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Abstract— In this paper a strong Lyapunov function is
obtained, for the first time, for the supertwisting algorithm,
an important class of second order sliding modes (SOSM).
This algorithm is widely used in the sliding modes literature
to design controllers, observers and exact differentiators. The
introduction of a Lyapunov function allows not only to study
more deeply the known properties of finite time convergence
and robustness to strong perturbations, but also to improve
the performance by adding linear correction terms to the
algorithm. These modification allows the system to deal with
linearly growing perturbations, that are not endured by the
basic supertwisting algorithm. Moreover, the introduction of
Lyapunov functions opens many new analysis and design tools
to the Higher Order Sliding Modes research area.

I. INTRODUCTION

Sliding mode approach to control and observation is

widely used due to its attractive characteristics of finite-time

convergence and robustness to uncertainties. Sliding mode

control has been thoroughly studied, from both practical and

theoretical point of view [1], [3], [11], [12], [14], [16], [17],

[21]. Subjects of increasing interest are the sliding modes

based observers [4], [7], [8], [20], [22].

In most cases, sliding modes are obtained by means

of injecting a non-linear discontinuous term, depending on

the output error, into the controlling or observing system.

The discontinuous injection must be designed such that the

trajectories of the system are forced to remain on some

sliding surface in the error space. The resulting motion is

referred to as sliding mode [21]. This discontinuous term is

the one which enables the system to reject disturbances and

also some classes of mismatches between the actual system

and the model used for design [20].

Levant [14], [16] defines the sliding mode order by means

of a smooth dynamic system with a smooth output function

σ, closed by some possibly dynamical discontinuous feed-

back, with an output σ to be forced to zero. Then, provided

the successive total time derivatives σ, σ̇, . . . , σ(r−1) are con-

tinuous functions of the closed-system state-space variables,

and the set σ = σ̇ = . . . = σ(r−1) = 0 is non-empty

and consists of trajectories in the sense of Filippov [9], the

motion on the set σ = σ̇ = . . . = σ(r−1) = 0 is said to be an
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rth-order sliding mode. The rth derivative σ(r) is supposed

to be discontinuous or non existent.

The standard sliding mode is of the first order (i.e. σ̇ is

discontinuous) [14], [16]. It is known as robust and very

accurate with respect to various classes of internal and

external perturbations [17], but it is restricted to the case in

which the output relative degree is 1, i.e. the discontinuous

injection appears already in σ̇. Besides, the high frequency

switching that produces the sliding mode may cause chat-

tering effect [3], [17]. Higher order sliding modes (HOSM)

appears sometimes in systems with traditional sliding mode

control or they are deliberately introduced because it has

been found that finite time convergent HOSMs preserve the

features of the first order sliding modes and can improve

them, if properly designed, by eliminating the chattering

[14], [16].

For the first order sliding modes, it is common to deal

with the issues of stability, robustness and convergence rate

of the equilibrium by means of a Lyapunov approach [21],

[22], [20]. For higher order sliding modes, a similar treatment

has not been developed until now. Instead, it is usual to

use majorant curves or homogeneity based methods to study

convergence [7], [8], [11], [15].

In [7], [8] a second order sliding mode (SOSM) observer,

based on the super twisting algorithm [11] is studied. There,

its finite time convergence is proved by means of a ma-

jorant curve, and its robustness to bounded perturbations

is analyzed. For this algorithm we study its stability and

finite time convergence characteristics by means of Lyapunov

functions. This approach allowed us to extend the class of

perturbations and uncertainties originally admitted by SOSM

to include root square growing ones. Besides, by means

of the addition of linear terms to SOSM (SOSML), linear

growing perturbations are included too. Another advantage

of the use of Lyapunov functions is that it is possible to

obtain explicit relations for the design parameters. Note that

the basic algorithm studied here is useful for control and

observation, although we will emphasize the interpretation

for the observer design.

