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A Lower Lipschitz Condition 
for the Stable Subordinator 

JOHN HAWKES 

1. Introduction 

In [5' pp. 168-172] L6vy showed that if Xt(o9 ) is the Brownian motion process 
in R and if 

4) (h) = (2 h log 1/h) ~ 

then 

lim sup _ 1 
~ o  oz,_<a ~b(h) 

0 < h < e  

almost surely. 

Since the Brownian motion process is the only stable process with continuoas 
sample paths we can have no such result for stable processes of index c~, c~ < 2. We 
can, however, pose a related question for the stable subordinator, T t (co). Here the 
sample paths are increasing and one can ask to what extent they are uniformly 
increasing. In other words, for what functions ~b, if any, do we have 

lira inf Tt+h(e))-- Tt(~ - 1 
~ o  o=<t<l q~(h) 

0 < h < e  

holding almost surely? 

In this paper we answer this question and then use the relationship between 
the local time at zero of a stable process of index ~, ~> 1, in R and the stable 
subordinator of index 1 - 1/~ to obtain a modulus of continuity result for the 
local time. Finally, we apply our result to a problem considered by Jain and 
Pruitt in [4]. 

2. Preliminaries 

Suppose that 0 <  ~_< 2. A stable process of index ~ in R is a stochastic process 
Xt(o~), defined on some probability space (f2, Y,P)  with Xo(og)=0, stationary 
independent increments, and with characteristic function given by 

E exp i(z X~) = exp [ -  t ~b (z)]. 

Here ~ (z) = c [zl" [ 1 - i h sgn (z) w (~, z)], where w (e, z) = tan 0z e/2) if ~ :~ 1, and 
w(1, z ) = - ( 2 l o g  Izl)/m h and c are real constants satisfying I h] < 1 and c>0 .  If 
~ = 2  and c-i-E, Xt(c~ is the Brownian motion process, if 0 < e <  1, c=cos(ne /2 )  
and h = 1 the corresponding process, T~(co), has increasing sample paths and is 
called the stable subordinator of index e. T~(co) is seen to satisfy 

E e x p ( -  2 Tt) = e x p ( -  tU).  
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I t  is easily seen tha t  these processes have  t ransi t ion densities p(t, y - x )  which, 
for each t, are bounded  and  cont inuous  functions o fy .  When  e + 1 we always have 

rt/~ p(r t, rl/~ x)= p(t, x) 
for each r > 0. 

N o w  suppose  that  Xt(co ) is a stable process  of  index ~, a >  1, in R, Then  for 
any Borel  set B we define u 

T(u, B, co) = S I~ [X,(cot] dt 
0 

where IB(x) is the indicator  funct ion of the set B. Boylan [3] demons t r a t ed  the 
existence of  a density L(u, x, co) of  T(u, B, co) which is joint ly  cont inuous  in x and u. 
L(u, x, co) is called the local t ime at  x of  Xt(co ). 

Let A,(co)=L(u, O, co) be the local t ime at  zero of X~(co). In  [8] Stone showed 
that  if S t (co) is the process defined by 

St(co ) = inf[u:  A,(co) > t] 

then S~(co)=p Tt(co ), where  Tt(co ) is the stable subord ina to r  of  index 7, 7 =  1 -1/c~, 
and  p is given by 

p-~=n- tF( l+l /cOC(1-1 /cOc-~/~Re{[1- ih tan(~a/2)] -~ /~} .  (1) 

3. The Distribution of  T t 

We could deduce our  est imate for the dis t r ibut ion of T t f rom that  for the density 
given in [7]. However ,  we lose noth ing  by doing the c o m p u t a t i o n  directly. 

L e m m a  1. Let T~(co) be a stable subordinator of index c~. Then, as x ~ 0 +, 

P ( T  t ~ t I[a x)  ~ c 1 x ~/(2 ( 1 -  ~:)) exp ( - c 2 x-(~/(1- ~))). 

Where 

and 
c 1 = c1(o 0 = [2rc (1 - e) e~,/(2 0-~,))] -~  

c2  = c2  (c0 = (1 - c0 c e / " - ' ~ .  

Proof Let  F(x)=P(T~<tl/~x)=P(TI<x),  and let f (x)  be the density of  F(x). 
Then 

e x p ( - U ) = E  e x p ( - ~ .  T 0 

o9 

= ~ e x p ( - 2 x )  f (x)  dx. 

