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ABSTRACT

An examination of a model-referenced adaptive control
system designed to satisfy the requirements of Lyapunov's
direct method is made. It is found that each adaptive
cocntrol loop requires a multiplier for its implementation.

A new design is proposed which replaces the multipliers in
the control loops by switches, thereby gaining a significant
hardware advantage. A first order system designed by the

ew method is simulated on an analog computer and some

b-

refinements are made. The method is then generalized to

. th

include n order systems. The poles of the model, however,
are subject to some restrictions. Finally, the problems
associated with extending the design to systems in which

the model has arbitrary poles are discussed.
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I. INTRODUCTION

A. A History of the Use of Lyapunov's Direct Method as

a Design Technique

One of the major problems the control system engineer
encounters is that of stability. Many classical methods
are available to aid in designing a stable system; however,
until recently it was thought that complicated non-linear
systems could not be handled by any exact methods. With the
need for large non-linear control systems, coupled with more
exacting specifications, came the realization that another
analysis tocl was reguired. The direct method of Lyapunov
partially fulfilled this need, with one major drawback; it
only provides sufficient conditions for stability in most
cases. Failure to find a Lyapunov function does not
indicate that the system is unstable, only that the engineer
may not have chosen the proper Lyapunov function. For this
reason, it has been said that the direct method of Lyapunov
has more merit as a synthesis techniquel. A system can be
designed so that it satisfies the conditions of Lyapunov's
direct method and its stability is thereby guaranteed.
Hence, the often difficult, if not impossible, task of
determining stability after design is eliminated.

The major impetus in the United States for design

using the Lyapunov direct method came from a paper by Kalman



and Bertram2 published in 1960. In July, 1961, a disser-
tation written by Graysonl indicated the advantages and
value of the direct method as a synthesis tool and developed
a framework for many different techniques. One of these

was further developed by Monopoli3, who investigated its
engineering aspects in detail. An excellent summary of the
techniques developed up to 1965 can be found in "The Status
of Synthesis Using Lyapunov's Method" by Grayson4.

Further work in developing the direct method as a
design technigue was done by Shackcloth and Butcharts, who
were working under Parks in a study of the use of Lyapunov
functions. Their first objective was to obtain stability
bounds on an existing system using the direct method as an
analysis tool. Having little success along these lines,
they were diverted to developing a synthesis technique.
Sirnce their first paper was published in 1965, several
extensions have been made by other authors as well as
Shackcloth. One particularly noteworthy paper was written
by Parks6 in which he applies the synthesis technique based
on Lyapunov's direct method to redesign systems developed
by several other authors. A further extension on the work
of Parks just mentioned was made by Phillipson7, who
proposed a modification to reduce system oscillations.

Although the Lyapunov direct method is a very powerful
design technique, it too, as expected, has disadvantages.
In many cases it is impossible to determine whether or not

you have the best design. Also, since developing new design



technigques using Lyapunov's direct method is relatively new,
there is not as much past experience to draw on as with

some other methods.

B. Background for Proposed Design

In the field of adaptive control, there are wide
appiications for the direct method of Lyapunov as a design
technique. More specifically, this thesis will deal with
a model-referenced adaptive control system in which the
mocdel is used as a reference to adjust the controller para-
meters to compensate for time varying or unknown plant
parameters. This type of system has an advantage since
explicit i1dentification of the plant dynamics is unnecessary.
llowever, the stability of a model-referenced system is often
impossible to determine using classical techniques. Some
work along this line has been done by Bongiorno8. On the
other hand, if the system is designed to satisfy the
conditions of Lyapunov's direct method, its stability is
guaranteed.

The Lyapunov approach is taken by Shackcloth9 to
determine the adaptive control laws for a model-referenced
system. An examination of these control laws indicates that
each control loop requires an integrator and a multiplier.
In order to reduce the cost of the adaptive system, this
thesis will propose an alternate design in which the

multiplier in each adaptive loop can be replaced by a switch.



Hopefully, this is only the first step toward the ultimate
goal of completely digitizing the adaptive part of the
system.

The new decsign will be presented for a first order
system and then extended to a system of any order. There
are sone restrictions on the model which will be pointed
out, along with the problems encountered trying to eliminate

them. Finally, suggestions are made for further work.



IT. EXAMINATION OF AN EXISTING MODEL~REFERENCED ADAPTIVE

CONTROL SYSTEM DESIGN

A. Technique for Designing Adaptive Loops

The technique developed by Shackcloth9 is based on the
svstem in Figure 1. All controller parameters are adjust-
able by changing the respective value of kl through kn as
seéen by examining the overall controlled plant transfer

function, for constant plant and controller parameters, in

Equation (1).