In the following, we first present Lyapunov functions

for basic and perturbed SOSM (section II). In section III,

we propose an improvement for SOSM that enables it to

deal with linear growing perturbations (SOSML). A simple

example of the application of SOSML is presented in IV,

and at last, some conclusions are presented.
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II. A LYAPUNOV FUNCTION FOR SOSM

An important algorithm for control and observation using

SOSM is the so called Super Twisting Algorithm [17], that

is described by the differential inclusion

ẋ1 = −k1 |x1|1/2
sign (x1) + x2 + ̺1 (x, t)

ẋ2 = −k3 sign (x1) + ̺2 (x, t)
(1)

where xi are the scalar state variables, ki are gains to be

designed, and ̺i are perturbation terms. The solutions are

trajectories in the sense of Filippov [9]. We propose, for

the first time, a Lyapunov function to ensure the conver-

gence in finite time of all trajectories of this system to

zero, when the gains are adequately selected, and for some

kinds of perturbations. We construct first for the unperturbed

dynamics (with ̺1 = ̺2 = 0) a strong Lyapunov function,

that is, one possessing a negative definite time derivative.

In a second step we take advantage of this property of a

strong Lyapunov function to show that, for certain class

of perturbations, the Lyapunov function still has a negative

definite time derivative.

A. Unperturbed dynamics

For system (1) we will show that the function

V (x) = 2k3 |x1| +
1

2
x2

2 +
1

2

(

k1 |x1|1/2
sign (x1) − x2

)2

(2)

that is continuous everywhere but not differentiable at x1 =
0, is a strong Lyapunov function for the system (1) without

perturbations.

Remark 1: Since V (x) (2) is continuous but not dif-

ferentiable, a nonsmooth version of Lyapunov’s theory is

required (see [5], and the recent tutorial paper [6] for an

overview). Note that the usual version for locally Lipschitz

Lyapunov functions [9], [2], [19] is not appropriate here,

since V (x) is not locally Lipschitz. Therefore, the Proximal

Subdifferential [5], and not the Generalized Gradient of

V (x), has to be employed. In the present case, however,

a simpler method can be used, since the state trajectories

ϕ (t, x0) of the differential inclusion (1) are absolutely

continuous functions, and, therefore, V (ϕ (t, x0)) is a con-

tinuous function of time. Due to the lack of Lipschitzness

of V (x) it is not possible to assure the absolute continuity

of V (ϕ (t, x0)), and its differentiability almost everywhere.

However, V (x) is continuously differentiable, except on the

set S =
{

(x1, x2) ∈ R
2 | x1 = 0

}

. It is easy to see that

the trajectories of the system (1) just cross the surface S
and cannot stay on it, except when the origin x = 0 has

been reached. This means that V (ϕ (t, x0)) is differentiable

for almost every t, and on those points the derivative can

be calculated in the usual way, applying the chain rule.

This shows that in aplying Lyapunov’s theorem one can

just consider the points where V (x) is differentiable. This

argument is valid in all the proofs of the present paper, so

that no further discussion of these issues will be required.

Theorem 2: Suppose that k1 > 0 and k3 > 0. Then all

trajectories of the unperturbed system (1), with ̺1 = ̺2 =
0, converge in finite time to the origin x = 0, in a time

t (x0) smaller than T = 2V 1/2 (x0) /γ, where x0 is the initial

state and γ is a constant depending on the gains k1 and

k3. Moreover, V (x), defined in (2) is a strong Lyapunov

function assuring these properties.

Proof: Since (1) is a discontinuous differential equation

its solutions are interpreted as the ones of the differential

inclusion ẋ ∈ f (x) obtained when sign (z) assigns the

interval [−1, 1] to z = 0. Since 0 ∈ f (0) it follows that

x = 0 is an equilibrium point. The proposed Lyapunov

function can be written as a quadratic form V (x) = ζT Pζ

where ζT =
[

|x1|1/2
sign (x1) , x2

]

,

P =
1

2

[

4k3 + k2
1 −k1

−k1 2

]

.

