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Abstract

Accelerated optimization methods, such as Nesterov’s accelerated gradient method, play a
significant role in optimization. Several accelerated methods are provably optimal under
standard oracle models. Such optimality results are obtained using a technique known as
estimate sequences which yields upper bounds on convergence properties. The technique
of estimate sequences has long been considered difficult to understand and deploy, leading
many researchers to generate alternative, more intuitive methods and analyses. We show
there is an equivalence between the technique of estimate sequences and a family of Lya-
punov functions in both continuous and discrete time. This connection allows us to develop
a unified analysis of many existing accelerated algorithms, introduce new algorithms, and
strengthen the connection between accelerated algorithms and continuous-time dynamical
systems.

Keywords: gradient descent, Nesterov acceleration, dynamical systems, Lyapunov func-
tions, estimate sequences

Introduction

Momentum is a powerful heuristic for accelerating the convergence of optimization methods.
One can intuitively “add momentum” to a method by adding to the current step a weighted
version of the previous step, encouraging the method to move along search directions that
have been previously seen to be fruitful. Such methods were first studied formally by Polyak
(1964), and have been employed in many practical optimization solvers. As an example,
beginning in the 1980s, momentum methods have been used in neural network research
as a way to accelerate the backpropagation algorithm. The conventional intuition is that
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momentum allows local search to avoid “long ravines” and “sharp curvatures” in the sublevel
sets of cost functions (Rumelhart et al., 1986).

Polyak motivated momentum methods by an analogy to a “heavy ball” moving in a po-
tential well defined by the cost function. However, Polyak’s physical intuition was difficult
to make rigorous mathematically. For quadratic costs, Polyak was able to provide an eigen-
value argument that showed that his Heavy Ball Method required no more iterations than
the method of conjugate gradients (Polyak, 1964).1 Despite its intuitive elegance, however,
Polyak’s eigenvalue analysis does not apply globally for general convex cost functions. In
fact, Lessard et al. derived a simple one-dimensional counterexample where the standard
Heavy Ball Method does not converge (Lessard et al., 2016).

In order to make momentum methods rigorous, a different approach was required. In cel-
ebrated work, Nesterov relied on algebraic arguments (Nesterov, 1983), and later devised a
general scheme to accelerate convex optimization methods, achieving optimal running times
under oracle models in convex programming (Nesterov, 2004).2 To achieve such general
applicability, Nesterov’s proof techniques abandoned the physical intuition of Polyak (Nes-
terov, 2004); indeed, in lieu of differential equations and Lyapunov functions, Nesterov de-
vised the method of estimate sequences to verify the correctness of these momentum-based
accelerated methods and used it extensively to offer a library of accelerated methods (e.g.,
Nesterov, 2005, 2008, 2013). Researchers have struggled to understand the foundations and
scope of the estimate-sequence methodology since Nesterov’s early papers.

To overcome the lack of fundamental understanding of the estimate-sequence tech-
nique, several authors have proposed schemes that achieve acceleration without appealing
to it (Drusvyatskiy et al., 2016; Bubeck et al., 2015; Lessard et al., 2016; Drori and Teboulle,
2014; Beck and Teboulle, 2009; Tseng, 2008). One promising general approach to the analy-
sis of acceleration has been to analyze the continuous-time limit of accelerated methods (Su
et al., 2016; Krichene et al., 2015), or to derive these limiting ODEs directly via an un-
derlying Lagrangian (Wibisono et al., 2016), and to prove that the ODEs are stable via a
Lyapunov function argument. Another recent line of attack on the discretization problem
is via the use of a time-varying Hamiltonian and symplectic integrators (Betancourt et al.,
2018; Muehlebach and Jordan, 2021). However, these methods stop short of providing
principles for deriving a discrete-time optimization algorithm from a continuous-time ODE.
There are many ways to discretize ODEs, but not all of them give rise to convergent meth-
ods or to acceleration. Indeed, for unconstrained optimization in Euclidean spaces in the
setting where the objective is strongly convex, Polyak’s Heavy Ball method and Nesterov’s
accelerated gradient descent have the same continuous-time limit.

In this paper, we present a different approach, one based on a fuller development of
Lyapunov theory. In particular, we present Lyapunov functions for both the continuous-
and discrete-time settings, and we show how to move between these Lyapunov functions.
Our Lyapunov functions are time-varying and they thus allow us to establish rates of con-
vergence. Most importantly, they allow us to dispense with estimate sequences altogether,
in favor of a dynamical-systems perspective that encompasses both continuous time and
discrete time.

1. Indeed, when applied to positive-definite quadratic cost functions, Polyak’s Heavy Ball Method is equiv-
alent to Chebyshev’s Iterative Method (Chebyshev, 1854).

2. Notably, it is easier to extract a Lyapunov argument from Nesterov’s original 1983 paper.
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A Lyapunov Analysis of Acceleration

A Dynamical View of Accelerated Methods

We begin by presenting families of dynamical systems for optimization. To do so, we review
the Lagrangian framework introduced by Wibisono et al. (2016) and introduce a second
Bregman Lagrangian for the strongly convex setting.

Problem setting. We are concerned with the following class of constrained optimization
problems:

minx∈X f(x), (1)

where X ⊆ Rd is a closed convex set and f : X → R is a continuously differentiable convex
function. We use the standard Euclidean norm ‖x‖ = 〈x,x〉1/2. We consider the setting in
which the space X is endowed with a distance-generating function h : X → R that is convex
and Gâteaux differentiable on the interior of its domain. The function h can be used to
define a measure of distance in X via its Bregman divergence:

Dh(y,x) = h(y)− h(x)− 〈∇h(x), y − x〉,

which is nonnegative since h is convex. The Euclidean setting is obtained when h(x) =
1
2‖x‖

2.
We denote a discrete-time sequence in lower case, e.g., xk with k ≥ 0 an integer. An over-

dot means derivative with respect to time, i.e., Ẋt = d
dtXt. We denote x∗ ∈ arg min f(x).

The Bregman Lagrangian

Wibisono, Wilson and Jordan introduced the following function on curves:

L(x, v, t) = eαt+γt
(
Dh (x+ e−αtv,x)− eβtf(x)

)
, (2)

where x ∈ X , v ∈ Rd, and t ∈ R represent position, velocity and time, respectively (Wibisono
et al., 2016). They called (2) the Bregman Lagrangian. The functions α,β, γ : R → R are
arbitrary smooth increasing functions of time that determine the overall damping of the La-
grangian functional, as well as the weighting on the velocity and potential function. They
also introduced the following “ideal scaling conditions:” which are needed to obtain optimal
rates of convergence:

γ̇t = eαt (3a)

β̇t ≤ eαt . (3b)

Given L(x, v, t), we can define a functional on curves {Xt : t ∈ R} called the action
via integration of the Lagrangian: A(X) =

∫
R L(Xt, Ẋt, t)dt. Calculation of the Euler-

Lagrange equation, ∂L
∂x (Xt, Ẋt, t) = d

dt
∂L
∂v (Xt, Ẋt, t), allows us to obtain a stationary point

for the problem of finding the curve which minimizes the action. Wibisono et al. (2016)
showed that under the first scaling condition (3a), the Euler-Lagrange equation for the
Bregman Lagrangian reduces to the following ODE:

d
dt∇h(Xt + e−αtẊt) = −eαt+βt∇f(Xt). (4)
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Second Bregman Lagrangian. We introduce a second function on curves,

L(x, v, t) = eαt+γt+βt (µDh (x+ e−αtv,x)− f(x)) , (5)

using the same definitions and scaling conditions. The Lagrangian (5) places a different
damping on the kinetic energy than in the original Bregman Lagrangian (2); this change
of scaling is important for obtaining dynamics with convergence rate guarantees when the
objective function is strongly convex. We summarize in the following proposition.

Proposition 1 Under the same scaling condition (3a), the Euler-Lagrange equation for the
second Bregman Lagrangian (5) reduces to:

d
dt∇h(Xt + e−αtẊt) = β̇t∇h(Xt)− β̇t∇h(Xt + e−αtẊt)− eαt

µ ∇f(Xt). (6)

The proof of Proposition 1 can be found in Appendix A.1. As discussed by Wibisono,
Wilson and Jordan, when h(x) = 1

2‖x‖
2, the Bregman Lagrangians (2) and (5) resemble

the standard Lagrangian used in physics for dissipative dynamical systems, where the kinetic
energy is given by k(v) = 1

2‖v‖
2 and the potential energy is the objective function, both

scaled by damping parameters. More generally, our Bregman Lagrangian uses the Bregman
divergence Dh(x,x+e−αv), which is closely related the Hessian metric ‖v‖2x = 〈v,∇2h(x)v〉,
to measure kinetic energy. We refer the reader to Wibisono et al. (2016) for in-depth
discussion on the structure of the Bregman Lagrangian and its relation to the Hessian
Lagrangian and Hessian Riemannian gradient flows (Alvarez et al., 2004, 2002).

In what follows, we pay close attention to the special case of the dynamics in (6) where
h(x) = 1

2‖x‖
2, the ideal scaling (3b) holds with equality, and the damping βt =

√
µt is

linear:

Ẍt + 2
√
µẊt +∇f(Xt) = 0. (7)

In this setting, we can discretize the dynamics in (7) to obtain accelerated gradient descent
in the setting where f is µ-strongly convex.

Related work The connection between dynamical systems, particularly gradient flows,
and optimization methods has a long history (Polyak, 1964; Attouch, 1996). The main
motivation of our work comes from Su et al. (2016) and Wibisono et al. (2016); both works
introduce families of dynamical systems modeling accelerated methods for weakly convex
functions (the latter from a variational perspective) and suggest that Lyapunov functions
can be used to analyze accelerated mirror descent, but stop short of describing how the
Lyapunov perspective is useful for the analysis of accelerated algorithms more broadly (e.g.
for analyzing higher order methods or for in obtaining linear rates for strongly convex
functions). Our work is similar to other bodies of work (Krichene et al., 2015; Attouch
and Peypouquet, 2015) that utilize Lyapunov functions to deduce convergence rates for
accelerated methods; however, our framework is more general, encompassing the analysis of
several additional methods, including accelerated gradient descent for strongly convex func-
tions and composite optimization methods. It also makes the connection between estimate
sequences and Lyapunov functions explicit. Note, moreover, that in subsequent work our
Lyapunov framework has been used to generate novel methods (Tu et al., 2017; Betancourt
et al., 2018) and analyses, including methods (18), (30) and (33) in the current paper.
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A Lyapunov Analysis of Acceleration

Lyapunov function for the Euler-Lagrange equation

To establish a convergence rate associated with solutions to the Euler-Lagrange equation for
both families of dynamics, (4) and (6), under the ideal scaling conditions (3), we use Lya-
punov’s method (Lyapunov, 1992). Lyapunov’s method is based on the idea of constructing
a positive definite quantity E : X → R which does not increase along the trajectories of the
dynamical system d

dtXt = v(Xt):

d
dtE(Xt) =

〈
∇E(Xt),

d
dtXt

〉
= 〈∇E(Xt), v(Xt)〉 ≤ 0. (8)

The existence of a Lyapunov function often provides the dynamical system with a qualitative
description. For example, if E(Xt) = d(x,Xt) where d : Rd × Rd → R+ is a differentiable
function and E(Xt) = 0 iff x = Xt, then the implication of (8), which we write as E(Xt) ≤
E(X0), is that the dynamical system does not leave a bounded region defined by d(x,X0).
Since we are interested in quantifying the rate at which Ẋt = v(Xt) finds a solution to (1), we

will use time-dependent Lyapunov functions of the form Et = eβ̃td(x∗,Xt), Et = eβ̂t(f(Xt)−
f(x∗)), or combinations thereof, where β̃t, β̂t : R+ → R+ are increasing functions of time.

For example, if Et = eβ̃t(f(Xt) − f(x∗)) satisfies (8), integrating both sides results in the

upper bound f(Xt)− f(x∗) ≤ e−β̃tE0. Next, we demonstrate how this works for the Euler-
Lagrange equation when the second ideal scaling (3b) holds.