5 3 K K
%stsl cP_ (1)
(s) < n= coe )
s+ (bn + kan)s + + (bl + kal)
REFERENCE MODEL
K . Om
» m
e n n-1
s” + b .S t ocer + by
r
P

CONTROLLED PLANT

Figure 1. A liodel Referenced System "With All Controlled

plant Parameters Adjustable



The problem is to adjust the controlled plant para-
meters to be the same as the reference model parameters in
such a manner that the overall system is stable. The
approach taken by Shackcloth is to force a function, V,
to be a Lyapunov function. V is chosen to be a function of
the error between the output of the model and the output of
the plant, and the difference between the model and control-
led plant parameters. V is made a Lyapunov function by
picking it to be positive definite and then making itg
derivative negative definite, or negative semi-definite, by
properly choosing the adaptive control laws. The equations

for the variable parameters k. through kn and Kc will be

1
referred to as the adaptive control laws. The system will
then be asymptotically stable and the error will go to zero.

In deriving the adaptive control laws, the assumption
made is that the plant parameters are constant during
adaption. Hence, the results presented pertain directly
to systems with step changes in parameters since the time
that the parameters are changing is small. Another appli-
cation would be to systems in which all parameters are
constant, but cannot be measured.

To illustrate the derivation of the adaptive control
laws more clsarly, the system eguations will be written in
matrix form and some new matrices will be defined. 1In

matrix notation, the equations for the model and controlled

plant of Figure 1 can be written as follows:

) = G 2
6 = B O * By ¥ (2



X -5

The error is defined as the difference between the

cutput of the model and the output of the plant,

e A ® - 0_, then,

— = -S
e=0 -6 =20 -20 + (B -B)r. (4)
= ! =5 —m-—m —5—S —m =S

If

Am @s is added to and subtracted from the right hand side

of Eguation (4),

e=A e+ (A -A)NO + (B - Br; (5)
where,

e = (ee e (PTIN T,

- (a A ~(n~-1),T

8. = (9 & g ), (6)
and,

N A (n-1),T

e, = (&, ©n O ).

— - - —
0 1 0 oo- 0 0
0 0 1 - 0 0
:_i'nz ® . 'g'fn: . ’ (7)
0 0 0 «-- 1 0
—bml —bm2 Tt -bmn Km
L ] S



i — — —
0 1 0 L 0 0
0 0 1 LI 0 0
-—S = . . ’——s = . 4
0 1 0
- -+ — +" K s s 0 - X
(bl kal) (b2 npkz) (bn+kan) KCKP
L _ I
(8)
and,
0 1 0 0 soe 0
0 0 1 0 s 0
_é- = - . . ?.
0 O * * L] 1
_-bml ~bm2 ot —bmn
- —
0 0 0 0 A 0
0 0 0 0 * e e 0
+ . .
. . —S
0 . . . 0
(,#K Yy =B ) (By+K kp=b ) o+ (b +K Kk -b_ )
0
0
r . r (9
0
K ~-K K
m P




Let the vector X represent the difference between the

refecrence model and controlled plant parameters,

X = [x; x, *°°* X }T
= 1 72 n+l
and

l=bl+Kkl—bml
Xy = by ¥ K ky = b o
x =b + Kk =-Db

n P 1 !
Xn+l = Km - KcKp°

Next, an n by n+1 matrix F is defined such that:

Fo= (£ £, ©o0 £1;
where,

El=f, == =0
and,

£ = (0.0 =0 xr]T

=n sl “s2 sn ‘

The error equation can now be written as:

e =A e + F x.
— _—l’n._.. — —

The V function chosen by Shackcloth9 is:

2 2 2
T *1 *2 *n+l

V=ce"Pe+ =+ =+ o 4 ,
1 M2 ol

(10)

(11)

(12)

(13)

where P is a positive definite matrix to be specified later,

and the ui's are positive adaptive loop gains.



10

Let M be a diagonal matrix,

[ 0 ]
“l L ] L ] [ ] O
0 Mo ' .
lil = . * . (14)
O 'Y . [ ] un.*.l
Now,
Vee're+x Mty (15)
and,
vV o= é? Pe + g? P e + xT w1 x +x M k. (16)

The substitution of e from Eguation (12) vyields,

vV = eT A T b XT *T P e + eT A e + eT P F X
- .__.m a— —— — — -—-IT‘.—- ——— e - —

[
+
tz

|to

+ g? wtox o+ %t M-l < . (17)

When the terms of Egquation (17) are combined:

. T T T -
V=g [ 2+P2A le + 2x [F" Pe + M

A B+ P A x] . (18)

Since the model is stable, a symretric positive

definite matrix P can always be found given a symmetric

positive definite matrix N such thatz,

z P+ P A = -N . (19)
—- = =m

- . - . *
Now, in order co guarantee the stability of the system, x is
chosen to make V negative semi-definite.
*

then,

VvV = —-e N_E: (21)
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which is negative semi-definite. At first glance V appcars
to be negative definite; however, if the variables ccntained
in V are considered it is seen that V is only negative semi-
definite. Since V contains all of the x variables and \Y
does not, V can equal zero when V is greater than zero. The
effect of this is that when the error is zero, parameter
misalignment can still exist and the adaptive system will

no longer correct. This problem was investigated by
Grahamlo, who also proposed a solution. No further consider-
ation of the problem will be taken here because, in many
applications, forcing the error to zero is sufficient.