Note that V (x) is continuous but is not differentiable at

x1 = 0. It is positive definite and radially unbounded if

k3 > 0, i.e.

λmin {P} ‖ζ‖2
2 ≤ V (x) ≤ λmax {P} ‖ζ‖2

2 , (3)

where ‖ζ‖2
2 = |x1|+x2

2 is the Euclidean norm of ζ. Its time

derivative (see 1) along the solutions of the system is

V̇ = − 1

|x1|1/2
ζT Qζ ≤ − 1

|x1|1/2
λmin {Q} ‖ζ‖2

2 , (4)

where

Q =
k1

2

[

2k3 + k2
1 −k1

−k1 1

]

.

V̇ is negative definite if Q > 0, what is exactly the case if

k1, k3 > 0. Using (3), (4) and the fact that

|x1|1/2 ≤ ‖ζ‖2 ≤ V 1/2 (x)

λ
1/2
min {P}

it follows that

V̇ ≤ −γV 1/2 (x) ,

where

γ =
λ

1/2
min {P}λmin {Q}

λmax {P} .

Since the solution of the differential equation

v̇ = −γv1/2 , v (0) = v0 ≥ 0

is given by

v (t) =
(

v
1/2
0 − γ

2
t
)2

(5)

it follows from the comparison principle [10] that V (t) ≤
v (t) when V (x0) ≤ v0. From (5) one obtains that V (x (t)),
and therefore x (t), converges to zero in finite time and

reaches that value at most after T = 2V 1/2(x0)
γ units of time.
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B. The perturbed dynamics

The following theorem assures the robustness of the glob-

ally asymptotic stability of the equilibrium of (1) in finite

time when the gains are selected sufficiently high.

Theorem 3: Suppose that the perturbation terms of the

system (1) are globally bounded by

|̺1| ≤ δ1 |x1|1/2 , |̺2| ≤ δ2 , (6)

for some constants δ1, δ2 ≥ 0. Then the origin x = 0 is

an equilibrium point that is strongly globally asymptotically

stable if the gains satisfy

k1 > 2δ1

k3 > k1
5δ1k1 + 6δ2 + 4 (δ1 + δ2/k1)

2

2 (k1 − 2δ1)
(7)

Moreover, all trajectories converge in finite time to the

origin, upperbounded by T̃ = 2V 1/2(x0)
γ̃ , where x0 is the

initial state and γ̃ is a constant depending on the gains k1, k3

and the perturbation coefficients δ1, δ2.

Proof: Using (2) as a candidate Lyapunov function for

the perturbed system (1) its (upper right hand) time derivative

along the solutions of the system is

V̇ = − 1

|x1|1/2
ζT Qζ +

̺1

|x1|1/2
qT
1 ζ + ̺2q

T
2 ζ ,

where

qT
1 =

[ (

2k3 +
k2

1

2

)

−k1

2

]

, qT
2 =

[

−k1 2
]

.

Using the bounds on the perturbation (6) it can be shown

that

V̇ ≤ − 1

|x1|1/2
ζT Q̃ζ ,

where

Q̃ =
k1

2





2k3 + k2
1 −

(

4k3

k1

+ k1

)

δ1 − 2δ2 ⋆

−
(

k1 + 2δ1 + 2δ2

k1

)

1



 .

V̇ it is negative definite if Q̃ > 0. It is easy to see that this is

the case if the gains are as in (7). By the same arguments as

before in the unperturbed case the state converges to zero in

finite time, at most after T̃ = 2V 1/2(x0)
γ̃ units of time, where

γ̃ =
λ
1/2

min
{P}λmin{Q̃}
λmax{P} .

III. AN IMPROVED SOSM ALGORITHM

The supertwisting algorithm (1) studied before is a non-

linear version of the following basic linear algorithm

ẋ1 = −k2x1 + x2 + ̺1 (x, t)
ẋ2 = −k4x1 + ̺2 (x, t) ,

(8)

although their properties are very different. By means of the

smooth Lyapunov function candidate

V (x) = k4x
2
1 +

1

2
x2

2 +
1

2
(k2x1 − x2)

2

we will study some of these properties. It is easy to see that

V (x) is positive definite and radially unbounded if k4 > 0.