By the formula  for the inversion of a Laplace  t rans form we have 

1 a+ioo 

f ( x ) -  2hi  ~ e x p ( - ' ~ + x X ) d 2  
for any  a > 0 .  a-ioo 

Put  2 o = (c~/x) 1/~ and take a = 2 0 , then 

)L 0 1+io~ 

f ( x ) =  2 x i  ~ exp[q~(/z)]d# 
i ioo 

where ~b (/0 = - 2~ kt" + x 2 o #. 
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N o w  we have 

~'0)=o, 
~b"(1) = cffl - e )  0~ ~/(1-~) x -(a/(1-e)). 

So, i f / ~ = l + i y  a n d y  real, as y ~ O  + 

~b (#) - ~b (1) - � 8 9  4/'  (1) y2. 

The saddle point  approximat ion  shows that, as x --+ 0 +, 

f ( x )~  2~i exp[(~ i ~ exp[- �89 0"(1) y2] dy 
- o o  

20 l ~  2n 
- 2n  exp[~b(1)] qS"(1) 

= A x (1/(1-~))+./(2,-~)) e x p ( -  c z x -(~/(1 -'))) 

where 
~1/ (2  (1 - c0) 

A -  
[2n(1 - c 0 ] ~  " 

9C 

N o w  F ( x ) =  ~f(s)ds so that. as x ~ 0  +, 
0 

x 

F(x)~A ~ s (1/(1-~))+~/(2(1-~))exp(_c 2 s-(~/(1-~))) ds. 
0 

Putt ing u = s -(~/(1-~)) we have 

F(x)~A 1-~_~ ; u_~exp(_CzU)du 
O~ x ( ~ / 0 - ~ ) )  

A 1-c~ 
- -  ( X - ( C q ( 1 - ~ ) ) )  - � 8 9  e x p ( -  c 2 X - ( ~ / ( 1 - ~ ) ) )  

C 2 

= cl x./(2 o -  ~)) exp ( - c 2 x - (~/(1 --:~))) 

and the l emma is proved. 

4. Lipschitz Conditions 

We come now to our  main  theorem. 

Theorem 1. Let Tt(co ) be a stable subordinator of index c~, and let 

q~(h)= 
[ log 1~hi (1-~)/~ 

then 

almost surely. 

lim inf T~+h(C~176 
~ o  o__<t__<l ~(h) 

O < h < e  

(2) 
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Proof. Let q, j and k be non negative integers such that O<__j<=2 q and [q/3] < 
k < q, and let 6 be such that 0 < 6 < 1. 

Let Ajk q be the event: 

so that P ( A j k q )  = P(T 1 < x) where 

Lemma 1 now applies to show that 
(q + 2)1 + a 

P(Ajkq)=O(1) 2q(l+�89 

and hence oo 2q q 
y, 2 s P(Ajkq)<~176 

q= 1 j= 0 k= [q/31 

The Borel-Cantelli lemma now shows that, for almost all a~, there exists an integer 
q (~o) such that, whenever q __> q (09), o ~  A j k  q . That is q > q (o)) implies 

/ k + 2 ] [  c2 1 
T(j+k)12'~(~176 \ 2 q ] [ 1 + 6  J (3) 

for all integers k = [q/3] . . . . .  q 
j = 0 , . . . , 2  q. 

Now let ,/(co) = q (~o)/2 q(~'). For  any t satisfying 0 _< t < 1 and h with 0 < h < q (o9) 
we define integers q, j and k as follows: 

q + l  ~_q 
2q+l =<h< , 

so that q>  qgo), 

j--1 < t < 4 <  j ~ _ < t + h  < 
2 q = 2 2 = 

so that [q/3] _< k ___ q and 0 _<_ j < 2 q. We now have 

r,+h(~o)- r,(co)____ ~j+k~/2~(oD- ~/2.(~~ 
>4, t'k+2'  r c2 1 

t 2~ ! L I ~ T J  ' 

> qS(h) [ c~+6](t-~)", 

Thus 

inf 
o < t < l  

O<h<~/(w) 

T,+~(ro)-T,(~o) > [  ~ ] <~-'~i" 
4,(h) = [ 1 + 6  _1 

~(h)  = t l + a 7  

j + k + l  

2 q 

by the monotonicity of T 

by 3 

by the monotonicity of r  

lim inf 
e--+0 0-<t-<l 

O<h<~ 

Since P [q (co) > 0] = 1, we have 
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Now, letting 3 tend to zero through a countable sequence, we obtain 

lim inf Tt+h(e))-Tt(c~ >c(21-~)/~ (4) 
~ o  o_<t_<a ~b(h) 

0 < h < e  

almost surely. 

