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A LuGre Tire Friction Model with Exact Aggregate

Dynamics

PANAGIOTIS TSIOTRAS∗†, EFSTATHIOS VELENIS∗

and MICHEL SORINE‡

SUMMARY

The LuGre dynamic point contact friction model for the two-dimensional translation of
a body on a surface has been used to derive a model for the friction forces and moments
at the contact patch of a tire. The resulting tire friction model is distributed, i.e., is
described by a set of partial differential equations. Several approximations have been
used in the literature to approximate this distributed model using a set of ordinary
differential equations, making the model more appropriate for control design and on-
line estimation. In this paper the method of moments is used to derive a set of ordinary
differential equations to describe the exact average dynamics of the distributed model.
Three cases of normal load distribution are considered and compared with each other:
uniform, trapezoidal and quartic load distribution. Simulations are also presented to
compare with existing approximate lumped models.

1 INTRODUCTION

In the past several years, the problem of modeling and predicting tire friction has
become an area of intense research in the automotive community. Knowledge of
the friction characteristics is necessary for the development of control systems
such as ABS, TCS, ESP, etc. which have enhanced safety and maneuverability
of modern passenger vehicles.

Recently, a new class of tire friction models has been developed that cap-
tures the dynamic behavior of friction forces–the so-called “dynamic tire friction
models.” In [1] dynamic models that handle the rate-independent hysteresis phe-
nomena observed in practice were proposed. As an application to this work, a
dynamic elastoplastic friction model was developed in [2]. This friction model
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was then applied to the longitudinal motion of a tire in [3] and extended to the
longitudinal/lateral motion in [4, 5].

The longitudinal LuGre tire friction model, initially introduced in [6] and
later corrected and improved upon in [7, 8], is based on a dynamic visco-
elastoplastic friction model for point contact introduced in [9]. These results
were later extended to the combined longitudinal/lateral motion in [10, 11]. In
[12] the LuGre tire friction model for combined longitudinal/lateral motion was
further refined by taking into account all aspects neglected in [10, 11], that is,
coupling of the forces in longitudinal and lateral directions (neglected in [10]),
tire anisotropy (neglected in [11]) and rim rotation (neglected in both [10] and
[11]). In addition, a solid mathematical justification for the introduction of dy-
namic friction models based on fundamental physical properties of the friction
forces (such as dissipativity and maximality of the dissipation rate) as in [13],
was provided.

The major advantage of the LuGre dynamic tire friction model, when com-
pared to the one in [4, 5], is its simpler lumped form. The term lumped form
refers to the model’s description by a set of ordinary differential equations. Both
models in [4, 5] as well as the LuGre tire friction model were initially derived
as distributed models described by a set of partial differential equations. The
lumped model in [4, 5] was derived using a finite element approach, resulting in
a system with a potentially large number of states. In [10, 11, 12] the lumped
LuGre tire model was derived by introducing the mean states along the length of
the contact patch. Its behavior can be described by a system of three ordinary
differential equations. These equations give the forces and the aligning moment
at the contact patch of the tire.

A lumped form makes the model more suitable for the development and
implementation of on-line estimation and control algorithms [14, 15, 16]. The
main objective of the lumped model in [10, 11, 12] was to be able to capture the
steady-state behavior of the distributed model exactly. Therefore, this model
does not offer any guarantees on the accuracy of the transient dynamics.

In this paper, the derivation of the lumped LuGre tire model is revisited, this
time using the method of moments formulation [17]. The method of moments is
commonly used to describe the overall behavior of distributed systems. It has
been used successfully in many applications [18, 19]. Herein we derive an average
lumped model that captures the exact dynamics of the distributed model. This
allows one to validate the assumptions used in the literature for the derivation
of simpler, low order lumped models.