Remark 2 Assuming f is convex, h is strictly convex, and the second ideal scaling condi-
tion (3b) holds, Wibisono et al. (2016) show that the Euler-Lagrange equation (4) satisfies

d
dt

{
Dh(x,Xt + e−αtẊt)

}
≤ − d

dt

{
eβt(f(Xt)− f(x))

}
, (9)

when x = x∗. If the ideal scaling holds with equality, β̇t = eαt, the solutions satisfy (9) for
∀x ∈ X . Thus,

Et = Dh(x,Xt + e−αtẊt) + eβt(f(Xt)− f(x)) (10)

is a Lyapunov function for dynamics (4).

A result similar to Remark 2 holds for the second family of dynamics (5) under the additional
assumption that f is µ-uniformly convex with respect to h:

Df (x, y) ≥ µDh(x, y). (11)

When h(x) = 1
2‖x‖

2, (11) is equivalent to the standard assumption that f is µ-strongly
convex. Another special family is obtained when h(x) = 1

p‖x‖
p, which, as pointed out in

Lemma 4 of Nesterov (2008), yields a Bregman divergence that is σ-uniformly convex with
respect to the p-th power of the norm (p ≥ 2):

Dh(x, y) ≥ σ

p
‖x− y‖p, (12)

where σ = 2−p+2. Therefore, if f is uniformly convex with respect to the Bregman diver-
gence generated by the p-th power of the norm, it is also uniformly convex with respect to
the p-th power of the norm itself for p ≥ 2. We are now ready to state our main proposition
for the continuous-time dynamics.
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Proposition 3 Assume f is µ-uniformly convex with respect to h (11), h is strictly convex,
and the second ideal scaling condition (3b) holds. Using dynamics (6), we have the following
inequality:

d
dt

{
eβtµDh(x,Xt + e−αtẊt)

}
≤ − d

dt

{
eβt(f(Xt)− f(x))

}
,

for x = x∗. If the ideal scaling holds with equality, β̇t = eαt, the inequality holds for ∀x ∈ X .
In sum, we can conclude that

Et = eβt
(
µDh(x,Xt + e−αtẊt) + f(Xt)− f(x)

)
(13)

is a Lyapunov function for dynamics (6).

The proof of this result can be found in Appendix A.2. Taking x = x∗ and writing the
Lyapunov property Et ≤ E0 explicitly,

f(Xt)− f(x∗) ≤ Dh(x
∗,X0+e−α0Ẋ0)+eβ0 (f(X0)−f(x∗))

eβt
, (14)

for (10), and

f(Xt)− f(x∗) ≤ eβ0 (µDh(x
∗,X0+e−α0Ẋ0)+f(X0)−f(x∗))

eβt
, (15)

for (13), allows us to infer a O(e−βt) convergence rate for the function value for both families
of dynamics (4) and (6).

Remark 4 (Ideal Scaling Conditions) While the first ideal scaling condition simplified
the Euler-Lagrange equation, the second ideal scaling established the validity of our Lyapunov
functions. In particular, for a given αt, the optimal convergence rate is achieved by setting

β̇t = eαt, resulting in convergence rate O(e−βt) = O(e−
∫ t
0 αsds).

So far, we have discussed two families of dynamics (4) and (6) and shown how to derive
Lyapunov functions for these dynamics which certify a convergence rate to the minimum
of an objective function f under suitable smoothness conditions on f and h. Next, we will
discuss how various discretizations of x dynamics (4) and (6) produce algorithms which are
useful for convex optimization. A similar discretization of the Lyapunov functions (10) and
(13) will provide us with a tool we can use to analyze these algorithms.

Discretization Analysis

We now show how accelerated methods can be viewed as mapping these continuous-time
dynamics to discrete-time algorithms.

Explicit and implicit methods. Consider a vector field Ẋt = v(Xt), where v : Rn → Rn
is smooth. The explicit Euler method evaluates the vector field at the current point to
determine a discrete time step:

xk+1−xk
δ =

Xt+δ−Xt
δ = v(Xt) = v(xk).
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The implicit Euler method, on the other hand, evaluates the vector field at the future point:

xk+1−xk
δ =

Xt+δ−Xt
δ = v(Xt+δ) = v(xk+1).

An advantage of the explicit Euler method is that it is generally easy to implement in
practice. The implicit Euler method, on the other hand, has greater stability and favorable
convergence properties but requires the expensive solution of an implicit equation (Rapp,
2017). We evaluate what happens when we apply these discretization techniques to both
families of dynamics (4) and (6). To do so, we write these dynamics as a system of two
first-order differential equations. The implicit and explicit Euler method can be combined
in four separate ways to obtain algorithms we can analyze; for both families, we provide
results on several of these combinations, focusing on the family that gives rise to accelerated
methods. For the remainder of the paper we make the following assumption, which restricts
our analysis to dynamical systems that are simpler and converge the fastest (see Remark 4).

Assumption 1 The second ideal scaling (3b) holds with equality.

Proposition 5 (Three-point identity) For all x ∈ dom h and y, z ∈ int(domh)

Dh(x, y)−Dh(x, z) = −〈∇h(y)−∇h(z),x− y〉 −Dh(y, z). (16)

The Bregman three-point identity plays a key role in the analysis of all accelerated methods.
For a fixed x ∈ X , (16) can be viewed as an approximation of the identity

d
dtDh(x,Xt) = −〈 ddt∇h(Xt),x−Xt〉.

Methods arising from the first Euler-Lagrange equation

We begin by writing the dynamics (4) as the following system of first-order equations:

Zt = Xt + eβt
d
dt
eβt
Ẋt, (17a)

d
dt∇h(Zt) = −

(
d
dte

βt
)
∇f(Xt). (17b)

As in Wibisono et al. (2016), we focus on the family of dynamical systems with the scaling
βt = p log t+ logC, where p > 1 is an integer. Using the identification t = δk, we approxi-
mate eβt = Ctp with the discrete sequence Ak = Cδpk(p), where instead of kp we use the ris-
ing factorial k(p) = k(k+1) · · · (k+p−1) = Θ(kp). We also approximate the time derivative
d
dte

βt = Cptp−1 with the difference sequence αk :=
Ak+1−Ak

δ = Cpδp−1k(p−1). Finally, we

make the approximations Zt = zk, Xt = xk,
d
dt∇h(Zt) =

∇h(zk+1)−∇h(zk)
δ , d

dtXt =
xk+1−xk

δ ,

and denote τk := αk
Ak

= p
δ(k+p−1) = Θ( pδk ) which approximates d

dte
βt/eβt = p

t . With these
identifications, we explore various combinations of the explicit and implicit discretization
methods.

Implicit-Euler. Written as an algorithm, the implicit Euler method applied to (17b)
and (17a) has the following update equations:

zk+1 = arg min
z∈X

{
Akf(x) + 1

δτk
Dh (z, zk)

}
, (18a)

xk+1 = δτk
1+δτk

zk+1 + 1
1+δτk

xk, (18b)

where x = δτk
1+δτk

z + 1
1+δτk

xk. We now state a convergence rate for these dynamics.
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Proposition 6 Using the discrete-time Lyapunov function,

Ek = Dh(x∗, zk) +Ak(f(xk)− f(x∗)), (19)

the bound
Ek+1−Ek

δ ≤ 0 holds for algorithm (18) when f is convex and h is strictly convex.

In particular, this allows us to conclude a general O(1/Ak) convergence rate for the implicit
method (18). While this illustrates our methodology, we note that the update (18a) is
typically as hard to solve as the original optimization problem.
Proof The proof for the implicit scheme, with the aforementioned discrete-time approxi-
mations, satisfies the variational equality,

∇h(zk+1)−∇h(zk)
δ = −Ak+1−Ak

δ ∇f(xk+1) (20a)
Ak+1−Ak

δ zk+1 =
Ak+1−Ak

δ xk+1 +Ak
xk+1−xk

δ . (20b)

Using these identities, we have the following derivation:

Ek+1−Ek
δ

(16)
= −

〈
∇h(zk+1)−∇h(zk)

δ ,x∗ − zk+1

〉
− 1

δDh(zk+1, zk)

+
Ak+1

δ (f(xk+1)− f(x∗))− Ak
δ (f(xk)− f(x∗))

(20a)
=

Ak+1−Ak
δ 〈∇f(xk+1),x

∗ − zk+1〉 − 1
δDh(zk+1, zk)

+
Ak+1

δ (f(xk+1)− f(x∗))− Ak
δ (f(xk)− f(x∗))

(20b)
=

Ak+1−Ak
δ 〈∇f(xk+1),x

∗ − xk+1〉+Ak

〈
∇f(xk+1),

xk−xk+1

δ

〉
− 1

δDh(zk+1, zk) +Ak
f(xk+1)−f(xk)

δ +
Ak+1−Ak

δ (f(xk+1)− f(x∗)) ≤ 0.

The inequality on the last line follows from the convexity of f and the strict convexity of h.

Family of Accelerated algorithms

Given algorithm (18) is expensive to implement, it is natural to consider whether fast
and computationally efficient algorithms can be obtain using an explicit-Euler discretiza-
tion of one of the sequences. In this section, we illustrate that such techniques yield fast
quasi-monotone methods, and that with an additional trick, we obtain the famed family of
accelerated gradient methods. In particular, we study families of algorithms which can be
thought of variations of the explicit Euler scheme applied to (17a) and the implicit Euler
scheme applied to (17b).3 The first family of methods can be written as the updates,

xk+1 = δτkzk + (1− δτk)yk (21a)

∇h(zk+1) = ∇h(zk)− δαk∇f(xk+1), (21b)

and the second family can be written as the updates,

xk+1 = δτkzk + (1− δτk)yk (22a)

∇h(zk+1) = ∇h(zk)− δαk∇f(yk+1). (22b)

3. Here we make the identification τk =
Ak+1−Ak

δAk+1
:= αk

Ak+1
= p

δ(k+p)
.
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In both algorithms, we have replaced xk with a sequences yk whose update we leave un-
specified for now. Without this replacement, the sequences (21) and (22) are equivalent,
and both algorithms are optimal for non-smooth optimization. However, the addition of
the sequence yk results in optimal convergence for smooth optimization. The update (21b)
is the variational condition for the mirror descent update

zk+1 = arg minz∈X
{
αk〈∇f(xk+1), z〉+ 1

δDh(z, zk)
}

.

The same is true of update (22b) where the gradient of the function is evaluated at yk+1.
We show that accelerated gradient descent (Nesterov, 2004, 2005), accelerated higher-order
methods (Nesterov, 2008; Baes, 2009) and accelerated universal gradient methods (Nesterov,
2014) all entail choosing yk+1 so thatthe following discrete-time Lyapunov function,

Ek = Dh(x∗, zk) +Ak(f(yk)− f(x∗)), (23)

is decreasing for each iteration k. To show this, we begin with the following proposition.

Proposition 7 Assume that the distance-generating function h is σ-uniformly convex with
respect to the p-th power of the norm (p ≥ 2) (12) and the objective function f is convex.
Using only the updates (21a) and (21b), and using the Lyapunov function (23), we have
the following bound:

Ek+1−Ek
δ ≤ εk+1, (24)

where the error term scales as

εk+1 = p−1
p (σ/δ)

− 1
p−1α

p
p−1

k ‖∇f(xk+1)‖
p
p−1 +

Ak+1

δ (f(yk+1)− f(xk+1)). (25a)

If we use the updates (22a) and (22b) instead, the error term scales as

εk+1 = p−1
p (σ/δ)

− 1
p−1α

p
p−1

k ‖∇f(yk+1)‖
p
p−1 +

Ak+1

δ 〈∇f(yk+1), yk+1 − xk+1〉. (25b)

The error bounds in (25) are obtained using the σ-uniform convexity with respect to the
p-th power of the norm (11), and no smoothness assumption on f ; they also hold when
full gradients of f are replaced with an element in the subgradient of f . The proof of this
proposition can be found in Appendix B.1.

With the choices Ak = Cδpk(p) and 0 < C ≤ 1/σpp, it is possible to ensure εk+1 ≤ 0
simply by choosing an update yk+1 which satisfies

f(yk+1)− f(xk+1) ≤ −δ
p
p−1 ‖∇f(xk+1)‖

p
p−1 , (26a)

or

〈∇f(yk+1), yk+1 − xk+1〉 ≤ −δ
p
p−1 ‖∇f(yk+1)‖

p
p−1 , (26b)

An algorithm with these choices satisfies the convergence rate guarantee f(yk) − f(x∗) ≤
1/Ak = O(1/(δk)p).