Its derivative is

V̇ = −xT P0x + ̺1q
T
0 x + ̺2q

T
1 x

where

P0 = k2

[ (

k2
2 + k4

)

−k2

−k2 1

]

qT
0 =

[ (

k2
2 + 2k4

)

−k2

]

qT
1 =

[

−k2 2
]

.

For the nominal case, when the perturbation terms vanish,

i.e. ̺1 = ̺2 = 0, the state x converges exponentially fast to

zero if P0 > 0, that is, if k2 > 0 and k4 > 0. If we suppose

that the perturbation terms are globally bounded by

|̺1| ≤ δ3 |x1| ,
|̺2| ≤ δ4 |x1| ,

for some constants δ3, δ4 ≥ 0, then

V̇ ≤ −xT
(

P0 − Q̃
)

x

where

Q̃ =

[ (

k2
2 + 2k4

)

δ3 + k2δ4 ⋆
1
2 (k2δ3 + 2δ4) 0

]

.

There is exponential convergence if
(

P0 − Q̃
)

> 0, i.e. if

k2 > 2δ3

k4 >
2δ3k

3
2 +

(

1
4δ2

3 + 3δ4

)

k2
2 + δ3δ4k2 + δ2

4

k2 (k2 − 2δ3)
.

From the previous analysis of both algorithms, the linear

(8) and the nonlinear one (1), two notable differences can be

observed. First, the two algorithms have quite different con-

verging properties: the linear system converges exponentially,

whereas the trajectories of the SOSM algorithm converge in

finite time. This is due to the lack of local Lipschitzness of the

SOSM algorithm at the origin, that is, its behavior around

the zero state is very strong compared to the linear case.

On the other side, the linear correction terms are stronger

than the ones of the SOSM algorithm far from the origin.

These differences causes another striking difference between

both algorithms: the kind of perturbations that each one is

able to tolerate. The main difference is that the linear system

can deal with perturbations that are stronger very far away

from the origin and weaker near the orign than the ones that

are endured by the SOSM algorithm. So, for example, the

SOSM algorithm is not able to endure (globally) a linearly

growing perturbation, but the linear algorithm can deal with

it easily. However, the linear algorithm is not able to support

a strong perturbation near the origin, what is one of the main

advantadges of the SOSM.
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A. A Modified SOSM: SOSML, unperturbed case

In what follows we will propose a new algorithm, that

combines the linear and the nonlinear correction terms,

so that it inherits the best properties of both. Consider

a modified SOSM (SOSML), described by the following

differential inclusion

ẋ1 = −k1 |x1|1/2
sign (x1) − k2x1 + x2

ẋ2 = −k3 sign (x1) − k4x1
(9)

where xi are scalar state variables and ki are the constant

gains to be designed. The next theorem shows that SOSML

has finite time convergence as does the SOSM. We are

able to provide a strong Lyapunov function to ensure these

properties.

Theorem 4: The origin x = 0 is an equilibrium point of

the system (9) that is strongly globally asymptotically stable

if ki > 0 , i = 1, · · · , 4, and 4k3k4 >
(

8k3 + 9k2
1

)

k2
2 .

Under the same conditions

V (x) = 2k3 |x1| + k4x
2
1 +

1

2
x2

2+

+
1

2

(

k1 |x1|1/2
sign (x1) + k2x1 − x2

)2

is a continuous Lyapunov function ensuring this property.

Moreover, all trajectories converge in finite time to the origin,

where the convergence time is upperbounded by T ∗ =
2V 1/2(x0)

γ1
, where x0 is the initial state and γ1 is a constant

depending on the gains ki.

