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1. Introduction. In this note we present two theorems on exponential 
sums (see Theorems 1 and 2 below). Although seemingly unrelated, both 
results are motivated by the study of a certain type of lower estimates of 
exponential sums in the complex domain. Thus while Theorem 2 is related 
to the validity of this estimate for all discrete exponential sums2, Theorem 
1 essentially says that even a milder estimate of this kind does not hold 
for a whole class of continuous exponential sums (i.e. for certain Fourier 
transforms). 

In addition to the usual notation of the theory of distributions (cf. 
[2], [3], [7]), the following symbols will be used throughout this note. 
Given a distribution <D e ê'=.ë'{Rn), the symbol [O] ({0} resp.) denotes 
the convex hull of the support of O (singular support of O, resp.). For 
A^Rn, hA is the supporting function of A, i.e. hA(X)=sup{eeA (x, A), 
X e Rn. For £ e Cn and r>0, A=A(£; r) is the closed polydisk with center 
£ and radius r; and, if g(£') is any continuous function on A(£; r), we shall 
write 

(1) |g (Q| r =max|g(0 | . 

2. Indicators of smooth convex bodies. 
DEFINITION. Let O e ê' be such that 

(2) {<D * T} = {0} + {T} ( W e ê'). 

Then O will be called a good convolutor. 
The relationship of being a good convolutor to the solvability of the 

convolution equation O * «=ƒ in the appropriate distribution spaces was 
discovered by L. Hörmander [7], and since then it was discussed by several 
authors (for references, cf. [2, Chapter I]). However, it is usually not easy 
to decide whether a given distribution O is a good convolutor or not. 
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Moreover, few good convolutors are known, and as Theorem 1 below will 
indicate, even distributions of a very simple nature may fail to be good 
convolutors. 

It can be shown [4, Proposition 2] that the following condition on <î> 
is sufficient for O to be a good convolutor: 

CONDITION (RJ. There exist constants f^O, r>0, c>0 and A real 
(all depending on 0) so that (cf. (1)) 

(3) |4>(0l^c(l + l^exp(A[o](^)) 

for all £=f+fy e Cn such that \£\^t and \r/\>t log(l + |f|). 
Since any distribution O with finite support satisfies condition (Rw) 

(cf. [4, Proposition 6]), we thus obtain a result of Hörmander [7], [8], 
according to which all distributions with finite support are good con­
volutors. This in turn can be used to prove the following statement (cf. 
[4, Proposition 6]): 

Let P be an arbitrary compact convex polyhedron in Rn and %P the distri­
bution defined by the characteristic function of P. Then %P satisfies condition 
(Reo), hence %P is a good convolutor. The same conclusion holds for the 
surface measure %dP of density 1, i.e. 

Xzp{<t>) = <K*) dsx> (<£ e ê) 
JdP 

where dsx is the surface element. 
It seems natural to ask whether this proposition holds for smooth 

convex bodies P as well. At the first glance it seems that it does. Indeed, if, 
for instance, P is any ellipsoid in Rn, then the distribution ®=%P satisfies 
the following weaker version of (2) (cf. the concluding remark in [5]) : 

(2*) {Y} c {0 * T} - {0} ( W e g9). 

Therefore, it is rather surprising that this particular O is not a good con­
volutor [5, Proposition 4]. The following theorem sheds more light on this 
peculiar situation. 

THEOREM 1. Let P be a convex body in Rn (n>l) with a C00-boundary 
dP. Moreover, it is assumed that the Gaussian curvature ofdP never vanishes, 
i.e. K(x)>Ofor every x e dP. Then neither %P nor %dP is a good convolutor. 

REMARK. Both assumptions on dP (i.e. smoothness and K>0) can be 
substantially relaxed. 