Remark 8 (Quasi-monotone method (Nesterov and Shikhman, 2015)) The quasi-
monotone subgradient method (QMS), introduced by Nesterov in 2015, is algorithm (21)
where yk+1 = xk+1, p = 2, and when subgradients of f are used instead of full gradients.

This results in error (25) given by εk+1 = δ
α2
k

2σ ‖∇f(xk+1)‖2 where ∇f(x) ∈ ∂f(x). Com-
bined with the assumptions supx∈X ‖∇f(x)‖2 ≤ G and supx,y∈X Dh(x, y) ≤ R, choosing

αk = R/δG
√
k + 1 results in the upper bound f(xk)− f(x∗) = O(1/

√
k).
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Acceleration of Descent Methods

In convex optimization, the term “acceleration” in the phrase “accelerated methods” stems
from the observation that any sequence satisfying (26a) and (26b), already yields a con-
vergence rate f(yk) − f(x∗) = O(1/δpkp−1), provided f has bounded level sets (i.e., R :=
supx:f(x)≤f(x0) ‖x − x

∗‖ < ∞). Adding the additional updates contained in (21) and (22)
requires at most one additional gradient step, no additional assumptions on f , and results
in a superior convergence rate bound of f(yk)−f(x∗) = O(1/(δk)p). Thus, we can interpret
algorithms that satisfy the descent conditions (26a) and (26b) (which refer to as “descent
methods”) as being “accelerated.”

A simple demonstration of this claim follows from introducing the following function
Ek = δpk(p)(f(yk)− f(x∗)) where k(p) is the rising factorial k(p) = k(k+ 1) · · · (k+ p− 1) =

Θ(kp) and showing that the difference
Ek+1−Ek

δ is upper bounded by a constant. Summing
gives the result. Details of this argument is in Appendix B.2.

Acceleration of gradient descent (Nesterov, 2004, 2005) Accelerating gradient
decent entails chooses yk+1 as the gradient update:

yk+1 = arg min
y∈X

{
f(xk+1) + 〈∇f(xk+1), y − xk+1〉+

1

2η
‖y − xk+1‖2

}
. (27)

When ∇f is L-Lipschitz, and 0 < η ≤ 1/L, the gradient update satisfies conditions (26a)
and (26b) with p = 2 and δ =

√
1/2L. Indeed, plugging in the update (27) into the

smoothness condition f(yk+1) ≤ f(xk+1)+〈∇f(xk+1), yk+1−xk+1〉+L
2 ‖yk+1−xk+1‖2 results

in the first bound (26a). Substituting (27) into the smoothness condition ‖∇f(yk+1) −
∇f(xk+1)‖ ≤ L‖yk+1 − xk+1‖, squaring both sides, and expanding the square on the left-
hand side, yields the desired second bound (26b).

Acceleration of tensor methods (Nesterov, 2008; Baes, 2009) Higher-order gra-
dient methods choose yk+1 as the tensor update

yk+1 = arg min
x∈X

{
fp−1(x; y) +

1

pη
‖x− y‖p

}
, (28)

where fp−1(x; y) =
∑p−1

i=0
1
i!∇

if(x)(y − x)i, p ≥ 1 is the (p − 1)-st order Taylor expansion
of f centered at x ∈ X . When the p-th order gradient ∇pf is L-Lipschitz, the gradient

update (28) with step size 0 < η ≤
√
3(p−1)!
2L satisfies (26b) with δ

p
p−1 = η

p
p−1 /2

2p−3
p−1 . Details

are presented in Appendix B.3.

Remark 9 (Hölder-continuous gradients Nesterov (2014)) Suppose f has (L, ν)-

Hölder-continuous gradients, where ν ∈ (0, 1) and p = 2. For 1/L̃ ≥ (1/2δ̃)
1−ν
1+ν (1/L)

2
1+ν ,

Nesterov showed that the gradient update (27) with η = L̃ satisfies f(yk+1) − f(xk+1) ≤
− 1

2L̃
‖∇f(xk+1)‖2+ δ̃

2 . The resulting error bound, εk+1 = δ
α2
k

2σ ‖∇f(xk+1)‖2−Ak+1

2δL̃
‖∇f(xk+1)‖2

+Ak+1
δ̃
2δ , allows us to conclude a O(1/k2) convergence rate of the function to within δ̃ using

the parameter choices Ak = δ2k(2)/4 where δ =
√
σ/L̃.

Remark 10 (Acceleration of proximal algorithms) Proximal algorithms, such as FISTA
(Beck and Teboulle, 2009), also fit readily within our Lyapunov framework. We refer the
reader to Appendix B.4 for details.
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Methods arising from the second Euler-Lagrange equation

We write the dynamics (6) as the following system of equations:

Zt = Xt + eβt
d
dt
eβt
Ẋt, (29a)

d
dt∇h(Zt) =

d
dt
eβt

eβt

(
∇h(Xt)−∇h(Zt)− 1

µ∇f(Xt)
)

. (29b)

We focus on the family obtained when βt =
√
µt. Using the identification t = δk, we ap-

proximate eβt = e
√
µt with the discrete sequence Ak = (1 +

√
µδ)k. We also approximate

the time derivatives d
dte

βt =
√
µe
√
µt, d

dt∇h(Zt),
d
dtXt and d

dte
βt/eβt =

√
µ, with the dis-

crete sequences
Ak+1−Ak

δ =
√
µ(1 +

√
µδ)k,

∇h(zk+1)−∇h(zk)
δ ,

xk+1−xk
δ and τk := αk

Ak
=
√
µ,

respectively. We begin with the following proposition.

Proposition 11 Assume h is strictly convex. Written as an algorithm, the implicit Euler
scheme applied to (29a) and (29b) results in the following updates:

zk+1 = arg min
z∈X

{
f(x) + µDh(z,x) + µ

δτk
Dh (z, zk)

}
, (30a)

xk+1 = δτk
1+δτk

zk+1 + 1
1+δτk

xk, (30b)

where x = δτk
1+δτk

z + 1
1+δτk

xk. Using the following discrete-time Lyapunov function:

Ek = Ak(µDh(x∗, zk) + f(xk)− f(x∗)), (31)

we obtain the bound
Ek+1−Ek

δ ≤ 0 for algorithm (30) under assumption (11). This allows
us to conclude a general O(1/Ak) convergence rate for the implicit scheme (30).

Proof The algorithm that is obtained from the implicit discretization of the dynamics (30)
satisfies the variational equalities

∇h(zk+1)−∇h(zk)
δ = τk

(
∇h(xk+1)−∇h(zk+1)− 1

µ∇f(xk+1)
)

(32a)

xk+1−xk
δ = τk(zk+1 − xk+1), (32b)

Using these variational equalities, we have the following argument:

Ek+1−Ek
δ

(16)
= αkµDh(x∗, zk+1)−Akµ

〈
∇h(zk+1)−∇h(zk)

δ ,x∗ − zk+1

〉
− µAkδ Dh(zk+1, zk)

+
Ak+1

δ (f(xk+1)− f(x∗))− Ak
δ (f(xk)− f(x∗))

(32a)
= αkµDh(x∗, zk+1) +Akτk〈∇f(xk+1),x

∗ − xk+1〉+Ak

〈
∇f(xk+1),

xk−xk+1

δ

〉
+Akτkµ 〈∇h(xk+1)−∇h(zk+1),x

∗ − zk+1〉 − µAkδ Dh(zk+1, zk)

+
Ak+1

δ (f(xk+1)− f(x∗))− Ak
δ (f(xk)− f(x∗))

(32b)
= αkµDh(x∗, zk+1) + αk〈∇f(xk+1),x

∗ − xk+1〉 − µAkδ Dh(zk+1, zk))

+Ak

〈
∇f(xk+1),

xk−xk+1

δ

〉
+ αkµ〈∇h(xk+1)−∇h(zk+1),x

∗ − zk+1〉

+ Ak
δ (f(xk+1)− f(xk)) + αk(f(xk+1)− f(x∗))

≤ −αkµDh(xk+1, zk+1)− µAkδ Dh(zk+1, zk) ≤ 0.

11
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The inequality uses the Bregman three-point identity (16) and µ-uniform convexity of f
with respect to h (11).

Remark 12 (Quasi-monotone method) A variation of the implicit Euler scheme ap-
plied to (29b) and (29b),

xk+1 = δτk
1+δτk

zk + 1
1+δτk

xk (33a)

∇h(zk+1)−∇h(zk)
δ = τk

(
∇h(xk+1)−∇h(zk+1)− 1

µ∇f(xk+1)
)

, (33b)

results in what can be regarded as the quasi-monotone method for strongly convex functions.
When h(x) = 1

2‖x‖
2, we can write (33b) as a mirror-descent update:

zk+1 = arg minz∈X

{
〈∇f(xk+1), z〉+ µ

2δτk
‖z − z̃k+1‖2

}
,

where z̃k+1 =
zk+δτkxk+1

1+δτk
. More generally, the update (33b) involves optimizing a linear

approximation to the function regularized by a weighted combination of Bregman divergences.
Assuming f is differentiable and µ-strongly convex with respect to h and that h is σ-strongly
convex we obtain the error bound

Ek+1−Ek
δ ≤ δAkτ

2
k

2µσ ‖∇f(xk+1)‖2, (34)

for algorithm (33) using Lyapunov function (31). The choice Ak = δ2k(2)

2 so that τk :=
Ak+1−Ak

δAk
= αk

Ak
= 2

δk results in the upper bound f(xk) − f(x∗) = O(1/k). This bound
matches the subgradient oracle lower bound for strongly convex Lipschitz functions. Details
of this result are in Appendix C.3.

Accelerated gradient descent (Nesterov, 2004)

We study a family of algorithms which can be thought of as variations of the implicit Euler
scheme applied to (29a) and the explicit Euler scheme applied to (29b):

xk = δτk
1+δτk

zk + 1
1+δτk

yk (35a)

∇h(zk+1)−∇h(zk)
δ = τk

(
∇h(xk)−∇h(zk)− 1

µ∇f(xk)
)

, (35b)

where yk+1 satisfies (26a) with p = 2. We make the identification Ak = (1−√µδ)−k which
is a first-order Taylor approximation of eβt = e

√
µt using the identification t = δk. Denote

αk :=
Ak+1−Ak

δ =
√
µ(1−√µδ)−(k+1) and τk := αk

Ak+1
=
√
µ which approximates d

dte
βt/eβt =

√
µ exactly. To analyze the general algorithm (35), we use the following Lyapunov function:

Ek = Ak(µDh(x∗, zk) + f(yk)− f(x∗)). (36)

We begin with the following proposition, which provides an error bound for algorithm (35).

12
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Proposition 13 Assume the objective function f is µ-uniformly convex with respect to
h (11) and h is σ-strongly convex. In addition, assume f is L-smooth. Using the se-

quences (35a) and (35b), we obtain the bound
Ek+1−Ek

δ ≤ εk+1, where the error term has
the following form:

εk+1 =
Ak+1

δ (f(yk+1)− f(xk)) +
Ak+1

δ

(
δτkL
2 − σµ

2δτk

)
‖xk − yk‖2 − Ak+1µσ

2δ ‖xk − yk‖2

+ αk
δ 〈∇f(xk), yk − xk〉+

Ak+1µ
2σδ ‖δτk(∇h(xk)−∇h(zk)− 1

µ∇f(xk))‖2. (37a)

When h(x) = 1
2‖x‖

2, the error simplifies to the following form

εk+1 =
Ak+1

δ

(
f(yk+1)− f(xk) + (τkδ)

2

2µ ‖∇f(xk)‖2 +
(
δτkL
2 − µ

2δτk

)
‖xk − yk‖2

)
.

Given the original update (26a) has a O(e−µk) convergence rate, we consider (35) an “ac-
celerated” algorithm. We present a proof of Proposition 13 in Appendix C.1. The result
for accelerated gradient descent, which satisfies (26a) with p = 2, can be summed up in the
following corollary:

Corollary 14 Using the gradient step (27) for the sequence yk+1 results in an error which
scales as

εk+1 =
Ak+1

δ

(
(δτk)

2

2µ − 1
2L

)
‖∇f(xk)‖2 +

Ak+1

δ

(
δτkL
2 − µ

2δτk

)
‖xk − yk‖2,

when h(x) = 1
2‖x‖

2.