Returning to Equation (20) to find the adaptive control

laws, and also defining

z=Pe,
where (22)

Zn = ©1 Pin t ey Pyt f “nPnn’
and recalling that £l = £2 = s = En—l = 0, g can now be
written as,

x=-Mf z . (23)

Under the assumption that the plant paramecters are constant
during adaption, the derivative of x from its definition in
Eguation (10) is seen to be,

x = K_k (24)

where,

(25)

|~

h
‘—:‘

';7:‘
N

=~
o]

=
Q

+
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When Equations (23) and (24) are equated, the following

adaptive control laws can be concluded:

- _ 1
k=g ME z

n
P
or,
kl = -l @sl z /Kp
ky = 7y O Zn/Kp
(26)
}.<=-u@ z_/K
n n sn n’’p
kn+l = Hp+p T zn/Kp )
P. Comments

An examination of Equation (2€) reveals that in order
to implement the adaptive control laws each loop will
regquire a wultiplier to produce the product of z, with the
respective © or r, as well as an integrator to obtain the
k.'s from their derivatives. If the adaptive control laws
were of the form
K =-Mf sgny, (27)
then the multipliers could be replaced by switches.

The first question is how to arrive at the adaptive
control laws of Equation (27) and still guarantee that the

ystem is stable. It was thought that since a guadratic

n

form of Lyspunov function led to a rroduct in the adaptive

contrcl laws, a signum function in the Lyspunov function
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could lead to a signum function in the adaptive control laws.
This will be shown for a first order system in Section III,
and then for an nth order system in Section IV.

There is a problem working with the signum function
because it is discontinuous. Fl{igge—Lotzll has shown that
differential equations with discontinuous driving functions
may not have solutions. To eliminate this problem, the
continuous saturation function, defined in Equation (41)
and Figure 3, is used to derive the adaptive control laws.
Although the sat function is used in the derivation, the
sgn function may still be used to implement the control
laws. The justification for this is that as « approéches
infinity the saturation function will approach the signum

function within any specified error.
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ITI. FIRST ORDER SYSTEM -- NEW DESIGN

A. Choice of V Function

In order to establish the desired adaptive control
laws, a simple first order model-referenced adaptive system
will be investigated. To simplify the problem, the gain
parameter of the model and plant will be the same (i.e.,

Km = Kp), although this is not a restriction on the system

and is only done to simplify the initial derivation. A

block diagram of this system is shown in Figure 2. b, 1is

1
considered unknown or to be changing in steps.
MODEL
K em
m
s + bml
+
: e
B s ! | ): e 3
r C/
PLANT
s .
0
/ K s
SR, ___‘AQ\ Z /_ e - p e e .__,f
- 5 s + Db

l S e EDIRIE R SRR L

I ,,_w..mr};"j .

e ey v o Ay

Figure 2. First Order Model-Referenced System



The system equations can be written as follows:

Gm K 0 K

_ m s _ p

- = IR ’ — = z (28)

r s + bml r 5 + bl + kal
and,

Om = —bml o + Kmr, @S = —(bl + kal)@s + Kpr

(29)

The error equation, with Km = Kp, is then

e = —bml e + (bl + kal - bml) OS . (30)

X4 A bl + kal - bml (31)
then,

e = —bml e + Os Xy - (32)

One chioice of V function is a quadratic form similar

to that chosen by Shackcloth9

2

V=e + ;—m (33)
Kpul

Hy

meter of the plant which is also positive. V is positive

is a positive adaptive loop gain and Kp is the gain para-

definite. The derivative of V is,

V=2ee+ 2 Xq xl/Kp Moo (34)

Substituting for e from Equation (32),

* 2 [ ]
v = -2 bml e” + 2 e X4 Os + 2 Xq xl/Kpul . (35)

If the following assignment 1is made for X1

X, = --Kp My e O (36)
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then,

V = =2 b o e2, (37)

which 1s negative semi~definite since b > 0 for a stable

ml
mocdel. The system is therefore stable and e goes to zero.
Under the assumption that bl is constant during

adaption,

X, = kal . (38)
When Equations (36) and (38) are equated, the adaptive
control law is found to be,

kl = -uy e GS . (39)
It is seen that in order to implement this adaptive control
law a multiplier is needed to obtain the product of e and
Os.