Proof: The proposed Lyapunov function can be written

as a quadratic form V (x) = ξT Πξ where

ξ =





|x1|1/2
sign (x1)
x1

x2



 ,

Π =
1

2





(

4k3 + k2
1

)

k1k2 −k1

k1k2

(

2k4 + k2
2

)

−k2

−k1 −k2 2



 .

Note that V (x) is continuous but not differentiable at x1 =
0. Moreover, it satisfies

λmin {Π} ‖ξ‖2
2 ≤ V (x) ≤ λmax {Π} ‖ξ‖2

2 , (10)

where ‖ξ‖2
2 = |x1| + x2

1 + x2
2 is the Euclidean norm of ξ.

The time derivative along the trajectories of the system is

V̇ = − 1

|x1|1/2
ξT Ω1ξ − ξT Ω2ξ

where

Ω1 = k1

2





(

2k3 + k2
1

)

0 −k1

0
(

2k4 + 5k2
2

)

−3k2

−k1 −3k2 1



 ,

Ω2 = k2





(

k3 + 2k2
1

)

0 0
0

(

k4 + k2
2

)

−k2

0 −k2 1



 .

It is negative definite if (note that this is only a sufficient

condition) Ω1 > 0, and Ω2 > 0. It is not difficult to show

that this will be the case if ki > 0 , i = 1, · · · , 4, and

4k3k4 >
(

8k3 + 9k2
1

)

k2
2 .

Since

V̇ ≤ − 1

|x1|1/2
λmin {Ω1} ‖ξ‖2

2 − λmin {Ω2} ‖ξ‖2
2 (11)

and using (10) and the fact that

|x1|1/2 ≤ ‖ξ‖2 ≤ V 1/2 (x)

λ
1/2
min {Π}

it follows that

V̇ ≤ −γ1V
1/2 (x) − γ2V (x) ,

where

γ1 =
λ

1/2
min {Π}λmin {Ω1}

λmax {Π} , γ2 =
λmin {Ω2}
λmax {Π} .

By the comparison lemma it follows easily that V (x (t)), and

therefore x (t), converges to zero in finite time and reaches

that value at most after T ∗ = 2V 1/2(x0)
γ1

units of time.

B. SOSML: behavior under perturbations

In this paragraph it will be shown that when perturbations

terms are present, i.e.

ẋ1 = −k1 |x1|1/2
sign (x1) − k2x1 + x2 + ̺1 (x, t)

ẋ2 = −k3 sign (x1) − k4x1 + ̺2 (x, t) ,
(12)

the modified SOSM algorithm inherits the robustness prop-

erties of both linear and nonlinear algorithms, i.e. it is able

to endure strong perturbations near the origin and linearly

growing perturbations far from the equilibrium.

Theorem 5: Suppose that the perturbation terms of the

system (12) are globally bounded by

|̺1| ≤ δ1 |x1|1/2
+ δ3 |x1| ,

|̺2| ≤ δ2 + δ4 |x1| .
(13)

for some constants δ1, δ2, δ3, δ4 ≥ 0. Then the gains ki

can be selected high enough so that the origin x = 0 is

an equilibrium point that is strongly globally asymptotically

stable, and all trajectories converge in finite time to the

origin.

Proof: Using the same Lyapunov function its derivative

can be written as

V̇ = − 1

|x1|1/2
ξT Ω1ξ − ξT Ω2ξ + ωT

1 ξ +
1

|x1|1/2
ωT

2 ξ

where

ωT
1 =

[

k1

(

3k2

2 ̺1 − ̺2

)

,
[(

k2
2 + 2k4

)

̺1 − k2̺2

]

,−k2̺1

]

ωT
2 = ̺1

[ (

2k3 +
k2

1

2

)

0 −k1

2

]

.