Given τk =
√
µ, the parameter choice δ ≤

√
1/L so that δτk ≤ 1/

√
κ, where κ = µ/L is

the condition number, ensures the error is nonpositive. With this choice, we obtain a linear
O(e−

√
µδk) = O(e−k/

√
κ) upper bound. In particular, when h(x) = 1

2‖x‖
2 and δτk = 1/

√
κ,

the algorithm (35) can be reduced to the familiar two-sequence accelerated gradient descent
algorithm of Nesterov, where we set γ0 = µ (Nesterov, 2004, (p. 78-79)). The upper bound
for (35) matches the oracle lower-bound for gradient-based methods designed for smooth
strongly convex functions.

Remark 15 (Hölder-continuous gradients) Assume f is µ-strongly convex and has

(L, ν)-Hölder-continuous gradients, where ν ∈ (0, 1]. For 1/L̃ ≥ (1/2δ̃)
1−ν
1+ν (1/L)

2
1+ν , the

gradient update yk+1 = xk − 1
L̃
∇f(xk) results in an error for algorithm (35) that scales as

εk+1 =
Ak+1

δ

(
(δτk)

2

2µ − 1
2L̃

)
‖∇f(xk)‖2 +

Ak+1

δ

(
δτkL̃
2 − µ

2δτk

)
‖xk − yk‖2 +

(
αk
2 +

Ak+1

2δ

)
δ̃.

With the parameter choices Ak = (1 − √µδ)−k, αk =
√
µ(1 − µδ)−(k+1), τk =

√
µ and

δ = (1/L̃)1/2, we obtain the upper bound f(yk) − f(x∗) ≤ ε̃k+1 := A−1k E0 + δ̃1, where

δ̃1 = δ̃
2((µ/L̃)1/2 + 1) determines the threshold of convergence. In particular, choosing a

sufficiently small δ1 requires L� L̃ which negatively affects the linear convergence rate.

Equivalence to Estimate Sequences of f

In this section, we connect our Lyapunov framework directly to estimate sequences. We
derive continuous-time estimate sequences directly from our Lyapunov function arguments
and show that these two techniques are equivalent.
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Estimate sequences of a function f(x)

We provide a brief review of the technique of estimate sequences (Nesterov, 2004). We
begin with the following definition.

Definition 16 (Nesterov, 2004, 2.2.1) A pair of sequences, {φk(x)}∞k=1 and {Ak}∞k=0, for
Ak ≥ 1, is called an estimate sequence of a function f(x) if

A−1k → 0,

and, for any x ∈ Rn and for all k ≥ 0, we have

φk(x) ≤
(

1−A−1k
)
f(x) +A−1k φ0(x). (38)

The following lemma, due to Nesterov, explains why estimate sequences are useful.

Lemma 17 (Nesterov, 2004, 2.2.1) If for some sequence {xk}k≥0 we have

f(xk) ≤ φ∗k ≡ minx∈X φk(x), (39)

then f(xk)− f(x∗) ≤ A−1k [φ0(x
∗)− f(x∗)].

Proof Observe that

f(xk)
(39)

≤ min
x∈X

φk(x)
(38)

≤ min
x∈X

((
1−A−1k

)
f(x) +A−1k φ0(x)

)
≤
(

1−A−1k
)
f(x∗) +A−1k φ0(x

∗).

Rearranging gives the desired inequality.

Notice that this definition is not constructive. Finding sequences which satisfy these condi-
tions is a non-trivial task. The next proposition, formalized by Baes (2009) as an extension
of Nesterov’s Lemma 2.2.2 (Nesterov, 2004), provides guidance for constructing estimate
sequences. This construction is used in Nesterov (2004, 2005, 2008); Baes (2009); Nesterov
and Shikhman (2015); Nesterov (2015), and is, to the best of our knowledge, the only ex-
isting formal way to construct an estimate sequence. We will see below that this particular
class of estimate sequences can be transformed into our Lyapunov arguments with a few
algebraic manipulations (and vice versa).

Proposition 18 (Baes, 2009, 2.2) Let φ0 : X → R be a convex function such that
minx∈X φ0(x) ≥ f∗. Suppose also that we have a sequence {fk}k≥0 of functions from X to
R that underestimates f :

fk(x) ≤ f(x) for all x ∈ X and all k ≥ 0. (40)

Define recursively A0 = 1, τk =
Ak+1−Ak
δAk+1

:= αk
Ak+1

, and

φk+1(x) := (1− δτk)φk(x) + δτkfk(x) = A−1k+1

(
A0φ0(x) +

∑k
i=0 δaifi(x)

)
, (41)

for all k ≥ 0. Then ({φk}k≥0, {Ak}k≥0) is an estimate sequence.

14
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From (39) and (41), we observe that the following invariant:

Ak+1f(xk+1) ≤ minxAk+1φk+1(x) = minx
∑k

i=0 δαifi(x) +A0φ0(x), (42)

is maintained. In Nesterov and Shikhman (2015) and Nesterov (2015), this technique was
extended to incorporate an error term {ε̃k}∞k=1,

φk+1(x)−A−1k+1ε̃k+1 := (1− δτk)
(
φk(x)−A−1k ε̃k

)
+ δτkfk(x)

= A−1k+1

(
A0(φ0(x)− ε̃0) +

∑k
i=0 δaifi(x)

)
,

where εk ≥ 0,∀k. Rearranging, we have the following bound:

Ak+1f(xk+1) ≤ minxAk+1φk+1(x) = minx
∑k

i=0 δαifi(x) +A0

(
φ0(x)−A−10 ε̃0

)
+ ε̃k+1.

An argument analogous to that of Lemma 17 holds:

Ak+1f(xk+1) ≤
∑k

i=0 δαifi(x
∗) +A0(φ0(x

∗)− ε̃0) + ε̃k+1

(40)

≤
∑k

i=0 δαif(x∗) +A0φ0(x
∗) + ε̃k+1 = Ak+1f(x∗) +A0φ0(x

∗) + ε̃k+1.

Rearranging, we obtain the desired bound,

f(xk+1)− f(x∗) ≤ A0φ0(x∗)+ε̃k+1

Ak+1
.

Thus, we simply need to choose our sequences {Ak,φk, ε̃k}∞k=1 to ensure ε̃k+1/Ak+1 → 0.
The following table illustrates the choices of φk(x) and ε̃k for the four methods discussed
earlier.

Algorithm fi(x) φk(x) ε̃k+1

Quasi-Monotone Subgradient Method linear 1
Ak
Dh(x, zk) + f(xk)

1
2

∑k+1
i=1

(Ai−Ai−1)
2

2 G2

Accelerated Gradient Method
(Weakly Convex) linear 1

Ak
Dh(x, zk) + f(xk) 0

Accelerated Gradient Method
(Strongly Convex) quadratic f(xk) + µ

2‖x− zk‖
2 0

Table 1: Choices of estimate sequences for various algorithms

In Table 1 “linear” is defined as fi(x) = f(xi) + 〈∇f(xi),x − xi〉, and “quadratic” is
defined as fi(x) = f(xi) + 〈∇f(xi),x− xi〉+ µ

2‖x− xi‖
2. The estimate-sequence argument

is inductive; one must know the three sequences {εk,Ak,φk(x)} in order to check a priori
that the invariants hold. This aspect of the estimate-sequence technique has made it hard
to discern its structure and scope.
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Equivalence to Lyapunov arguments

We now demonstrate an equivalence between these two frameworks. The continuous-time
view shows that the errors in both the Lyapunov function and estimate sequences are due
to discretization errors. We demonstrate how this works for accelerated methods, and defer
the proofs for the other algorithms discussed earlier in the paper to Appendix D. The
discrete-time estimate sequence (41) for accelerated gradient descent can be written:

φk+1(x) := f(xk+1) +A−1k+1Dh(x, zk+1)

(41)
= (1− δτk)φk(x) + δτkfk(x)

Table 1
=

(
1−A−1k+1δαk

)(
f(xk) +A−1k Dh(x, zk)

)
+A−1k+1δαkfk(x).

Multiplying through by Ak+1, we have the following argument, which follows directly from
our definitions:

Ak+1f(xk+1) +Dh(x, zk+1) = (Ak+1 − δαk)
(
f(xk) +A−1k Dh(x, zk)

)
+ δαkfk(x)

= Ak

(
f(xk) +A−1k Dh(x, zk)

)
+ (Ak+1 −Ak)fk(x)

≤ Akf(xk) +Dh(x, zk) + (Ak+1 −Ak)f(x).

The last inequality follows from definition (40). Rearranging, we obtain the inequality
Ek+1 ≤ Ek for our Lyapunov function (23) with x = x∗. Going the other direction, from
our Lyapunov analysis we can derive the following bound:

Ek ≤ E0

Ak(f(xk)− f(x)) +Dh(x, zk) ≤ A0(f(x0)− f(x)) +Dh(x, z0)

Ak

(
f(xk)−A−1k Dh(x, zk)

)
≤ (Ak −A0)f(x) +A0

(
f(x0) +A−10 Dh(x∗, z0)

)
Akφk(x) ≤ (Ak −A0)f(x) +A0φ0(x). (43)

Rearranging, with x = x∗ we obtain the estimate sequence (38), with A0 = 1:

φk(x) ≤
(

1−A−1k A0

)
f(x) +A−1k A0φ0(x) =

(
1−A−1k

)
f(x) +A−1k φ0(x).

Writing Et ≤ E0, one can simply rearrange terms to extract an estimate sequence:

f(Xt) + e−βtDh (x,Zt) ≤
(

1− e−βteβ0
)
f(x∗) + e−βteβ0

(
f(X0) + e−β0Dh (x,Z0)

)
.

Comparing this to (43), matching terms allows us to extract the continuous-time estimate
sequence {φt(x), eβt}, where φt(x) = f(Xt) + e−βtDh(x,Zt).

Discussion

The main contributions in this paper are twofold: We have presented a unified analysis of
a wide variety of algorithms using Lyapunov functions—equations (23) and (36)—and we
have demonstrated the equivalence between Lyapunov arguments and estimate sequences
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of f , under the formalization of the latter due to Baes (2009). More generally, we have
provided a dynamical-systems perspective that builds on Polyak’s early intuitions, and
elucidates connections between discrete-time algorithms and continuous-time, dissipative
second-order dynamics. We believe that the dynamical perspective renders the design and
analysis of accelerated algorithms for optimization particularly transparent, and we also
note in passing that Lyapunov analyses for non-accelerated gradient-based methods, such
as mirror descent and natural gradient descent, can be readily derived from analyses of
gradient-flow dynamics.

We close with a brief discussion of some possible directions for future work. First, we
remark that requiring a continuous-time Lyapunov function to remain a Lyapunov function
in discrete time places significant constraints on which ODE solvers can be used. In this
paper, we show that we can derive new algorithms using a restricted set of ODE techniques
(several of which are nonstandard) but it remains to be seen if other methods can be ap-
plied in this setting. Techniques such as the midpoint method and Runge Kutta provide
more accurate solutions of ODEs than Euler methods (Butcher, 2000). Is it possible to
analyze such techniques as optimization methods? We expect that these methods do not
achieve better asymptotic convergence rates, but may inherit additional favorable proper-
ties. Determining the advantages of such schemes could provide more robust optimization
techniques in certain scenarios. In a similar vein, it would be of interest to analyze the
symplectic integrators studied by Betancourt et al. (2018) within our Lyapunov framework.

Several restart schemes have been suggested for the strongly convex setting based on
the momentum dynamics (4). In many settings, while the Lipschitz parameter can be
estimated using backtracking line-search, the strong convexity parameter is often hard—
if not impossible—to estimate (Su et al., 2016). Therefore, many authors (O’Donoghue
and Candès, 2015; Su et al., 2016; Krichene et al., 2015) have developed heuristics to
empirically speed up the convergence rate of the ODE (or discrete-time algorithm), based
on model misspecification. In particular, both Su et al. (2016) and Krichene et al. (2015)
develop restart schemes designed for the strongly convex setting based on the momentum
dynamics (4). Our analysis suggests that restart schemes based on the dynamics (6) might
lead to better results.