In the first section of this paper the distributed LuGre tire model is reviewed.
Next, the essential definitions of the method of moments are provided and the
exact lumped model is derived for three specific cases of normal load distribu-
tion, namely, uniform, trapezoidal and quartic distribution. At the end of the
paper numerical simulations are presented to compare the dynamic behavior
of the simplified low order lumped models of [10, 11, 12] with the aggregate
dynamics of the distributed model.
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2 THE DISTRIBUTED LUGRE
DYNAMIC TIRE FRICTION MODEL

The distributed LuGre tire friction model for combined longitudinal/lateral mo-
tion was derived in [12] by applying the point contact LuGre friction model (for
the two-dimensional translation of a body on a surface) on the contact patch of
a tire. In order to take into consideration the fact that undeformed tire elements
enter the contact patch as the tire rotates, the contact patch was divided into
infinitesimal stripes dζ along the length of the contact patch (Fig. 1). The point
contact model was then applied to the tire elements at each of the infinitesi-
mal stripes thus resulting in a model described by a set of partial differential
equations, with time t and longitudinal position on the patch ζ being the inde-
pendent variables.

L

x

y

ωrωr

v vαα

ζ ζ + dζ

dζ
dζ

dζ

time: t time: t + dt

zi(t, ζ)

zi(t + dt, ζ + dζ)

Figure 1: Frame of reference and velocities at the contact patch. Derivation of
the distributed tire model.

The distributed tire model is summarized in the following equations [12]

dzi(t, ζ)
dt

=
∂zi(t, ζ)

∂t
+ |ωr|∂zi(t, ζ)

∂ζ

= vri(t) − C0i(vr)zi(t, ζ), i = x, y (1)

µi(t, ζ) = −σ0izi(t, ζ) − σ1i
∂zi(t, ζ)

∂t
− σ2vri(t), i = x, y (2)

Fi(t) =
∫ L

0

µi(t, ζ)fn(ζ)dζ, i = x, y (3)

Mz(t) = −
∫ L

0

µy(t, ζ)fn(ζ)
(

L

2
− ζ

)
dζ (4)

By zi(t, ζ), i = x, y, we denote the internal friction states [12] which correspond
to the elastic deformations of the tire element at time t and position ζ on the
contact patch, along the longitudinal x and lateral y directions. In accordance
to the above discussion, the boundary condition for equations (1) is zi(t, 0) = 0.
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This imposes the condition that the tire fiber is undeflected as it enters the patch.
The constants σ0i, i = x, y, correspond to the stiffness of the tire elements
in the x and y directions, while σ1i and σ2i are damping constants for the
friction coefficient µi(t, ζ). The functions C0i(vr) characterize the steady-state
characteristics of the model (for more details the reader is referred to [12]). For
a tire with the same static friction characteristics along the longitudinal and
lateral directions, as the one considered in [11], C0i(vr) is given by

C0i(vr) =
|vr|σ0i

g(vr)
, i = x, y (5)

where,

g(vr) = µk +
(
µs − µk

)
e−( |vr|

vs
)γ

. (6)

In (6) µk and µs denote the kinetic and static Coulomb friction coefficients,
respectively, and vs denotes the Stribeck characteristic velocity [9]. The param-
eter γ is used to achieve desirable steady-state behavior of the tire friction [8].
The function fn(ζ) in (3) denotes the normal load distribution along the contact
patch. The relative velocity components of the contact patch with respect to
the road vri, i = x, y, appear as inputs in the system of equations (1)-(4) and
are given by

vrx = ωr − v cos(α) (7)
vry = −v sin(α) (8)

where ω is the angular rate of the tire and r its radius. By v we denote the
magnitude of the translational speed of the wheel and by α the slip angle (Fig. 1).
The relative velocity vector between the tire and the surface is vr = [vrx, vry]T

and |vr| =
√

v2
rx + v2

ry . The output of the model is the longitudinal Fx(t) and

lateral Fy(t) friction forces at the center of the patch as well as the aligning
moment Mz(t).