Using the bounds (13) of the perturbation terms then

1

|x1|1/2
ωT

2 ξ ≤ δ1

|x1|1/2
ξT ∆1ξ + δ3ξ

T ∆1ξ
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where

∆1 =







(

2k3 +
k2

1

2

)

0 k1

4

0 0 0
k1

4 0 0






,

and also

ωT
1 ξ ≤ 1

|x1|1/2
ξT ∆2ξ + ξT ∆3ξ

where

∆2 =





δ2k1 0 0

0
[

k1

(

3k2

2 δ3 + δ4

)

+
(

k2
2 + 2k4

)

δ1

]

0
0 0 0



 ,

∆3 =





k2

(

δ2 + 3
2k1δ1

)

0 1
2k2δ1

0
(

k2
2 + 2k4

)

δ3 + k2δ4
1
2k2δ3

1
2k2δ1

1
2k2δ3 0



 .

The derivative of the Lyapunov function can be then written

as

V̇ = − 1

|x1|1/2
ξT (Ω1 − ∆2 − δ1∆1) ξ−ξT (Ω2 − ∆3 − δ3∆1) ξ

(Ω1 − ∆2 − γ1∆1) > 0 if

k1 > 2 max
(

δ1,
√

δ2

)

k2 > 3
8δ3 + 1

4

√

9
4δ2

3 + 8δ4

k3 > k1
δ1k1+

1

8
δ2

1
+δ2

2( 1

2
k1−δ1)

k4 >
k1

[

1

2
k1(k1+

1

2
δ1)

2(2k2

2
− 3

2
δ3k2−δ4)+( 5

2
k2

2
+ 3

2
δ3k2+δ4)p1

]

2
(

p1−
1

2
k1(k1+ 1

2
δ1)

2
)

( 1

2
k1−δ1)

− 1
2k2

2

(14)

where

p1 , k1

(

1

4
k2
1 − δ2

)

+

(

1

2
k1 − δ1

) (

2k3 +
1

2
k2
1

)

The second term in the inequality can be written as

ξT (Ω2 − ∆3 − γ3∆1) ξ = ζT Γ1ζ + xT Γ2x, where

Γ1 =

[

k2

((

k3 + 2k2
1

)

− δ2 − 3
2k1δ1

)

−
(

2k3 +
k2

1

2

)

δ3

− 1
2

(

k2δ1 + 1
2k1δ3

)
· · ·

· · · −
1
2

(

k2δ1 + 1
2k1δ3

)

1
2k2

]

Γ2 =

[

k2

(

k4 + k2
2

)

−
(

k2
2 + 2k4

)

δ3 − k2δ4 ⋆
−k2

(

k2 + 1
2δ3

)

1
2k2

]

This term is positive definite if

k2 > 2δ3

k3 >
(k2δ1+

1

2
k1δ3)

2

2k2(k2−2δ3)
+

(δ2+ 3

2
δ1k1)k2−2(k2−

1

4
δ3)k2

1

(k2−2δ3)

k4 > k2
[k2(k2+3δ3)+

1

2
δ2

3
+δ4]

k2−2δ3

(15)

One can see that it is always possible to select ki > 0 , i =
1, · · · , 4, so that both sets of inequalities (14,15) are satisfied

for every δi > 0 , i = 1, · · · , 4.

Under the previous conditions

V̇ ≤ − 1

|x1|1/2
ξT (Ω1 − ∆2 − δ1∆1) ξ

and the global asymptotic stability and the finite time conver-

gence follows using the same arguments as in the previous

proofs.

IV. EXAMPLE: A SOSML BASED OBSERVER

As an illustration, here we design a SOSML based ob-

server for a simple nonlinear system, and the observation

results are compared with SOSM, first order sliding modes,

and linear observers. Consider a pendulum which state model

is given by

ẋ1 = x2

ẋ2 = 1
J u − MgL

2J sin (x1) − Vs

J x2 + ρ
y = x1.

where x1 = θ is the angle of oscilation, x2 = θ̇ is the angular

velocity, M is the pendulum mass, g is the gravitational

force, L is the pendulum lenght, J = ML2 is the arm inertia,

Vs is the pendulum viscous friction coefficient, and ρ is a

bounded perturbation that for simulation purposes is modeled

as

ρ (t) = 0.5 sin (2t) + 0.5 cos (5t) .