Earlier work by Drori and Teboulle (2014), Kim and Fessler (2016), Taylor et al. (2016),
and Lessard et al. (2016) have shown that optimization algorithms can be analyzed by
solving convex programming problems. In particular, Lessard et al show that Lyapunov-like
potential functions called integral quadratic constraints can be found by solving a constant-
sized semidefinite programming problem. It would be interesting to see if these results
can be adapted to directly search for Lyapunov functions like those studied in this paper.
This would provide a method to automate the analysis of new techniques, possibly moving
beyond momentum methods to novel families of optimization techniques.
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A Lyapunov Analysis of Acceleration

Appendix A. Dynamics

A.1 Proof of Proposition 1: Computing the Euler-Lagrange equation

We compute the Euler-Lagrange equation for the second Bregman Lagrangian (5). Denote
z = x+ e−αt ẋ. The partial derivatives of the Bregman Lagrangian can be written:

∂L
∂v (Xt, Ẋt, t) = µeβt+γt (∇h(Zt)−∇h(Xt))

∂L
∂x (Xt, Ẋt, t) = µeαt ∂L∂v (Xt, Ẋt, t)− µeβt+γt ddt∇h(Xt)− eαt+βt+γt∇f(Xt).

We also compute the time derivative of the momentum p = ∂L
∂v (Xt, Ẋt, t):

d
dt
∂L
∂v (Xt, Ẋt, t) = (β̇t + γ̇t)

∂L
∂v (Xt, Ẋt, t) + µeβt+γt ddt∇h(Zt)− µeβt+γt ddt∇h(Xt).

The terms involving d
dt∇h(X) cancel and the terms involving the momentum will simplify

under the scaling condition (3a) when computing the Euler-Lagrange equation ∂L
∂x (Xt, Ẋt, t) =

d
dt
∂L
∂v (Xt, Ẋt, t). Compactly, the Euler-Lagrange equation can be written:

d
dtµ∇h(Zt) = −β̇tµ (∇h(Zt)−∇h(Xt))− eαt∇f(x).

Remark. It is interesting to compare with the partial derivatives of the first Bregman
Lagrangian (2),

∂L
∂v (Xt, Ẋt, t) = eγt (∇h(Zt)−∇h(Xt))

∂L
∂x (Xt, Ẋt, t) = eαt ∂L∂v (Xt, Ẋt, t)− eγt ddt∇h(Xt)− eαt+βt+γt∇f(Xt),

as well as the derivative of the momentum,

d
dt
∂L
∂v (Xt, Ẋt, t) = γ̇t

∂L
∂v (Xt, Ẋt, t) + eγt ddt∇h(Zt)− eγt ddt∇h(Xt).

For Lagrangian (2), not only do the terms involving d
dt∇h(X) cancel when computing

the Euler-Lagrange equation, but the ideal scaling will also force the terms involving the
momentum to cancel as well.

A.2 Proof of Proposition 3: Deriving the Lyapunov function

We compute the time derivative of the Lyapunov function (13):

d
dtEt = eβt

(
β̇t(f(Xt)− f(x∗)) + 〈∇f(Xt), Ẋt〉 − µ 〈∇h (Zt) ,x∗ − Zt〉+ µβ̇tDh (x∗,Zt)

)
(29b)
= eβt

(
β̇t(f(Xt)− f(x∗)) + 〈∇f(Xt), Ẋt〉+ β̇tµ 〈∇h(Zt)−∇h(Xt),x

∗ − Zt〉

+ β̇t〈∇f(Xt),x
∗ − Zt〉+ µβ̇tDh (x∗,Zt)

)
(16)
= eβ

(
β̇t (f(Xt)− f(x∗) + 〈∇f(Xt),x−Xt〉+ µDh(x∗,Xt))− µβ̇tDh (Zt,Xt)

)
≤ 0

The second equality uses (29b) and third equality uses the Bregman three-point identity
with x = x, y = Xt and z = Zt as well as (29a). We conclude the desired result from the
µ-uniform convexity of f with respect to h and the nonnegativity of the Bregman divergence.
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Appendix B. Algorithms derived from dynamics (4)

We show the initial error bound has an appealing form.

B.1 Proof of Proposition 7: Initial bounds (25a) and (25b)

We begin with algorithm (21) using Lyapunov function (23):

Ek+1−Ek
δ

(16)
= −

〈
∇h(zk+1)−∇h(zk)

δ ,x∗ − zk+1

〉
− 1

δDh(zk+1, zk) +
Ak+1

δ (f(yk+1)− f(x∗))

− Ak
δ (f(yk)− f(x∗))

(21b)
= αk〈∇f(xk+1),x

∗ − zk+1〉 − 1
δDh(zk+1, zk) + αk(f(xk+1)− f(x∗))

+Ak
f(xk+1)−f(yk)

δ +Ak+1
f(yk+1)−f(xk+1)

δ

≤ αk〈∇f(xk+1),x
∗ − zk〉+ αk〈∇f(xk+1), zk − zk+1〉 − σ

δp‖zk+1 − zk‖p

+ αk(f(xk+1)− f(x∗)) +Ak
f(xk+1)−f(yk)

δ +Ak+1
f(yk+1)−f(xk+1)

δ

≤ αk〈∇f(xk+1),x
∗ − zk〉+Ak

f(xk+1)−f(yk)
δ + αk(f(xk+1)− f(x∗))

+ p−1
p (σ/δ)

− 1
p−1α

p
p−1

k ‖∇f(xk+1)‖
p
p−1 +Ak+1

f(yk+1)−f(xk+1)
δ .

The first inequality follows from the σ-uniform convexity of h with respect to the p-th
power of the norm and the last inequality follows from the Fenchel-Young inequality. If we
continue with our argument and plug in the identity (25a), it simply remains to use our
second update (21a):

Ek+1−Ek
δ ≤ αk〈∇f(xk+1),x

∗ − zk〉+Ak
f(xk+1)−f(yk)

δ + αk(f(xk+1)− f(x∗))

+ p−1
p (σ/δ)

− 1
p−1α

p
p−1

k ‖∇f(xk+1)‖
p
p−1 +Ak+1

f(yk+1)−f(xk+1)
δ

≤ αk〈∇f(xk+1),x
∗ − yk〉+

Ak+1

δ 〈∇f(xk+1), yk − xk+1〉+Ak
f(xk+1)−f(yk)

δ

+ αk(f(xk+1)− f(x∗)) + εk+1

= αk(f(xk+1)− f(x∗) + 〈∇f(xk+1),x
∗ − xk+1〉)

+ Ak
δ (f(xk+1)− f(yk) + 〈∇f(xk+1), yk − xk+1〉) + εk+1.

From here, we can conclude
Ek+1−Ek

δ ≤ εk+1 using the convexity of f . Using update (26a),

we have
Ek+1−Ek

δ ≤
(

(δ/σ)
1
p−1 (Cpδp−1(k + 1)(p−1))

p
p−1 − Cδ

1
p−1 δp(k + 1)(p)

)
‖∇f(xk)‖

p
p−1
∗ .

Given ((k + 1)(p−1))
p
p−1 /(k + 1)(p) ≤ 1, it suffices that C ≤ 1/σpp to ensure

Ek+1−Ek
δ ≤ 0.

Summing the Lyapunov function gives the convergence rate f(yk) − f(x∗) = O(1/Ak) =
O(1/(δk)p).
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We now show the bound (25b) for algorithm (22) using a similar argument:

Ek+1−Ek
δ

(16)
= −

〈
∇h(zk+1)−∇h(zk)

δ ,x∗ − zk+1

〉
− 1

δDh(zk+1, zk)+
Ak+1

δ (f(yk+1)−f(x∗))

− Ak
δ (f(yk)− f(x∗))

(21b)
= αk〈∇f(yk+1),x

∗ −zk+1〉 − 1
δDh(zk+1, zk)+αk(f(yk+1)−f(x∗)) +Ak

f(yk+1)−f(yk)
δ

≤ αk〈∇f(yk+1),x
∗ − zk〉+ αk〈∇f(yk+1), zk − zk+1〉 − σ

δp‖zk+1 − zk‖p

+ αk(f(yk+1)− f(x∗)) +Ak
f(yk+1)−f(yk)

δ

≤ αk〈∇f(yk+1),x
∗ − zk〉+Ak

f(yk+1)−f(yk)
δ + αk(f(yk+1)− f(x∗))

− Ak+1

δ 〈∇f(yk+1), yk+1 − xk+1〉+ εk+1.

The first inequality follows from the uniform convexity of h and the second uses the Fenchel-
Young inequality and definition (25b). Using the second update (22a), we obtain our initial
error bound:

Ek+1−Ek
δ ≤ αk〈∇f(yk+1),x

∗ − yk〉+Ak
f(yk+1)−f(yk)

δ + αk(f(yk+1)− f(x∗))

+
Ak+1

δ 〈∇f(yk+1), yk − xk+1〉 − Ak+1

δ 〈∇f(yk+1), yk+1 − xk+1〉+ εk+1

= αk(f(yk+1)− f(x∗) + 〈∇f(yk+1),x
∗ − yk+1〉)

+ Ak
δ (f(yk+1)− f(yk) + 〈∇f(yk+1), yk − yk+1〉) + εk+1.

From here, we can conclude
Ek+1−Ek

δ ≤ εk+1 using the convexity of f . Using (26b), we have
Ek+1−Ek

δ ≤ −δ
1
p−1C(k+ 1)(p)‖∇f(yk+1)‖

p
p−1
∗ + (δ/σ)

1
p−1 (Cp(k+ 1)(p−1))

p
p−1 ‖∇f(yk+1)‖

p
p−1
∗ .

For
Ek+1−Ek

δ ≤ 0 it suffices that C ≤ 1/σpp. Summing the Lyapunov function gives the
convergence rate f(yk)− f(x∗) = O(1/Ak) = O(1/(δk)p).

B.2 Descent Methods: Convergence of algorithms satisfying (26a) and (26b)

We show that any algorithm that satisfies (26b) obtains a O(1/δpkp−1) convergence upper
bound using the function Ek = δpk(p)(f(xk)− f(x∗)). To do so, we compute,

Ek+1−Ek
δ = pδp−1k(p−1)(f(xk)− f(x∗)) + δp(k + 1)(p)

f(xk+1)−f(xk)
δ

≤ pδp−1k(p−1)〈∇f(xk),xk − x∗〉+ δp(k + 1)(p)
f(xk+1)−f(xk)

δ

≤ pδp−1k(p−1)〈∇f(xk),xk − x∗〉 − δp(k + 1)(p)‖∇f(xk)‖
p
p−1

≤ (p− 1)p‖xk − x∗‖p ≤ (p− 1)pRp.

The first inequality follows from convexity and the second from (26a). The last inequality

follows from Young’s inequality, 〈s,u〉 + 1
p‖u‖

p ≥ −p−1
p ‖s‖

p
p−1
∗ , with s = δp−1∇f(xk)[(k +

1)(p)]
p−1
p and u = (p − 1){k(p−1)/[(k + 1)(p)]

p−1
p }(xk − x∗). The descent condition implies

‖xk − x∗‖ ≤ R. Summing over k shows f(xk) − f(x∗) = O(1/δpkp−1). For (26b), we
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similarly compute

Ek+1−Ek
δ = pδp−1k(p−1)(f(xk+1)− f(x∗)) + δpk(p)

f(xk+1)−f(xk)
δ

≤ pδp−1k(p−1)〈∇f(xk+1),xk+1 − x∗〉+ δpk(p)
f(xk+1)−f(xk)

δ

≤ pδp−1k(p−1)〈∇f(xk+1),xk+1 − x∗〉 − δpk(p)‖∇f(xk+1)‖
p
p−1

≤ 2(p− 1)p‖xk+1 − x∗‖p ≤ 2(p− 1)pRp.

The first inequality follows from convexity and the second from (26a). The last inequality

follows from Young’s inequality, 〈s,u〉 + 1
p‖u‖

p ≥ −p−1
p ‖s‖

p
p−1
∗ , with s = δp−1∇f(xk)[(k +

1)(p)]
p−1
p and u = (p − 1){k(p−1)/[(k + 1)(p)]

p−1
p }(xk − x∗). The descent condition implies

‖xk − x∗‖ ≤ R. Summing over k gives the bound. An analogous argument holds for (26b).