The proof of Theorem 1 is based on a detailed study of the asymptotic 
behavior of the functions %P and %dP in the complex domain. For £ real, 
estimates of this kind were previously derived by numerous authors (cf. 
[9], [10], [11] and the references given in [10], [11]). However, for our 
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purposes these estimates must be sharpened. As an illustration, consider 
the case of the convex surface S=dP. Given £=Ç+irj e Cn with f 5*0, 
write r= 11| and consider Ç—rœ+irj with co fixed. Letxj=(x[, • • • , x?n) e S 
(y=0, 1) be the points 

xl = dh&-iyS)ldS* (v = l, • • • , ! ! ) . 

Fix arbitrarily the open subsets Sk (k=0, 1, 2) of S so that S=Ufc S*> 
SPnS1** 0 , xj e S*\S2 (y=0, 1). Then for any q>n\2 and v>0 there exist 
positive numbers aj9 bj and c„ such that 

uo = (i - o ^ Q ^ V ^ S ^(xO-1/2exP(~^^ o) 
+ /i + 72 + 73; 

(4)
 I/X(OI ^ ^-w/2(i + w r 2 ** exp«*'*> *?»> 

I/2(OI ^ r-a + i^ir 2fc> «p[vfo)i 

where 2=25=0,i- Formula (4) combined with a result of Hörmander [8] 
yields Theorem 1 for %dP. Asymptotic expansions similar to (4) hold for 
Xp as well as for the Fourier transforms of certain measures with non-
constant density. 

3. The discrete case. Generalization of Ritt's theorem. In this part we 
shall consider finite exponential sums, and more generally, exponential 
polynomials in several complex variables. If H is an exponential poly­
nomial, i.e. a function of the form 

(5) ff(D = 2 /^)exp«0„ £>) (f e C") 

with complex frequencies Oj e Cn and polynomial coefficients hùf, the greatest 
common divisor of the /z/s, dH=(hu • • • , /zs), will be called the content 
of /f. Moreover, we shall write (£#(£)=max,. Re(0,, 0- Henceforth an 
exponential sum will mean a function of the form (5) with all coefficients 
hj constant. The following lower estimate of exponential polynomials was 
proved in [3], [5]: 

(R0) Given an exponential polynomial H and an arbitrary £>0, there 
exists C=C(e, H)>0 such that for every £ e C n and any ƒ analytic in 

(6) | /(0I exp(^ (0 ) ^ C | ƒ (0»(0l.-s 

3 Obviously, estimate (R0) is much stronger than (Rw). 
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In this section we shall discuss the following 
Question. Let F and G be exponential polynomials in n variables such 

that the function H=F/G is entire. What can be said about the structure of 
HI In particular, when is H an exponential polynomial? 

Simple examples show that H need not be an exponential polynomial 
(e.g., « = 1 , F=sin £, G=£). On the other hand, if F and G are exponential 
sums in one variable such that H is entire, then, according to a theorem of 
Ritt [12], / / i s also an exponential sum. Different proofs of Ritt's theorem 
were given by H. Selberg, P. D. Lax and A. Shields (cf. the references in 
[12], [13]). In particular, Shields [13] proves that H is an exponential 
polynomial as long as it is entire and G is an exponential sum. He also 
mentions that, according to an unpublished result of W. D. Bowsma, the 
last assumption may be replaced by dQ=l. Finally, Avanissian and 
Martineau [1] generalized the original Ritt's theorem to arbitrary n>\. 
The following theorem contains all these results as special cases. Moreover, 
it shows that the above counterexample is in a certain sense the best 
possible: 

THEOREM 2. Let F,G, H be as above (n^.1 arbitrary). Then there exists 
an exponential polynomial E and a polynomial Q such that H=ElQ. Hence 
we may assume (dE, 0 = 1. Then E and Q are determined uniquely4" and Q 
divides dG. 

The starting point for the proof of Theorem 2 is the following assertion: 
Let / , g, h be the analytic functionals whose Fourier-Borel transforms are 
F,G, H respectively. Then h is carried by the polyhedron defined by &F— 
dG. This in turn follows from (R0). 

The proofs together with applications of the above theorems will appear 
elsewhere. 
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