In the following sections we present a methodology for expressing the exact
dynamics of the distributed model (1)-(4) by a set of ordinary differential equa-
tions instead of the partial differential equation (1), for several special cases of
the normal load distribution fn(ζ).

3 EXACT LUMPED MODEL USING
THE METHOD OF MOMENTS

Define the pth moment of zi(t, ζ) for ζ ∈ [a, b] as follows

Mab
p,i(t) :=

∫ b

a

zi(t, ζ)ζpdζ, i = x, y (9)
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Taking the time derivative of Mab
p,i yields,

Ṁab
p,i(t) =

∫ b

a

∂zi(t, ζ)
∂t

ζpdζ

=
∫ b

a

(
vri − C0i(vr)zi(t, ζ) − |ωr|∂zi(t, ζ)

∂ζ

)
ζpdζ

=
bp+1 − ap+1

p + 1
vri − C0i(vr)

∫ b

a

zi(t, ζ)ζpdζ

− |ωr|
∫ b

a

∂zi(t, ζ)
∂ζ

ζpdζ. (10)

Integrating by parts, (10) gives a recursive formula for the calculation of all
moments Mab

p,i for p ≥ 1

Ṁab
p,i =

bp+1 − ap+1

p + 1
vri − C0i(vr)Mab

p,i − |ωr|zi(t, ζ)ζp
∣∣∣b
a

+ |ωr|pMab
p−1,i (11)

For p = 0 equation (10) yields

Ṁab
0,i = (b − a)vri − C0i(vr)Mab

0,i − |ωr|
(
zi(t, b) − zi(t, a)

)
(12)

Given any sufficiently smooth normal load distribution fn(ζ), we can approxi-
mate fn with its Taylor series expansion as follows

fn(ζ) �
m∑

k=0

ckζk (13)

for some constants c0, c1, ..., cm. Note that the total normal load on the contact
patch is given by

Fn =
∫ L

0

fn(ζ)dζ. (14)

Using the definition of the moments Mab
p,i, and using (13) the friction forces

Fi(t), i = x, y in (3) can then be written as follows

Fi(t) = −
∫ L

0

(
σ0izi + σ1i

∂zi

∂t
+ σ2ivri

)
fn(ζ)dζ

= −σ0i

m∑
k=0

ckM0L
k,i − σ1i

m∑
k=0

ckṀ0L
k,i − σ2ivriFn (15)

Finally, the aligning torque Mz(t) in (4) can be written in terms of the moments
Mab

p,i as

Mz(t) = −
∫ L

0

(
σ0yzy + σ1y

∂zy

∂t
+ σ2yvry

)
fn(ζ)

(
L

2
− ζ

)
dζ
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= −L

2
Fy(t) + σ2yvry

∫ L

0

fn(ζ)ζdζ

+ σ0y

m∑
k=0

ckM0L
k+1,y + σ1y

m∑
k=0

ckṀ0L
k+1,y (16)

3.1 Closure Relationship

Equations (11), (12) require the time history of the internal friction states zi(t, ζ)
for fixed positions on the contact patch, namely, ζ = a and ζ = b. In this section
we discuss the calculation of these terms.

Going back to the original partial differential equation (1) let us consider
the characteristics given by

t = t(s) , ζ = ζ(s)

with

∂t

∂s
= 1 ,

∂ζ

∂s
= |ωr|.

Let the characteristic y(s) = ζ(t(s)) starting from ζ = 0 at time t − τ for some
(still unknown) τ and ending at ζ = ζ0 at time t. Then

0 ζ0
zi(t − τ, 0) = 0

zi(t(s), ζ(s))

ζ

zi(t, ζ0)

t − τ

t

τ

Figure 2: Solution zi(t, ζ) along the characteristic y(s) = ζ(t(s)).

y(t′) =
∫ t′

t−τ

|ωr|(σ)dσ (17)
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and y(t) = ζ0. Hence,

ζ0 =
∫ t

t−τ

|ωr|(σ)dσ (18)

Let us follow the solution along the characteristic (Fig. 2). To this end, define
ξi(t) := zi(t, y(t)). Thus,

ξ̇i(t) =
∂zi

∂t
+

∂zi

∂y

∂y

∂t
= vri − C0i(vr)ξi(t) (19)

with initial condition

ξi(t − τ) = zi(t − τ, y(t − τ)) = zi(t − τ, 0) = 0 .