This system have been used in [7], [8] for the design of a

super twisting observer. Here, a SOSML observer

˙̂x1 = x̂2 + k1 |e1|1/2 Sign (e1) + k2e1

˙̂x2 = 1
J u − MgL

2J sin (x̂1) − Vs

J x̂2 + k3 Sign (e1) + k4e1,
(16)

is proposed, where e1 = x1 − x̂1. The observation error

dynamic is given by

ė1 = e2 − k1 |e1|1/2
Sign (e1) − k2e1

ė2 =
MgL

2J
(sin (x̂1) − sin (x1)) −

Vs

J
e2 − k3 Sign (e1)+

− k4e1 + ρ

= −k3 Sign (e1) − k4e1 + ̺2 (e, t)

where ̺2 (e, t) = ρ − MgL
2J cos (z (t)) e1 − Vs

J e2, is the

perturbation term. Note that the perturbation contains a linear

term in e1 (obtained using the mean value theorem), a

bounded perturbation ρ and a linear term in e2. Observe that

this error dynamics is similar to (12), and therefore, we use

here the relations shown in III-B to obtain ki. These values

were used in the observer structure (16), and a simulation

of the behavior of the observer was obtained. For this

simulation, the initial conditions were zero for the observer

and x1 = −1, x2 = 3 for the pendulum. For simulation

numeric values M = 1.1(kg), g = 9.815(m/s2), L = 1(m),

and Vs = 0.18(kg.m/s2) were used. If one make zero k2

and k4, the SOSML observer reduces to SOSM observer.

A common linear observer and a first order sliding modes

observer [22] were designed too for comparison purposes,

and the results are shown in Figures 1 and 2.

The linear observer shows exponential convergence, and

it cannot cope with the bounded disturbance. The first

order SM observer endures the perturbation, but it has a

characteristic chattering, that is avoided by the two second

order SM observers. Besides, SOSM and SOSML has finite
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Fig. 1. Error in the estimated position with SOSML, SOSM, First Order
SM and Linear Observers
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Fig. 2. Error in the estimated velocity with SOSML, SOSM, First Order
SM and Linear Observers

time convergence that is improved by the linear term in the

case of SOSML.

V. CONCLUSIONS

In this paper we have provided, for the first time, strong

Lyapunov functions for a class of algorithms of Second

Order Sliding Modes, the supertwisting algorithm. This is a

very important law used for controller, observer and exact

differentiator design with outstanding properties: conver-

gence in finite time and robustness to strong perturbation

terms. Compared to the first order sliding modes algorithms,

well known in the literature for possessing such properties,

the SOSM trajectories are smoother, avoiding the strong

chattering effect of the classical sliding modes. The use of

strong Lyapunov functions allows to study more deeply the

convergence and robustness properties of these algorithms, it

permits the combination of SOSM with other algorithms, and

the incorporation of a very fruitful and powerful method in

the higher order sliding modes research area. As a first step

in this direction, we have proposed a modified supertwisting

algorithm, that combines the benefits of the SOSM and those

of a linear algorithm. This is an easy task, when a strong

Lyapunov function can be provided, as is the case in this

paper.

VI. ACKNOWLEDGEMENTS

The authors gratefully acknowledge Universidad Pontificia

Bolivariana and Colciencias for the support given to Marisol

Osorio during her leave at UNAM. They also greatly appreci-

ate the useful comments given by the anonymous reviewers.

REFERENCES

[1] Bartolini, G., Ferrara A., Usai, E. and Utkin, V. (2000) On Multi-
Input Chattering-Free Second-Order Sliding Mode Control. IEEE
Transactions on Automatic Control, Vol. 45, No. 9, pp. 1711–1719.

[2] Baccioti, A. and Rosier, L. (2005). Liapunov functions and stability

in control theory. 2nd ed. New York, Springer-Verlag.
[3] Boiko, I., Fridman, L and Castellamos M.L. (2004) Analysis of

Second-Order Sliding-Mode Algorithms in the Frequency Domain.
IEEE Transactions on Automatic Control, Vol. 49, No. 6, pp. 946–
950.