B.3 Higher-order Tensor Method (28) satisfies (26b)

Let p̃ = p− 1 + ν. The optimality condition for (28) is∑p−1
i=1

1
(i−1)!∇

if(xk) (xk+1 − xk)i−1 + 1
η‖xk+1 − xk‖p̃−2 (xk+1 − xk) = 0. (46)

Since ∇p−1f is L-Lipschitz, we have the following error bound on the (p−2)th order Taylor
expansion of ∇f :∥∥∥∇f(xk+1)−

∑p−1
i=1

1
(i−1)!∇

if(xk) (xk+1 − xk)i−1
∥∥∥
∗
≤ L

(p−2)!‖xk+1 − xk‖p−2+ν . (47)

Substituting (46) into (47) and writing rk = ‖xk+1 − xk‖, we obtain∥∥∥∥∇f(xk+1) +
rp̃−2
k
η (xk+1 − xk)

∥∥∥∥
∗
≤ L

(p−2)!r
p̃−1
k . (48)

Squaring both sides, expanding, and rearranging the terms, we get the inequality

〈∇f(xk+1),xk − xk+1〉 ≥ η

2rp̃−2
k

‖∇f(xk+1)‖2∗ +
ηrp̃k
2

(
1
η2
− L2

(p−2)!2

)
. (49)

If p = 2, then the first term in (49) already implies the desired bound. Now assume p ≥ 3.
The right-hand side of (49) is of the form A/rp̃−2 +Brp̃, which is a convex function of r > 0

and is minimized by r∗ =
{

(p̃−2)
p̃

A
B

} 1
2p̃−2

, yielding a minimum value of

A
(r∗)p̃−2 +B(r∗)p̃ = A

p
2p̃−2B

p̃−2
2p̃−2

[(
p̃
p̃−2

) p̃−2
2p̃−2

+
(
p̃−2
p̃

) p̃
p̃−2

]
≥ A

p
2p̃−2B

p̃−2
2p̃−2 .

Substituting the values A = η
2‖∇f(xk+1)‖2∗ and B = η

2 ( 1
η2
− L2

(p−2)!2 ) from (49), we obtain

〈∇f(xk+1),xk − xk+1〉 ≥ η
2

(
1
η2
− L2

(p−2)!2

) p̃−2
2p̃−2 ‖∇f(xk+1)‖

p̃
p̃−1
∗ .

Finally, using the inequality f(xk)− f(xk+1) ≥ 〈∇f(xk+1),xk − xk+1〉 by the convexity of
f yields the progress bound

f(xk+1)− f(xk) ≤ −η
1
p̃−1

2

(
1− (Lη)2

(p−2)!2

) p̃−2
2p̃−2 ‖∇f(xk+1)‖

p̃
p̃−1
∗ ≤ − η

1
p̃−1

2
2p̃−3
p̃−1

‖∇f(xk+1)‖
p̃
p̃−1
∗ ,

where the least inequality uses the fact that η ≤
√
3(p−2)!
2L .
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B.4 Details of Remark 10: Lyapunov analysis of FISTA (convex case)

In 2009, Beck and Teboulle introduced FISTA, which is a method for minimizing the com-
posite of two convex functions

f(x) = ϕ(x) + ψ(x), (50)

where ϕ is L-smooth and ψ is simple. The canonical example of this is ψ(x) = ‖x‖1, which
defines the `1-ball. The following proposition provides dynamical intuition for momentum
algorithms derived for this setting.

Proposition 19 Define f = ϕ+ψ and assume ϕ and ψ are convex. Under the ideal scaling
condition (3b), Lyapunov function (10) can be used to show that solutions to the system

Zt = Xt + e−αtẊt (51a)
d
dt∇h(Zt) = −eαt+βt(∇ϕ(Xt) +∇ψ(Zt)) (51b)

satisfy f(Xt)− f(x∗) = O(e−βt).

Proof We begin by plugging in the dynamics (51a) and (51b) into Lyapunov function (10).

d
dtDh (x,Zt) = eαt+βt

〈
∇ϕ(Xt),x−Xt − e−αtẊt

〉
+ eαt+βt 〈∇ψ(Zt),x− Zt〉

≤ − d
dt

{
eβt (ϕ(Xt)− ϕ(x))

}
+ eαt+βt 〈∇ψ(Zt),x− Zt〉

≤ − d
dt

{
eβt (ϕ(Xt)− ϕ(x))

}
+ β̇te

βt(ψ(x)− ψ(Zt))

≤ − d
dt

{
eβt (ϕ(Xt)− f(x))

}
− β̇teβt(ψ(Xt) + 〈∇ψ(Xt),Zt −Xt〉)

= − d
dt

{
eβt (ϕ(Xt)− f(x))

}
− β̇teβtψ(Xt)− eβt〈∇ψ(Xt), Ẋt〉)

= − d
dt

{
eβt (f(Xt)− f(x))

}
.

The second line plugs in the dynamics (51a) and (51b). The third line follows from choosing
eαt = β̇t. The fourth and fifth lines follow from convexity. The sixth line plugs in the
dynamics (51b) and the last line follows from application of the chain rule.

Algorithm. We now discretize the dynamics (51) when the ideal scaling (3b) holds with

equality. We use the same identifications Ẋt =
xk+1−xk

δ , d
dt∇h(Zt) =

∇h(zk+1)−∇h(zk)
δ and

identify eβt = (1/4)t2 with the discrete sequence Ak = δ2k(2)

4 . We also approximate d
dte

βt =

t/2 and d
dte

βt/eβt = 2
t with the discrete sequences αk :=

Ak+1−Ak
δ = δ(k+1)

2 , and τk :=
Ak+1−Ak
δAk+1

= 2
δ(k+2) , respectively. We apply the implicit-Euler scheme to (51b) and the

explicit-Euler scheme for (51a). Doing so, we obtain a proximal mirror descent update,

zk+1 = arg minz∈X

{
ψ(z) + 〈∇ϕ(xk+1), z〉+ 1

δαk
Dh(z, zk)

}
,
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and the sequence (21a), respectively. We write the variational equality as

xk+1 = δτkzk + (1− δτk)yk (52a)

∇h(zk+1)−∇h(zk) = −δαk∇ϕ(xk+1)− δαk∇ψ(zk+1), (52b)

where yk+1 is chosen to simplify the error bound. We summarize how the initial bound
scales for algorithm (52) in the following proposition.

Proposition 20 Assume h is strongly convex, ϕ is L-smooth and ψ is simple but not
necessarily smooth. Using the Lyapunov function (23), the following initial bound:

Ek+1−Ek
δ ≤ εk+1,

can be shown for algorithm (52), where the error scales as

εk+1=
Ak+1L

2δ ‖δτkzk+(1−δτk)yk−yk+1‖2− σ
2δ‖zk+1−zk‖2

+ 〈∇ϕ(xk+1),
Ak+1

δ yk+1 − Ak
δ yk − αkzk+1〉+

Ak+1

δ ψ(yk+1)−Ak
δ ψ(yk)−αkψ(zk+1).

The update

yk+1 = δτkzk+1 + (1− δτk)yk (52c)

provides the upper bound
Ak+1

δ ψ(yk+1)− Ak
δ ψ(yk)− αkψ(zk+1) ≤ 0 using the convexity of

ψ, and eliminates the inner product. Furthermore, combined with update (52a), the norm

in the error is simplified, so that the error scales as εk =
(
Ak+1δ

2τ2kL
2δ − σ

2δ

)
‖zk+1 − zk‖2 .

Using the same choice Ak = δ2k(2)/4, δ =
√
σ/L results in an O(1/(δk)2) convergence rate.

Proof The proof of Proposition 20 begins with our Lyapunov bound

Ek+1−Ek
δ

(16)
= −

〈
∇h(zk+1)−∇h(zk)

δ ,x∗ − zk+1

〉
− 1

δDh(zk+1, zk) +
Ak+1

δ f(yk+1)− f(x∗))

− Ak
δ (f(yk)− f(x∗))

(52b)
= αk 〈∇ϕ(xk+1),x

∗ − zk+1〉 − 1
δDh(zk+1, zk) +

Ak+1

δ (f(yk+1)− f(x∗))

− Ak
δ (f(yk)− f(x∗)) + αk 〈∇ψ(zk+1),x

∗ − zk+1〉 .

Using the convexity of ψ we obtain the upper bound

Ek+1−Ek
δ ≤ αk〈∇ϕ(xk+1),x

∗ − zk+1〉 − 1
δDh(zk+1, zk)+

Ak+1

δ (ϕ(yk+1)−ϕ(x∗))

−Ak
δ (ϕ(yk)−ϕ(x∗)) +

Ak+1

δ ψ(yk+1)−Ak
δ ψ(yk)−αkψ(zk+1).

It remains to use the smoothness and convexity of ϕ as well as the σ-strong convexity of h:

Ek+1−Ek
δ ≤ αk〈∇ϕ(xk+1),x

∗ − xk+1〉 − σ
2δ‖zk+1 − zk‖2+αk(ϕ(xk+1)−ϕ(x∗))

+ 〈∇ϕ(xk+1),
Ak+1

δ yk+1 − Ak
δ yk − αkzk+1〉+

Ak+1L
2δ ‖xk+1 − yk+1‖2.

Using the convexity of ϕ and update (52a) we obtain the desired bound on the error.
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Appendix C. Algorithms derived from dynamics (6)

C.1 Proof of Proposition 13: Initial bound (37)

We begin by expanding the Lyapunov bound, followed by using the strong convexity of h:

Ek+1−Ek
δ =

Ak+1

δ (f(yk+1)− f(x∗))− Ak
δ (f(yk)− f(x∗))

− µAk+1

〈
∇h(zk+1)−∇h(zk)

δ ,x∗ − zk+1

〉
− Ak+1

δ µDh(zk+1, zk) + αkµDh(x∗, zk)

≤ Ak+1

δ (f(yk+1)−f(xk))+
Ak+1

δ
(f(xk)−f(yk))+αk(f(yk)−f(x∗)+µDh(x∗, zk))

− µAk+1

〈
∇h(zk+1)−∇h(zk)

δ ,x∗ − zk
〉

+
Ak+1µ
2σδ ‖∇h(zk+1)−∇h(zk)‖2.

Using the µσ-strong convexity of f w.r.t the norm on the bolded term, we obtain:

Ek+1−Ek
δ ≤ Ak+1

δ (f(yk+1)−f(xk)+〈∇f(xk),xk−yk〉− σµ
2 ‖xk−yk‖

2+ µ
2σ‖∇h(zk+1)−∇h(zk)‖2)

+αk(f(yk)− f(x∗) + µDh(x∗, zk))− µAk+1

δ 〈∇h(zk+1)−∇h(zk),x
∗ − zk〉

(35b)
=

Ak+1

δ (f(yk+1)−f(xk)+〈∇f(xk),xk−yk〉− σµ
2 ‖xk−yk‖

2+ µ
2σ‖∇h(zk+1)−∇h(zk)‖2)

+αk(f(yk)− f(x∗)+µDh(x∗, zk)+〈∇f(xk),x
∗−zk〉−µ〈∇h(xk)−∇h(zk),x

∗−zk〉)
(35a)
=

Ak+1

δ (f(yk+1)−f(xk)− σµ
2 ‖xk−yk‖

2+ µ
2σ‖∇h(zk+1)−∇h(zk)‖2)+αk(f(yk)−f(x∗))

+αk(〈∇f(xk),x
∗− xk〉−µ〈∇h(xk)−∇h(zk),x

∗−zk〉+µDh(x∗, zk)).