To obtain the opposite inequality we again take 5 with 0 < ~ < 1. Now let Aqj 
be the event (~_ ~)/~ T(j+I)/2q((D)-Tj/2q(fD)~[ c~] (~(@-) 
and let 

2q--1 

Bq= (~ Aqj. 
j = o  

Now, by the independent increment property, 

2q--1 

P(Bq)= H P(A;2) 
j = o  

which, by the stationarity of Tt, 

= [P(Aqo)] 2~ 

= [1 - P(Aq o)-] 2~. 

Using 1 - x < exp ( -  x) we obtain 

P(Bq)__< exp [ -  2 q P(Aqo)]. 

L e m m a l  shows that 2qP(Aqo)~Oo as q ~ o o ,  so that P (Bq)~0  as q ~ o o .  We 
thus have 

(1)] 
a s  q ---~ zt3. 

This, and the arbitrary choice of 6, shows that 

lim inf Tt+h(C~ Tt(~ <_c (1-~)/~ (5) 
~-~o o~t~l qS(h) - 

0 < h < e  

almost surely. (4) and (5) combine to prove the theorem. 

Now let Xt(co ) be a stable process of index c~, c~> 1, in R and suppose that p 
is given by 1. We can now establish the following modulus of continuity result for 
the local time at zero of X t (co). 

T h e o r e m 2 .  Let A.(e)) be the local time at zero of X,(e)) and let ~b(g)= 
gl-1/~(log 1/g) 1/~. Then we have 

lim sup A~+g(c~176 3 
~ o  o_~._~1 0 ( g )  

0 < g < e  

almost surely, c a is given by c3=p' [ c2(Y) ]1-, and 7= 1 -  1/~. 
L ~/ d 
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Proof. Let 

and 

then, as h ~ 0 +, 

[ 7 �9 1 11-~ 
O(a)=a' [ ~  ,og a ]  

hl/7 
~b(h)-- 

(log l/h) 0 -  ~)/~ 

0 [c 2 (y)(1-~)/~ ~b (h)] ~ h. 

Thus if Bu(co ) is defined by B,(co)=inf[t:  Tdco)>u], where Tt(co ) is the stable 
subordinator of index 7, the proof of Theorem 1 ensures that 

lim sup Bs+h(co)-Bs(c~ (6) 
~-~o o<-~<_1/, O(h) 0<h<e 

almost surely. If S t (co) = inf [u: A, (co) > t] we have, by Stone's result, S t (co) = p T t (co). 

Thus Bu/p(co)= A,(co) and, from (6), 

lira sup A"+g(co)-A"(co)=l  
~ o  o~_.-<1 O(g/p) O<g<e 

almost surely. Now, as g -~ 0 +, 

0 (g/P) ~ - ~  [ C2@~) ] 1--' g7 ( lOg %11-7 g]  

~,(g) 
C 3 

and the theorem follows. 

We can now deduce the following result. 

Corollary. Let A,(co) be the local time at zero of the Brownian motion process. 
Then 

A.+g(co)- Ao(co) = 1 
lim sup 
~ o  o_<._<1 (glog 1/g) } O<g<g 

almost surely. 

Proof. If ~ = 2 we have ? = �89 and 1 c/(~)=~. For  Brownian motion (1) implies 
that p = 2. The corollary follows immediately. 

5. Collision Sets 

We recall the definition of Hausdorff dimension. For  any subset E of R and 
each pair e, e > 0  we define A~(E) as 

A~(e)=inf~ (diam Si) ~ 
i 

where the infimum is taken over all covers of E by sets, Sz, of diameter less than e. 
Now let A~(E)=lim A~(E). Then A~(E) is a metric outer measure and so, at least, 
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the Borel  sets are measurable .  Fo r  any  Borel  set B there exists a n u m b e r  b, the 
(Hausdorff)  d imension  of B, such tha t  

b = sup [c~ > 0: A ~ (B) = ov] = inf[~ > 0: A s (B) = 0] .  