[4] Choi, H.H. and Ro, K. (2005) LMI-based sliding-mode observer
design method. IEEE Proceedings on Control Theory Applications,
Vol. 152, No. 1, pp. 113–115.

[5] Clarke, F.H., Ledyaev, Y., Stern, R.J. and Wolenski, P.R. (1998)
Nonsmooth analysis and control theory. New York, Springer-Verlag.

[6] Cortés, J. (2008) Discontinuous dynamical systems. A tutorial on
solutions, nonsmooth analysis, and stability. IEEE Control Systems
Magazine, Vol. 28, No. 3, pp. 36–73.

[7] Davila, J., Fridman, L. and Levant, A. (2005) Second-Order Sliding-
Modes Observer for Mechanical Systems. IEEE Transactions on

Automatic Control, Vol. 50, No. 11, pp. 1785–1789.
[8] Davila, J., Fridman, L. and Poznyak, A.(2006) Observation and

Identification of Mechanical Systems via Second Order Sliding Modes.
International Journal of Control, Vol. 79, No. 10, pp. 1251–1262.

[9] Filippov, A.F. (1988). Differential equations with discontinuous right-

hand side. Kluwer. Dordrecht, The Netherlands. 304 p.
[10] Khalil, H.K. (2002). Nonlinear Systems. Third ed. Prentice–Hall.

Upsaddle River, New Jersey.750 p.
[11] Levant, A. (1993) Sliding order and sliding accuracy in sliding mode

control. International Journal of Control, Vol. 58, No. 6, pp. 1247–
1263.

[12] Levant, A. (2001) Universal SISO sliding-mode controllers with finite-
time convergence. IEEE Transactions on Automatic Control, Vol. 46,
No. 9, pp. 1447–1451.

[13] Levant, A. (2003) Robust Exact Differentiation via Sliding Mode
Technique. Automatica, Vol. 34, No. 3, pp. 379–384.

[14] Levant, A. (2005) Quasi-Continuous High-Order Sliding-Mode Con-
trollers. IEEE Transactions on Automatic Control, Vol. 50, No. 11, pp.
1812–1816.

[15] Levant, A. (2005) Homogeinity approach to high-order sliding mode
design. Automatica, No. 41, pp. 823–830.

[16] Levant, A. (2007) Principles of 2-sliding mode design. Automatica,
No. 43, pp. 576–586.

[17] Levant, A. and Fridman, L. (2002) Higher order sliding modes. Sliding

Mode Control in Engineering, J.P Barbot, W.Perruguetti (Eds.), Marcel
Dekker, New York, pp.53-101.

[18] Moulay, E. and Perruquetti, W. Finite Time Stability of Differential
Inclusions. IMA Journal on mathematical control and information, No.
22, pp. 465–475.

[19] Orlov, Y. (2005) Finite Time Stability and Robust Control Synthesis
of Uncertain Switched Systems. SIAM Journal of Control and Opti-

mization, Vol. 43, No. 4, pp. 1253—1271
[20] Tan, Ch. and Edwards, Ch. (2001) An LMI Approach for Designing

Sliding Mode Observers. International Journal of Control, Vol. 74,
No. 16, pp. 1559–1568.

[21] Utkin, V. (1992). Sliding Modes in Control and Optimization.
Springer-Verlag. Berlin. 286 p.

[22] Walcott, B. L. and Zak, S.H. (1987) State Observation of Nonlinear
Uncertain Dynamical Systems. IEEE Transactions on Automatic Con-

trol, Vol. AC-32, No. 2, pp. 166–170.
[23] Xiong, Y. and Saif, M. (2001) Sliding Modes Observer for Nonlinear

Uncertain Systems. IEEE Transactions on Automatic Control, Vol. 46,
No. 12, pp. 1212–1217.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB10.6

2861