Finally, zi(t, ζ0) = ξi(t) and τ is such that (18) holds. By setting ζ0 = a and
ζ0 = b we now have an expression for the last term in (12).

4 THE EFFECT OF NORMAL FORCE DISTRIBUTION

In this section we derive the exact aggregate LuGre tire friction model for sev-
eral specific cases of normal force distribution fn(ζ). Namely, we provide the
moment calculations for several simple load distributions commonly used in the
literature (e.g., uniform, trapezoidal) [16, 6, 7, 8, 11, 12], as well as for the
more realistic load distribution with quartic dependence. A quartic polyno-
mial produces normal load profiles for fn which are very close to empirical ones
(Fig. 3(b)). At any rate, the methodology developed here may be used to incor-
porate any smooth or piecewise smooth fn(ζ) load distribution along the patch.
Figure 3(a) shows a comparison between several normal load distributions.

4.1 Exact Lumped Model for Uniform Load Distribution

The uniform load distribution fn(ζ) = c0 is derived from (13) with m = 0 while
in equations (11) and (12) we substitute a = 0 and b = L. The dynamics of
friction are described by five ordinary differential equations with states M0L

0,x,
M0L

0,y from equation (12), M0L
1,y from equation (11) with p = 1 and zx(t, L),

zy(t, L) from equation (19). A methodology for choosing appropriate initial
conditions to integrate these ode’s is discussed in Section 4.4.

4.2 Exact Lumped Model for Trapezoidal Load Distribution

In [11] it was shown that the LuGre tire friction model with uniform load distri-
bution reproduced the longitudinal and lateral forces matching very well other
empirical models (at least at steady-state). However, this model failed to repro-
duce realistic aligning torque characteristics. In order to accurately capture the
behavior of the aligning moment one needs to introduce the effects of pneumatic
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trail. This was achieved in [11] with the introduction of a trapezoidal normal
load distribution (Fig. 3).

For a trapezoidal distribution the function fn(ζ) is given by

fn(ζ) =

⎧⎨
⎩

C1ζ for 0 ≤ ζ ≤ a,
fmax for a ≤ ζ ≤ b,
C2ζ + C3 for b ≤ ζ ≤ L.

(20)

The normal load distribution above is only piecewise smooth and the approx-
imation (13) cannot be used directly. In this case, it is necessary to consider
different moments of zi(t, ζ) for different parts of the contact patch. To this end
let M0a

p,i(t) for ζ ∈ [0, a], Mab
p,i(t) for ζ ∈ (a, b) and M bL

p,i (t) for ζ ∈ [b, L]. Thus,
the dynamics of friction are described by a set of nineteen ordinary differential
equations with states zi(t, a), zi(t, b) and zi(t, L), M0a

0,i, Mab
0,i and M bL

0,i from
equation (12), M0a

1,i and M bL
1,i from equation (11), with i = x, y and finally M0a

2,y,
Mab

1,y and M bL
2,y again from equation (11). The calculation of zi(t, a), zi(t, b) and

zi(t, L) is done in accordance to the discussion of Section 3.1 using equation
(19). The choice of initial conditions is discussed in Section 4.4.