(Here  we take the s u p r e m u m  of the emp ty  set to be zero.) We  write b = d im (B). 
W e  now show how T h e o r e m  i can be used to obta in  Hausdo r f f  d imension  

results. 

L e m m a  2. Let Tt(o~ ) be a stable subordinator of  index ~ and for  any Borel 
subset B of  [0, oo) we define T(B, co)=(x:  x = Tt((~ ) for some teB).  Then 

P(d im T(B, a)) >= c~ dim B for all B) = 1. (7) 

Proof  It  is sufficient to prove  (7) in the case where d im B > 0 .  Suppose  co is 
such tha t  (2) holds, and  take k and 0 so tha t  0 <  1/k<c~ and 0 <  0 < d i m  B. Choose  
any  e > 0 and let ~ = e 1/k. N o w  cover  T(B, co) by intervals S i of length a i < 6 and let 

bi=inf[ t :  T~(co)~ Si], 

ci = sup [t: r , ( co )~Sd .  

Let I i be the interval  centre �89 i + ci) and length 2 (c i -  bi). Then  the I i cover  B, and,  
if e is sufficiently small, we have  

a~/k> ]c~-bil for all i. 
Hence,  

2 o Z a~/k > Z [2 (c i - bi)] ~ 

The  sum on the left hand  side can be m a d e  as close to 2 o A ~ T(B, (~) as we please 
but  the sum on the right hand  side is a lways greater  than  A~ So 

2 o A~/k T(B, o)) >= A~ (B). 

As e ~ 0, b ~ 0 and  the right hand  side tends to infinity so tha t  A ~ T(B, a)) = oo 
and d im T(B, e)) >= O/k. Now,  by the choice of  0 and  k we have 

dim T(B, e)) >_ a dim B. 

This  is t rue for any  B and any  o) satisfying (2) so the l e m m a  follows. 

In  [4] Jain and  Pruit t  established the following result. 

Proposition. Suppose that l < a < f l = < 2  and that X,(co) is a stable process of  
index fi in R. Let  Yt(o)) be a stable process of  index ~, defined on the same space as 
Xt(o) ) and independent o f  X t ( o  ). We define C(co), the collision set o f  Xt(o) ) and 
Y~(o~), by 

C(o)) = Ix:  x = Xt(co)= Y~(o~) for  some t]. 

We then have 

dim C(co)=c~(1-1/f l )  almost surely. (8) 

Their  a rguments  apply  directly to show the following, slightly weaker,  result. 
I f  ~ < 1 and  Yt(o)) is not  a subord ina to r  then 

(1 - 1/fl) = sup [0: P (d im C > 0) > 0] .  
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In what follows we establish the stronger result in the case where Yt(co) is a sub- 
ordinator. 

Theorem 3. Suppose that 0 < c~ < 1 < fl <= 2 and that T~(co) is a stable subordinator 
of index ~. Let Xt(co ) be a stable process of  index fl, defined on the same space as 
Tt(co ) and independent of  Tt(co ). I f  C(co) is the collision set of Tt(co) and Xt(co ) then 

almost surely. 

Proof Let 

dim C(co)=e(1 - 1/fi) 

S(co)= It: x =  Xt(~o)= T~(co) for some x] 

= It: x , (co)-  T,(co)= 0] 

= [ t :  ~(co)=0] 

where Yt (co)= Xt(co) - T~(co). 
It is easily shown that Y~ (co) is a process with stationary independent increments 

such that 
R e l o g E e x p i ( z  Y t ) ~ - c t J z l  p as Izl~oo. 

Under these circumstances Blumenthal and Getoor [2: p. 64] have shown that 

dim S(co)= 1 - 1/fl 

almost surely. Now C(co)= T[S(co), co], so that by Lemma 2 we have 

dim C (co) > c~ (1 - 1/fl) 
almost surely. 

We will now indicate how the arguments of [4] can be modified to obtain the 
opposite inequality. For the remainder of the paper we shall assume the notions 
of polar sets contained in [4]. 

