . . , xn}, then S(G) =
∑n

i=1 N(G, xi).

Proof. Count the number of pairs (x, U) such that x ∈ V (G), U ∈ C(G) and x ∈ U, in two ways to
obtain

S(G) =
∑
U∈C
|U | =

∑
x∈V (G)

N(G, x) =

n∑
i=1

N(G, xi).

�

Theorem 7.2. For a connected graph G of order n we have

S(G) ≥ n + 2

3
N(G),

with equality if and only if G is a path.

Proof. The proof is by induction on n. The statement is easily checked for n ≤ 4. By Corollary 4.4,
it is also true for near trees as in Definition 4.3. Assume it is true for graphs of order n− 1, and let
G have order n. By Proposition 7.1, the average of the numbers N(G, x) over all vertices x in G is
S/n. Let x be a vertex such that N(G, x) ≥ S(G)/n. Let G′ = G− x. There are two cases.
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Case 1. The vertex x is not a cut-vertex, hence G− x is connected. From Theorem 3.1 and the
induction hypothesis

S(G) = S(G− x) + S(G, x) ≥ n + 1

3
N(G− x) +

n + 1

2
N(G, x)

=
n + 2

3

(
N(G− x) + N(G, x)

)
− 1

3
N(G− x) +

n− 1

6
N(G, x)

=
n + 2

3
N(G) +

1

6

(
(n− 1)N(G, x)− 2N(G− x)

)
≥ n + 2

3
N(G) +

1

6

(
(n− 1)S(G)/n− 2N(G− x)

)
It only remains to show that (n− 1)S(G)/n > 2N(G− x). But we have

(n− 1)S(G) = (n− 1)
(
S(G− x) + S(G, x)

)
≥ (n− 1)

(n + 1

3
N(G− x) +

n + 1

2
N(G, x)

)
,

which is larger than 2nN(G− x) if and only if

3(n2 − 1)N(G, x) + 2(n2 − 6n− 1)N(G− x) > 0.

The polynomial 2(n2 − 6n − 1) is positive for n ≥ 7. The inequality for smaller values of n can
be checked using the facts that, for n = 4 we have N(G, x) ≥ 4, N(G − x) ≤ 7 (the path and
the complerte graphs), for n = 5 we have N(G, x) ≥ 5, N(G − x) ≤ 15, and for n = 6 we have
N(G, x) ≥ 6, N(G− x) ≤ 31.

Case 2. Every vertex such that N(G, x) ≥ S(G)/n is a cut-vertex. If G is a near tree, then
we are done. Otherwise, by Theorem 6.1, there is cut-vertex x that satisfies inequality (6.1). Let
G1, . . . , GM be the connected components of G− x. Note that n = 1 + n1 + n2 + · · ·+ nM . Now

N(G, x) =

M∏
i=1

N(G′i, x)

S(G, x) =

M∑
i=1

(S(G′i, x)−N(G′i, x))
∏
j 6=i

N(G′j , x) +

M∏
i=1

N(G′i, x)

=

M∑
i=1

S(G′i, x)
∏
j 6=i

N(G′j , x)− (M − 1)

M∏
i=1

N(G′i, x).

In the formula for S(G, x), the terms −N(G′i, x)) and
∏M

i=1 N(G′i, x) are to count the vertex x the
correct number of times. By the induction hypothesis and Theorem 3.1 we have

S(G) = S(G− x) + S(G, x) =

M∑
i=1

S(Gi) +

M∑
i=1

S(G′i, x)
∏
j 6=i

N(G′j , x)− (M − 1)

M∏
i=1

N(G′i, x)

≥
M∑
i=1

ni + 2

3
N(Gi) +

M∑
i=1

(ni + 2

2
N(G′i, x)

∏
j 6=i

N(G′j , x)
)
− (M − 1)

M∏
i=1

N(G′i, x)

=

M∑
i=1

ni + 2

3
N(Gi) +

n + 1

2

M∏
i=1

N(G′i, x).

It remains to show that the expression in the last line above is greater than

n + 2

3
N(G) =

n + 2

3

(
N(G− x) + N(G, x)

)
=

n + 2

3

( M∑
i=1

N(Gi) +

M∏
i=1

N(G′i, x)
)
.
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This is equivalent to showing that

(n− 1)

M∏
i=1

N(G′i, x) > 2

M∑
i=1

(n− ni)N(Gi),

which is exactly inequality (6.1) in Theorem 6.1. �

8. Two Open Problems

Although, for a general connected graph, the lower bound of Theorem 1.1 is best possible,
evidence indicates that D(G) > 1/2 for a large class of graphs. The result of Kroeker, Mol, and
Oellermann [6] referenced in Section 2, for example, proves that this is the case for cographs. We
made the following conjectured in [10].

Conjecture 1. For any graph G, all of whose vertices have degree at least 3, we have D(G) > 1
2 .

One difficulty in proving this conjecture, if true, is that knowing exactly for which graphs D(G) >
1
2 is problematic . There are graphs, all of whose vertices have degree at least 2, whose density is less
than 1/2 and some whose density is greater. Adding an edge to a graph may increase the density
or it may decrease the density, similarly for adding a vertex. This makes a proof by induction
challenging.

As mentioned in Section 2, there are trees whose density is arbitrarily close to 1. For trees where
every vertex has degree at least 3, the density is bounded above by 3/4 and this is best possible [9].
A family of cubic graphs appearing in [10] has asymptotic density 5/6. We know of no graph, all of
whose vertices have degree at least 3, with a larger density.

Question 2. Is there an upper bound, less than 1, on the density of graphs all of whose vertices
have degree at least 3?
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