The forces are given by

Fi(t) = −σ0i

(
C1M

0a
1,i + fmaxM

ab
0,i + C2M

bL
1,i + C3M

bL
0,i

)
− σ1i

(
C1Ṁ

0a
1,i + fmaxṀ

ab
0,i + C2Ṁ

bL
1,i + C3Ṁ

bL
0,i

)
− σ2ivriFn, i = x, y (21)

and the aligning torque by

Mz(t) = − L

2
Fy + σ2yvry

∫ L

0

fn(ζ)ζdζ

+ σ0y

(
C1M

0a
2,y + fmaxM

ab
1,y + C2M

bL
2,y + C3M

bL
1,y

)
+ σ1y

(
C1Ṁ

0a
2,y + fmaxṀ

ab
1,y + C2Ṁ

bL
2,y + C3Ṁ

bL
1,y

)
. (22)

4.3 Exact Lumped Model for a Quartic Load Distribution

In this section we introduce another approximation for the normal load distri-
bution at the contact patch. The quartic normal load distribution (Fig. 3) is
derived from (13) for m = 4:

fn(ζ) = c4ζ
4 + c3ζ

3 + c2ζ
2 + c1ζ + c0 (23)

Using this approximation, one is able to incorporate the effects of the pneumatic
trail, resulting to realistic aligning torque predictions, as well as the natural
boundary conditions of the normal load distribution, i.e. fn(ζ = 0) = fn(ζ =
L) = 0. In addition, the proposed expression is smooth along the whole length
of the contact patch and the pth moment of zi(t, ζ) from ζ = 0 to ζ = L, M0L

p,i ,
may be used. Thus, we avoid splitting the integral (10) as was done for the
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trapezoidal distribution. This also results in a smaller number of states (and
differential equations).

It can be easily shown that in this case the dynamics of the tire friction
are described by a set of thirteen ordinary differential equations with states
zx(t, L) and zy(t, L) from equation (19), M0L

p,x and M0L
p,y with p = 0, 1, ..., 4 from

equations (11) and (12) and M0L
5,y from equation (11). Once again, the choice

of initial conditions is discussed in Section 4.4.

ζ

f n(ζ
)

cubic
trapezoid
trapezoid (non−parallelogram)
quartic

a b 

0 L 

(a) (b)

Figure 3: (a) Possible choices of fn(ζ); (b) Empirical plots of normal load
distribution taken from [20].

4.4 Initial Conditions

The initial condition ξi(0) = zi(0, ζ0) required in (19) can be calculated easily
by integrating (19) from t = −τ to t = 0, where

τ =
ζ0

|ωr| . (24)

Under the assumption that during this period v, ω and α are constant, one
obtains

ξ(t = 0) =
vri

C0i(vr)

(
1 − e−C0i(vr)τ

)
(25)

Substituting τ from (24) in (25) one obtains

ξ(t = 0) =
vri

C0i(vr)

(
1 − e−

C0i(vr)ζ0
|ωr|

)
= zi(0, ζ0) (26)

The same result can also be obtained by assuming that the tire is initially at
steady-state with constant ω, v and α. To this end, we may enforce ∂zi(t,ζ)

∂t = 0
in equation (1) to obtain

∂zi(t, ζ)
∂ζ

=
1

|ωr|
(
vri − C0i(vr)zi(t, ζ)

)
, i = x, y (27)
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Taking into consideration the boundary condition zi(t, 0) = 0 (no deflection
at the entry point of the contact patch) and the steady-state conditions of
constant ω, v and α, we may integrate (27) to obtain the distribution zss

i (ζ) of
zi (i = x, y), along the contact patch length at steady-state, as in [11] and [12].

zss
i (ζ) =

vri

C0i(vr)

(
1 − e−

C0i(vr)ζ

|ωr|
)

, i = x, y (28)

Note that for ζ = ζ0 the previous expression coincides with (26).
Using the expression (28), equivalently (26), in (9) we can then calculate the

initial conditions Mab
pi (0) for all the moment equations (11), (12).