Let f~(t, x) and f ,(t,  x) be the transition densities of X t and T~ respectively. 
Then, see [7], there are positive constants c4, c5 and c 6 such that 

c4<fl~(1, x)<__c s if Ixl<l, 
f~(1, x)<c 6 if Ix l< l  

whilst 

f,(1, x )=0  if and only if x ~ 0 .  

Let Zt(co)= [T~(co), Xt(co)], z =(x, y) and 

oo 

U(z)= ~ s  x)fp(t, y) de. 
0 

The following lemma plays the same role as Lemma 3.2 of [4]. 

Lemma 3. Define 
1 

k(x )=x  i-~-~/p) /f x>O 

= 0  /f x<O. 
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Let z be the point on the diagonal in R 2 whose polar coordinates are (r, �88 re). Then 
there is a positive constant c 7 such that 

U(z) > c 7 k(r) (9) 

whenever Iz[ = [rl <1~.  

Proof. Suppose  that  z has cartesian coordinates  (x, x). If  x_<0, (9) is trivial 
since bo th  sides of  the inequali ty are zero. So we m a y  suppose  that  0 < x < 1. 
Now,  by the scaling proper ty ,  

cO 

U(z)> ~ t-(1/a)-(1/~) f~(1, t -(l/a) x) f~(1, t -(1//~) x) dr. 
x~  

Since 0 < x <  1, t > x  ~ implies that  t -(l/B) X <  1 so tha t  

cO 

U(Z) ~ C 4 ~ t-(I/a)- (1/fl) L ( l ,  t-(1/a) x) dt. 
X~ 

Put t ing s = t -  (~/a) x we obta in  

! 1 L(1,  s) 
U(z) >= x 1- ~(1- ~/~) ~ c4 ~o ~ ds. 

Since 0 < c~(1 - 1/fi)< 1 the l e m m a  follows immediately .  

We can now argue as in T h e o r e m  3.1 of  [4] to prove:  

L e m m a  4. Let B be a Borel subset of the diagonal in R 2, and let B be non polar 
for Zt(co ). Then, if we consider B as a subset of the line, B has positive k-capacity. 

N o w  let Yt(co') be a symmetr ic  stable process of  index 0, defined on (~2', Y ;  P')  
and taking values in the diagonal .  Define F by 

F =  [(co, co'): Y~(co')=Z~(co) for some t, s > 0 ] .  

Ja in  and  Pruit t  assert  tha t  F ~ @  x i f '  but  this is not  clear. It  seems bet ter  to con- 
sider the set H defined by 

/ / =  [(co, co'): Y~_ (co') or  Yt (co') = Z s -  (co) or Z~ (co) for some s, t > 0].  

k - 1  k + l ]  
Then,  if Skq= (X, X ) : ~ - - _ < X < ~ u -  j and Zkq is the sphere in R 2 with Skq as 

diameter ,  we have 

U Akq n • Bkq n 
n=l  j = l  q= l  k=l  

where 

and 

Akq,= [CO: Zt_(CO ) or Zt(co)~Zkq for some t >  1/n] 

Bkq,=[CO': Yt-(co') or Y~(co')eSkq for some t >  1/n]. 
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Then Akq.eo~ and Bkq.eW' (see [1: p. 59]) and hence 

H e ~ x ~ ' .  

We now make three observations. 

I. If Xt(co) is one of the processes we are considering and B is a Borel set we have 

P[co: Xt(oo)eB for some t > 0 ]  

=P[co:  Xt_ (~o) or Xt(co)~B for some t > 0 ]  

(see [1: p. 59]). 

II. k(y-x)  is proportional to the potential kernel of a stable subordinator 
of index c~(1 - 1/fl) (see [1: p. 264]). 

III. A set is polar for a stable subordinator of index 7, 7 < 1 if and only if it is 
polar for a symmetric stable process of index 7 (see [6]). 

The proof of the theorem can now be completed by the arguments of Jain and 
Pruitt. 

This result is interesting because the collisions take place at small times. For  
the collision set of recurrent processes Jain and Pruitt essentially showed that 
sooner or later the dimension of the collision set became arbitrarily close to 
e ( 1 -  lift). For the processes we have considered the collision set actually takes 
the dimension ~ ( 1 -  1/fl). 
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