Using the µ-strong convexity of f with respect to h (11) on the bolded term in the last line,
we have:

Ek+1−Ek
δ ≤ Ak+1

δ (f(yk+1)−f(xk))+αk(f(yk)− f(xk)−µDh(x∗,xk))−Ak+1σµ
2δ ‖xk − yk‖2

−µαk(〈∇h(xk)−∇h(zk),x
∗−zk〉+Dh(x∗, zk))+

Ak+1µ
2σδ ‖∇h(zk+1)−∇h(zk)‖2

(16)
=

Ak+1

δ (f(yk+1)− f(xk)) +αk(f(yk)− f(xk))− Ak+1σµ
2δ ‖xk − yk‖2

+
Ak+1σµ

2δ ‖∇h(zk+1)−∇h(zk)‖2 − αkµDh(xk, zk) (53)

≤ Ak+1

δ (f(yk+1)− f(xk)) + αk〈∇f(xk).yk − xk〉 − Ak+1σµ
2δ ‖xk − yk‖2

+
Ak+1µ
2σδ ‖δτk(∇h(xk)−∇h(zk)− 1

µ∇f(xk))‖2 − Ak+1

δ

(
σµ
2δτk
− δτkL

2

)
‖xk − yk‖2.

The second line applies the Bregman three-point identity to the bolded terms in the line
before. The last line, our final error bound, is obtained from applying the µ-strong convexity
of f on term in bold on the previous line.

C.2 Details of Remark 15: Hölder-continuous gradients bound

To analyze the setting where f has Hölder continuous gradients and h(x) = 1
2‖x‖

2 we
proceed from (53) using the following bound:

f(y)− f(x) ≤ 〈∇f(x), y − x〉+ L̃
2 ‖x− y‖

2 + δ̃
2 , (54)
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for x, y ∈ X where 1/L̃ ≥ (1/2δ̃)
1−ν
1+ν (1/L)

2
1+ν (Nesterov, 2014, Lemma 1). We have

Ek+1−Ek
δ ≤ Ak+1

δ (f(yk+1)− f(xk)) + αk〈∇f(xk).yk − xk〉 − Ak+1µ
2δ ‖xk − yk‖

2

+
Ak+1µ

2δ ‖δτk(xk − zk −
1
µ∇f(xk))‖2 − Ak+1

δ

(
µ

2δτk
− δτkL̃

2

)
‖xk − yk‖2 + αk

δ̃
2

=
Ak+1

δ (f(yk+1)−f(xk)+ (δτk)
2

2µ ‖∇f(xk)‖2)−Ak+1

δ

(
µ

2δτk
− δτkL̃

2

)
‖xk−yk‖2+αk

δ̃
2 .

The last line follows from expanding the square and plugging in update (35a).

C.3 Details of Remark 12: Quasi-monotone gradient method

We show the convergence bound for the quasi-monotone method (33). We have:

Ek+1−Ek
δ = Ak

f(xk+1)−f(xk)
δ + αk(f(xk+1)− f(x∗)) + αkµDh(x∗, zk+1)

−Akµ
〈
∇h(zk+1)−∇h(zk)

δ ,x∗ − zk+1

〉
− Ak

δ µDh(zk+1, zk)

(33b)
= Ak

f(xk+1)−f(xk)
δ + αk(f(xk+1)− f(x∗) + µDh(x∗, zk+1) + 〈∇f(xk+1),x

∗ − zk〉)
+αk(µ〈∇h(zk+1)−∇h(xk+1),x

∗−zk+1〉+〈∇f(xk+1), zk−zk+1〉−Akµ
αkδ

Dh(zk+1, zk))

≤Ak f(xk+1)−f(xk)
δ + αk(f(xk+1)− f(x∗) + µDh(x∗, zk+1) + 〈∇f(xk+1),x

∗ − zk〉)

+µ〈∇h(zk+1)−∇h(xk+1),x
∗−zk+1〉)+

α2
kδ

2µσAk
‖∇f(xk+1)‖2

(33a)
= Ak

f(xk+1)−f(xk)
δ +αk(f(xk+1)−f(x∗)+〈∇f(xk+1),x

∗−xk+1〉+µDh(x∗, zk+1))

+Ak

〈
∇f(xk+1),

xk−xk+1

δ

〉
+αkµ〈∇h(zk+1)−∇h(xk+1),x

∗ − zk+1〉

+
α2
kδ

2µσAk
‖∇f(xk+1)‖2

≤ αkµ(〈∇h(zk+1)−∇h(xk+1),x
∗ − zk+1〉+Dh(x∗, zk+1)−Dh(x∗,xk+1))

+
α2
kδ

2µσAk
‖∇f(xk+1)‖2.

The first inequality comes from the strong convexity of h and Hölder’s inequality. The
second inequality follows from the uniform convexity of f with respect to h and convexity
of f . The final error bound follows from using the Bregman three-point identity (16) and
nonnegativity of the Bregman divergence on the last line.

C.4 Details of Remark 10: Lyapunov analysis of FISTA (strongly convex case)

We study the problem of minimizing the composite objective f = ϕ+ψ in the setting where
ϕ is L-smooth and µ-strongly convex and ψ is simple but not smooth:

Proposition 21 Define f = ϕ+ψ and assume ϕ is µ-strongly convex with respect to h and
ψ is convex. Under the ideal scaling condition (3b), Lyapunov function (13) can be used to
show that solutions to the system

Zt = Xt + e−αtẊt (55a)

d

dt
∇h(Zt) = β̇t∇h(Xt)− β̇t∇h(Zt)−

eαt

µ
(∇ϕ(Xt) +∇ψ(Zt)), (55b)
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satisfy f(Xt)− f(x) = O(e−βt).

Proof Let eαt = β̇t. Using (13) we compute

d
dtEt = eβt

(
β̇t(f(Xt)− f(x∗)) + 〈∇f(Xt), Ẋt〉+ µβ̇tDh(x∗,Zt)− µ

〈
d
dt∇h(Zt),x

∗ − Zt
〉 )

(55)
= eβt

(
β̇t(f(Xt)− f(x∗)) + β̇t〈∇f(Xt),Zt −Xt〉+ µβ̇tDh(x∗,Zt)

)
+ β̇te

βt
(
〈∇ϕ(Xt),x

∗ − Zt〉 − µ 〈∇h(Zt)−∇h(Xt),x
∗ − Zt〉+ 〈∇ψ(Zt),x

∗ − Zt〉
)

≤ β̇teβt
(

(ψ(Zt)− ψ(x∗)) + (ϕ(Xt)− ϕ(x∗)) + 〈∇ϕ(Xt),Zt −Xt〉+ µDh(x∗,Zt)

− µ 〈∇h(Zt)−∇h(Xt),x
∗ − Zt〉+ 〈∇ϕ(Xt),x

∗ − Zt〉+ 〈∇ψ(Zt),x
∗ − Zt〉

)
≤ β̇teβt

(
ϕ(Xt)−ϕ(x∗)+〈∇ϕ(Xt),x

∗−Xt〉+µ(Dh(x∗,Zt)−〈∇h(Zt)−∇h(Xt),x
∗−Zt〉)

)
≤ −µβ̇teβtDh(Zt,Xt).

The second line comes from plugging in the dynamics (55b) and (55a). The third and
fourth lines use the convexity of ψ and the fifth line uses the strong convexity of ϕ and the
Bregman three-point identity with x = x, y = Xt and z = Zt.

Algorithm Assume h(x) = 1
2‖x‖

2 and the ideal scaling (3b) holds with equality β̇t = eαt .
To discretize the dynamics (55b), we split the vector field into two components, v1(x, z, t) =
β̇t(Xt − Zt − (1/µ)∇ϕ(Xt)), and v2(x, z, t) = −β̇t/µ∇ψ(Zt) and apply the explicit Euler
scheme to v2(x, z, t) and the implicit Euler scheme to v1(x, z, t). We also approximate eβt =

e−µt with a first-order Taylor approximation Ak = (1−√µδ)−k so that τk :=
Ak+1−Ak
δAk+1

=
√
µ

yields d
dte

βt/eβt =
√
µ. This results in the proximal update

zk+1 = arg minz

{
ψ(z) + 〈∇ϕ(xk), z〉+ µ

2δτk
‖z − (1− δτk)zk − δτkxk‖2

}
. (56)

In full, we can write the algorithm as

xk = δτk
1+δτk

zk + 1
1+δτk

yk (57a)

zk+1 − zk = δτk

(
xk − zk − 1

µ∇ϕ(xk)− 1
µ∇ψ(zk+1)

)
, (57b)

where yk+1 is chosen to simplify the error bound. We summarize how the initial bound
changes with this modified update in the following proposition.

Proposition 22 Assume h(x) = 1
2‖x‖

2, ϕ is strongly convex, ϕ is L-smooth, and ψ is

convex and simple. Using the Lyapunov function (36), we have following bound
Ek+1−Ek

δ ≤
εk+1, for algorithm (57), where the error scales as

εk+1 =
Ak+1L

2δ ‖yk+1−xk‖2−Ak+1µ
2δ ‖zk+1 − zk − δτk(xk − zk)‖2+

(
αkL
2 −

αkµ
2(δ2τ2k )

)
‖yk − xk‖2

+ 〈∇ϕ(xk),
Ak+1

δ yk+1 − Ak
δ yk − αkzk+1〉+

Ak+1

δ ψ(yk+1)− Ak
δ ψ(yk)− αkψ(zk+1).
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The same update,

yk+1 = δτkzk+1 + (1− δτk)yk, (57c)

provides the upper bound
Ak+1

δ ψ(yk+1)− Ak
δ ψ(yk)− αkψ(zk+1) ≤ 0 using the convexity of

ψ, and eliminates the inner product. Furthermore, the identity xk − yk+1
(57c)
= xk − yk −

δτk(zk+1 − yk)
(57a)
= δτk(zk − zk+1 + yk − xk)

(57a)
= δτk(δτk(xk − zk)− (zk − zk+1)). allows us

to simplify the norm in the error so that we conclude a new error that scales as

εk+1 =
(
LAk+1

2δ − Ak+1µ
2δ(τkδ)2

)
‖xk − yk+1‖2 +

(
Lαk
2 −

αkµ
2(τkδ)2

)
‖xk − yk‖2.

Given τk =
√
µ, choosing δ =

√
1/L results in an results in a O(e−

√
µδk) = O(e−k/

√
κ)

convergence rate which matches the lower bound for the class of L-smooth and µ-strongly
convex functions.

Proof We begin with the Bregman three point identity:

Ek+1−Ek
δ

(16)
= −Ak+1µ

〈
zk+1−zk

δ ,x∗ − zk+1

〉
− Ak+1µ

2δ ‖zk+1 − zk‖2 + αkµ
2 ‖x

∗ − zk‖2

+Ak+1
f(yk+1)−f(yk)

δ + αk(f(yk)− f(x∗))

(57b)
= −αkµ 〈xk − zk,x∗ − zk+1〉 − Ak+1µ

2δ ‖zk+1 − zk‖2 + αkµ
2 ‖x

∗ − zk‖2

+Ak+1
ϕ(yk+1)−ϕ(yk)

δ +αk〈∇ϕ(xk),x
∗− xk〉+ αk〈∇ϕ(xk),xk − zk+1〉

+ αk(ϕ(yk)− f(x∗)) +
Ak+1

δ ψ(yk+1)− Ak
δ ψ(yk) +αk〈∇ψ(zk+1),x∗− zk+1〉

≤ −αkµ 〈xk − zk,x∗ − zk+1〉 − Ak+1µ
2δ ‖zk+1 − zk‖2 + αkµ

2 ‖x
∗ − zk‖2

+Ak+1
ϕ(yk+1)−ϕ(yk)

δ + αk(ϕ(xk)− ϕ(x∗)− µ
2‖x

∗ − xk‖2 + 〈∇ϕ(xk),xk − zk+1〉)

+ αk(ϕ(yk)− ϕ(x∗)) +
Ak+1

δ ψ(yk+1)− Ak
δ ψ(yk)− αkψ(zk+1).