5 NUMERICAL SIMULATIONS

In this section we present numerical simulations of the previously developed
lumped LuGre tire friction models [10, 11, 12] and compare the results with
the exact lumped model developed in this paper. The tire friction models under
consideration are subject to the same excitation, consisting of a linearly decreas-
ing angular rate ω from 32 rad/sec to zero within 2 sec, and constant velocity
v and slip angle α (Fig. 1). It should be pointed out that this is a controlled
excitation that can be achieved only in a laboratory environment. For a wheeled
vehicle, reduction in ω is normally accompanied by a reduction in the vehicle
speed v as well.

5.1 Uniform Normal Load Distribution

In [11] two approximate lumped LuGre tire friction models were developed.
These models are summarized in the equations below:

˙̃zi(t) = vri −
(
C0i(vr) +

κi

L
|ωr|

)
z̃i(t), i = x, y (29)

Fi(t) = −Fn

(
σ0iz̃i + σ1i

˙̃zi + σ2ivri

)
, i = x, y (30)

The two different lumped models correspond to different choices (approxima-
tions) of κi. This term is either approximated as constant, i.e., κi ∈ [1.1 1.4],
or as a function of ω and vr, i.e., κi = κss

i (vr, ω), such that the steady-state
solution of the lumped model captures exactly the steady-state solution of the
distributed model. In the latter case the expression for κi is given as follows
[11]

κss
i =

1 − e−L/Zi

1 − Zi

L

(
1 − e−L/Zi

) , Zi =
|ωr|

C0i(vr)
(31)

It is shown in [11] that the approximate lumped model captures the steady-state
characteristics of the distributed friction very well, while no guarantees for the
accuracy of the model during transient were available. Evaluation of the effect
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of these transients is now possible via comparison with the exact lumped model
presented in Section 4.1.

Two cases are investigated in this section. The first case assumes low tire
stiffness (σ0i = 150 m−1, i = x, y) while the second case assumes a higher tire
stiffness (σ0i = 500 m−1, i = x, y). The time histories of the friction forces
(Fig. 4) show that the approximations for κi made in [11] are more realistic
when the stiffness of the tire is higher. In this case the steady-state is reached
faster. As already mentioned, the approximate lumped models in [11, 12] were
derived having only the accuracy of the steady-state behavior in mind.

0 0.5 1 1.5 2
0

200

400

600

800

1000

1200

1400

1600

1800

2000

t (sec)

F
x (

N
)

κ = 1.2
κss

exact lumped

0 0.5 1 1.5 2
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

t (sec)

F
x (

N
)

κ = 1.2
κss

exact lumped

0 0.5 1 1.5 2
0

200

400

600

800

1000

1200

1400

t (sec)

F
y (

N
)

κ = 1.2
κss

exact lumped

0 0.5 1 1.5 2
0

200

400

600

800

1000

1200

1400

1600

1800

2000

t (sec)

F
y (

N
) κ = 1.2

κss

exact lumped

Figure 4: Time histories for longitudinal and lateral forces for uniform load
distribution (left column: σ0i = 150 m−1, right column: σ0i = 500 m−1, i =
x, y)

5.2 Trapezoidal and Quartic Load Distribution

In [12] an approximate average lumped model was developed for the case of
the trapezoidal normal load distribution. The dynamics of the friction forces
are given by (29) and (30). In [12] the term κi was approximated by κss

i such
that the force prediction of the lumped model matches the one from the dis-
tributed model at steady-state. The aligning torque predictions of the LuGre
tire friction model with a trapezoidal normal load distribution are compara-
ble to experimental data [11], [12]. The dynamics of the aligning torque that
completes the approximate average lumped model in [11], [12] are summarized
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below:

˙̂zy(t) =
G

FnL
vry − C0y ẑy(t) − ν(t)|ωr|ẑy(t) +

|ωr|
L

z̄y(t) (32)

Mz(t) = FnL

[
σ0y

(
1
2
z̃y − ẑy

)
+ σ1y

(
1
2

˙̃zy − ˙̂zy

)
+ σ2y

(
1
2
vry − G

FnL

)]

(33)

where

G =
∫ L

0

fn(ζ)ζdζ

Similarly to the approximation of the κi term for the friction forces, the ν(t)
term in (32) was approximated in [12] by a function νss, such that the aligning
torque predictions of the average lumped and the distributed model agree at
steady-state.

Next, we compare the dynamic behavior of the average lumped model devel-
oped in [12] with the behavior of the model presented in Sections 4.2 and 4.3. In
order to make a fair comparison between the trapezoidal and the quartic normal
load distribution models we have selected the parameters of the two expressions
(20) and (23) such that they produce the same total normal force Fn and the
same pneumatic trail.

We consider the case of a tire with stiffness σ0i = 500 m−1, i = x, y. The
excitation of the system remains the same as before. The results are shown
on the left column of Fig. 5. In Fig. 5 the time histories of the friction forces
and the aligning torque are shown. We observe that the three models converge
to the same steady-state, as expected. However, significant differences in the
transient behavior of the three models are also evident. These differences are
more apparent in the lateral force Fy and aligning torque Mz. The discrep-
ancy is due to the fact that the normal load distribution fn(ζ), along with the
distribution of the contact patch deflection zi(t, ζ), determine the amount of
the total friction generated by each tire element along the contact patch length
(see equations (2), (3)) at each time t. In the case of the approximate lumped
model of [12] the use of the states z̃i(t), i = x, y and ẑy(t) averages out the
individual contribution to the total friction of each tire element, thus result-
ing in smoother transient behavior of the friction forces and aligning torque.
In the case of the exact lumped model on the other hand, the product of the
individual contact patch deflection zi(t, ζ) with fn(ζ) determines the amount
of friction generated by each tire element in the contact patch; see equations
(2)-(3). This is true both for the distributed and the exact lumped models.
In Fig. 3(a) one observes that the trapezoidal normal load distribution weights
more the tire elements close to the entry point of the contact patch (especially
in the area ζ < a) when compared to the quartic distribution. Similarly, the
quartic distribution places more emphasis than the trapezoidal on the part of
the patch ζ > a. Observing the initial distribution of zss

y in Fig. 6 we notice
that the tire elements close to ζ = 0 are less deformed compared to the tire
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elements for larger values of ζ. As a result, the quartic distribution gives higher
values for Fy than the trapezoidal distribution at the initial time. As the time
progresses, and ω is reduced, (for example, ω = 20 rad/sec) the distribution of
zss
y tends to a uniform one. Since the total normal load is the same for both the

quartic and the trapezoidal distributions, the two distributions will give similar
values after the transients have receded. This is verified from the results shown
in Fig. 5.

To provide an additional confirmation of these observations, a second set of
numerical simulations was performed, using the approximate model in [12] and
the exact trapezoidal and quartic models of Sections 4.2, 4.3 respectively, but
with a larger slip angle, namely α = 15◦. The tire stiffness and the excitation
remained the same. The results are shown in the right column of Fig. 5. For this
case the time histories of the friction forces and the aligning moment are almost
identical for all three cases of normal load distributions. The right plot in Fig. 6
reveals that for α = 15◦ the distribution of zss

y is very close to a uniform one,
thus corroborating the earlier observations.

6 CONCLUSIONS

A methodology to compute the exact dynamics of the aggregate distributed
LuGre dynamic tire friction model by a set of ordinary differential equations is
presented. The results of this work allow one to test/validate the assumptions
introduced in the development of other low-order approximate lumped models.
A comparative analysis shows that, given a sufficiently high stiffness of the tire,
the approximate models reproduce the dynamics of the aggregate distributed
tire model very accurately.
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Figure 5: Time histories for longitudinal/lateral forces and aligning torque
(trapezoidal and quartic normal load distribution), left column: α = 4◦, right
column: α = 15◦
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Figure 6: Distribution of zss
y (ζ) along the contact patch, left column: α = 4◦,

right column: α = 15◦