The inequality follows from strong convexity of ϕ and the convexity of ψ which was used
to upper bound the bolded inner products on the second line. Using the L-smoothness and
µ-strong convexity of ϕ, we obtain the upper bound:

Ek+1−Ek
δ ≤−αk(µ 〈xk−zk,x∗−zk+1〉+µ

2
‖x∗− zk‖2 + L

2 ‖yk − xk‖
2)−Ak+1µ

2δ ‖zk+1−zk‖2

+
Ak+1L

2δ ‖yk+1 − xk‖2 − Ak+1µ
2δ ‖yk − xk‖

2 + 〈∇ϕ(xk),
Ak+1

δ yk+1−Ak
δ yk−αkzk+1〉

− αkµ
2
‖x∗− xk‖2 +

Ak+1

δ ψ(yk+1)− Ak
δ ψ(yk)− αkψ(zk+1)

(16)
= αk

(
L
2 ‖yk−xk‖

2−µ 〈xk − zk, zk−zk+1〉
)

+
Ak+1

δ

(
L
2 ‖yk+1 − xk‖2− µ

2‖zk+1−zk‖2
)

− Ak+1µ

2δ
‖yk−xk‖2 + 〈∇ϕ(xk),

Ak+1

δ yk+1−Ak
δ yk − αkzk+1〉 − αkµ

2
‖xk − zk‖2

+
Ak+1

δ ψ(yk+1)− Ak
δ ψ(yk)− αkψ(zk+1).

The second line follows from applying the Bregman three point identity to the terms on the
first line in bold. Next, we apply the coupling identity (57a) to the terms on the last line
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in bold:

Ek+1−Ek
δ

(57a)

≤ αkµ 〈zk−xk, zk−zk+1〉−
Ak+1µ

2δ
‖zk+1−zk‖2 +

Ak+1L
2δ ‖yk+1 − xk‖2

+αkL
2 ‖yk−xk‖

2 −Ak+1µ

2δ
‖δτk(xk−zk)‖2+〈∇ϕ(xk),

Ak+1

δ yk+1−Ak
δ yk−αkzk+1〉

− αkµ
2(δ2τ2k )

‖xk − yk‖2 +
Ak+1

δ ψ(yk+1)− Ak
δ ψ(yk)− αkψ(zk+1)

(16)
=

Ak+1L
2δ ‖yk+1−xk‖2−Ak+1µ

2δ ‖zk+1−zk−δτk(xk−zk)‖2+
(
αkL
2 −

αkµ
2(δ2τ2k )

)
‖yk−xk‖2

+ 〈∇ϕ(xk),
Ak+1

δ yk+1 − Ak
δ yk − αkzk+1〉+

Ak+1

δ ψ(yk+1)− Ak
δ ψ(yk)− αkψ(zk+1).

The final line follows from applying the Bregman three point identity (16) to the terms on
the first line in bold.

Appendix D. Estimate Sequences

D.1 Lyapunov and estimate sequence frameworks for quasi-monotone method

The discrete-time estimate sequence (41) for the quasi-monotone subgradient method can
be written:

φk+1(x)−A−1k+1ε̃k+1 := f(xk+1) +A−1k+1Dh(x, zk+1)−A−1k+1ε̃k+1

(41)
= (1− δτk)

(
φk(x)−A−1k ε̃k

)
+ δτkfk(x)

=

(
1− δαk

Ak+1

)(
f(xk) +

1

Ak
Dh(x, zk)−

ε̃k
Ak

)
+

δαk
Ak+1

fk(x).

Multiplying through by Ak+1, we have

Ak+1f(xk+1) +Dh(x, zk+1)− ε̃k+1 = (Ak+1 − δαk)(f(xk) +A−1k Dh(x, zk)−A−1k ε̃k)

− (Ak+1 − δαk)A−1k ε̃k + δαkfk(x)

= Ak
(
f(xk) +A−1k Dh(x, zk)−A−1k ε̃k

)
+ δαkfk(x)

(40)

≤ Akf(xk) +Dh(x, zk)− ε̃k + δαkf(x).

Rearranging, we obtain our Lyapunov argument Ek+1 ≤ Ek + εk+1 for (23):

Ak+1(f(xk+1)− f(x)) +Dh(x, zk+1) ≤ Ak(f(xk)− f(x)) +Dh(x, zk) + εk+1.

Going the other direction, from our Lyapunov analysis we can derive the following bound:

Ek ≤ E0 + ε̃k (58)

Ak(f(xk)− f(x)) +Dh(x, zk) ≤ A0(f(x0)− f(x)) +Dh(x, z0) + ε̃k

Ak

(
f(xk)−

1

Ak
Dh(x, zk)

)
≤ (Ak −A0)f(x) +A0

(
f(x0) +

1

A0
Dh(x∗, z0)

)
+ ε̃k

Akφk(x) ≤ (Ak −A0)f(x) +A0φ0(x) + ε̃k. (59)

Rearranging, we obtain our estimate sequence (38) (A0 = 1) with an additional error term:

φk(x) ≤
(

1− A0

Ak

)
f(x) +

A0

Ak
φ0(x) +

ε̃k
Ak

=
(

1− 1

Ak

)
f(x) +

1

Ak
φ0(x) +

ε̃k
Ak

. (60a)
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D.2 Lyapunov and estimate sequence frameworks for accelerated gradient
descent

The discrete-time estimate sequence (41) for accelerated gradient descent can be written:

φk+1(x) := f(xk+1) +
µ

2
‖x− zk+1‖2

(41)
= (1− δτk)φk(x) + δτkfk(x)

(40)

≤ (1− δτk)φk(x) + δτkf(x).

Therefore, we obtain the inequality Ẽk+1 − Ẽk ≤ −δτkẼk for our Lyapunov function by
simply writing φk+1(x)− f(x) + f(x)− φk(x) ≤ −δτk(φk(x)− f(x)):

f(xk+1)− f(x) +
µ

2
‖x− zk+1‖2 −

(
f(xk)− f(x) +

µ

2
‖x− zk+1‖2

)
Table 1
≤ −δτk

(
f(xk)− f(x) +

µ

2
‖x− zk+1‖2

)
.

Going the other direction, we have,

Ek+1 − Ek ≤ −δτkEk
φk+1 ≤ (1− δτk)φk(x) + δτkf(x)

Ak+1φk+1 ≤ Akφk + (Ak+1 −Ak)f(x).

Summing over the right-hand side, we obtain the estimate sequence (38):

φk+1 ≤
(

1− A0

Ak+1

)
f(x) +

A0

Ak+1
φ0(x) =

(
1− 1

Ak+1

)
f(x) +

1

Ak+1
φ0(x).

Since the Lyapunov function property allows us to write

eβt
(
f(Xt) +

µ

2
‖x− Zt‖2

)
≤ (eβt − eβ0)f(x) + eβ0

(
f(X0) +

µ

2
‖x− Z0‖2

)
,

we can extract {f(Xt) + µ
2‖x − Zt‖2, eβt} as the continuous-time estimate sequence for

accelerated gradient descent in the strongly convex setting.

Appendix E. Additional Methods

E.1 Frank-Wolfe algorithms

In this section we describe how Frank-Wolfe algorithms can, in a sense, be considered as
discrete-time mappings of dynamics which satisfy the conditions

Zt = Xt + β̇−1t Ẋt, (61a)

0 ≤ 〈∇f(Xt),x− Zt〉, ∀x ∈ X . (61b)

These dynamics are not guaranteed to exist; however, they are remarkably similar to the
dynamics (4), where instead of using the Bregman divergence to ensure nonnegativity of
the variational inequality 0 ≤ β̇te

βt〈∇f(Xt),x− Zt〉, we simply assume (61b) holds on the
domain X . We summarize the usefulness of dynamics (61) in the following proposition.
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Proposition 23 Assume f is convex and the ideal scaling (3b) holds. The following func-
tion:

Et = eβt(f(Xt)− f(x∗)), (62)

is a Lyapunov function for the dynamics which satisfies (61). We can therefore conclude
an O(e−βt) convergence rate of dynamics (61) to the minimizer of the function.

Before proving Proposition 23, we first analyze Frank-Wolfe algorithms, which are discretiza-
tions of the dynamics (61). Applying the backward-Euler scheme to (61a) and (61b), we
use the same approximation d

dtXt =
xk+1−xk

δ , and identify eβt = Ct2 where C = 1
2 with the

discrete sequence Ak = δ2k(2)

2 so that αk :=
Ak+1−Ak

δ = δ(k+ 1) and τk =
Ak+1−Ak
δAk+1

= 2
δ(k+2)

roughly approximates d
dte

βt = t and d
dte

βt/eβt = β̇t = 2
t , respectively. We obtain the

following algorithm:

zk = arg minz∈X 〈∇f(xk), z〉, (63a)

xk+1 = δτkzk + (1− δτk)xk. (63b)

Update (63a) requires the assumptions that X be convex and compact; under this assump-
tion, (63a) satisfies 0 ≤ 〈∇f(xk),x − zk〉,∀x ∈ X , consistent with (61b). The following
proposition describes how a discretization of (62) can be used to analyze the behavior of
algorithm (63).

Proposition 24 Assume f is convex and X is convex and compact, and f has (L, ν)-
Hölder-continuous gradients ν ∈ (0, 1]. Using the Lyapunov function

Ek = Ak(f(xk)− f(x∗)), (64)

we obtain the error bound,
Ek+1−Ek

δ ≤ εk+1, where the error for algorithm (63) scales as

εk+1 = δν
Ak+1τ

1+ν
k L

(1+ν) ‖zk − xk‖1+ν . (65)

The choice Ak = δ2k(2)

2 results in a convergence rate bound of O(1/kν).

Proof of Proposition 23 We show that (62) is a Lyapunov function for dynamics (61).

d
dtEt = eβt ddt {f(Xt)}+ β̇te

βt(f(Xt)− f(x∗))

≤ eβt〈∇f(Xt), Ẋt〉 − β̇teβt〈∇f(Xt),x
∗ −Xt〉 = −β̇teβt〈∇f(Xt),x

∗ − Zt〉 ≤ 0.

Proof of Proposition 24 To show bound (65) we have

Ek+1−Ek
δ =

Ak+1

δ (f(xk+1)− f(xk)) + αk(f(xk)− f(x∗))

≤ Ak+1

δ 〈∇f(xk),xk+1 − xk〉+
Ak+1L
δ(1+ν)‖xk+1 − xk‖1+ν + αk〈∇f(xk),xk − x∗〉

(63b)
= αk〈∇f(xk), zk − xk〉+

δνAk+1τ
1+ν
k L

(1+ν) ‖zk − xk‖1+ν + αk〈∇f(xk),xk − x∗〉
(63a)

≤ δνAk+1τ
1+ν
k L

(1+ν) ‖zk − xk‖1+ν .

The first inequality follows from the Hölder continuity and convexity of f . The rest simply
follows from plugging in our identities.
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E.1.1 Lyapunov and estimate sequence frameworks for Frank-Wolfe

The discrete-time estimate sequence (41) for conditional gradient method can be written:

φk+1(x)− ε̃k+1

Ak+1
:= f(xk+1)− ε̃k+1

Ak+1

(41)
= (1− δτk)

(
φk(x)− ε̃k

Ak

)
+ δτkfk(x)

Table 1
=

(
1− δαk

Ak+1

)(
f(xk)− ε̃k

Ak

)
+ δαk

Ak+1
fk(x).

Multiplying through by Ak+1, we have

Ak+1

(
f(xk+1)− ε̃k+1

Ak+1

)
= (Ak+1 − (Ak+1 −Ak))

(
f(xk)− ε̃k

Ak

)
+ αkfk(x)

= Ak
(
f(xk)−A−1k ε̃k

)
+ (Ak+1 −Ak)fk(x)

(40)

≤ Akf(xk)− ε̃k + (Ak+1 −Ak)f(x).

Rearranging, we obtain our Lyapunov argument Ek+1 − Ek ≤ εk+1 for (64):

Ak+1(f(xk+1)− f(x)) ≤ Ak(f(xk)− f(x)) + εk+1.

Going the other direction, from our Lyapunov analysis we can derive the following bound:

Ek ≤ E0 + ε̃k

Akf(xk) ≤ (Ak −A0)f(x) +A0f(x0) + ε̃k

Akφk(x) ≤ (Ak −A0)f(x) +A0φ0(x) + ε̃k

Rearranging, we obtain our estimate sequence (38) (A0 = 1) with an additional error term:

φk(x) ≤
(

1− A0
Ak

)
f(x) + A0

Ak
φ0(x) + ε̃k

Ak
=
(

1− 1
Ak

)
f(x) + 1

Ak
φ0(x) + ε̃k

Ak
.

Given that the Lyapunov function property allows us to write

eβtf(Xt) ≤ (eβt − eβ0)f(x) + eβ0f(X0),

we can extract {f(Xt), e
βt} as the continuous-time estimate sequence for Frank-Wolfe.
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