A V function which may lend itself to a sat function

in the adaptive control law is,

H 2
*1
Ay — = — ?
vV = sat o T dTt + TR . (40)
] 1
0
The sat function is defined as,
a e for Jae| <1
sat a e = ’ (41)

1 for J|ae] > 1

and is illustrated in Figure 3.
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sat a e
1
l | > €
21 1
o o
-1
Figure 3. The sat Function
The derivative of V is,
X, X
V =e sat a e + 11 . (42)
K u
p 1l

When Equation (32) is substituted into Equation (42),

. X1%4
V = —
\ bml e sat o e + xles sat a e + T . (43)
p 1
If the following choice is made,
X, = —Kp My @S sat a e ' (44)
then,
vV = —bml e sat a e . (45)

Since V is negative semi-definite, the system is again
guaranteed to be stable and e goes to zero. However, the

new adaptive control law is,

kl = =M @s sat o e . (46)
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As o is made to approach infinity, sat o e approaches

sgn e. Now, in the limit Equation (40) becomes,
e
vV = sgn T d T + x2/2u K (47)
1 1'p
0

and, in the limit, Equation (43) becomes,

. %1%
vV = --bml e sgn e + x,; SS sgn e + & T (48)
pl
If,

X, = —Kp My @s sgn e (49)
then,

V = —bml e sgn e (50)
which is negative semi-definite again. The adaptive control
law is now,

kl = Uy Os sgn e . (51)

Equation (51) is the desired adaptive control law since it

can be implemented with a switch.

B. Analog Simulation

To investigate the operation of a system using the
control law of Equation (46), the system shown in Figure 4
was simulated on an Electronic Associates, Inc., TR-48

analog computer. The simulation diagram is in the Appendix.
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K em

_/

Figure 4. First Order System With sat Function in the

Adaptive Control Law

The following parameters were arbitrarily chosen for

the initial simulation:

Km = Kp = 2, bml =1, bl = 11 ,
My = 1, o = 10 , r = sin t, (52)
Om(O) =0, GS(O) =0, kl(O) =0 .

The results of the simulation are shown in Figure 5.
It is seen that the controlled plant responds as the model
does with the sat function in the adaptive control law. The
adaption is slow, however, and this problem will be examined

in the next section.
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As pointed out in the introduction, the discontinuous
property of the signum function necessitated the use of the
saturation function in derivation of the adaptive control
laws. Hcowever, to implement the saturation function
requires the use of a multiplier, hence there is no simpli-
fication of the hardware with the adaptive control law of
Egquation (46). The improvement in hardware comes when the
signum function is used. To examine what effect the signum
function in the adaptive control law has on the system
performance, the system of Figure 6 was simulated using
the adaptive control law of Egquation (51). The same para-

meters and initial cenditions were used as in Equation (52).

K
> m
s +b
ml |
e
b
X ]
P
s + bl
<4
+
9
+
e>0 - 2 q__—
e<0
Figure 6. First Order System with sgn Function

Adaptive Control Law
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The analog simulation diagram is in the Appendix, and
the results are shown in Figure 7. It appears that in this
case the signum function is better than the saturation
function because adaption is much faster. A closer examina-
tion of the plant output Os indicates that there is a high
frequency signal present after adaption that was not
present when the sat function was used. The amplitude of
this high frequency signal, however, is small. This.
problem will be discussed in more detail in the next
section.

As a comparison of the new design using the adaptive
control law of Eguation (51) and the existing design using
the law of Equation (39), the system of Figure 6 was
simulated again with the same parameters and initial
conditions but with the comparator replaced by a multiplier.
The other input to the multiplier was the plant output.

The simulation diagram is in the Appendix and the results
are shown in Figure 8. To make a fair comparison, much
further investigation would be necessary. However, on the
basis of this simple system it appears that the new design
is superior in at least two respects, hardware and speed

of adaption.

C. Bounds on Peak Error and Adaption Time

The system of the previous section using the sgn
function in the adaptive control law does the job of adapt-

ing, but several improvements can be made. The first
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feature investigated was the adeption time. This is the
time that it takes for the magnitude of the error to stay
below a stated value. The results in Figure 7 indicate
that the time to reduce the error to less than 0.1 volt
is 30 seconds. This may be unsatisfactory.

The first impulse was to examine the figure of merit12

normally associated with the Lyapunov function,

_ =V
N = . (53)
An upper bound on the system time constant is l/NMIN' For
the system with adaptive control law (51),
b e sgn e
N = . ml . (54)
2
*1
sgn T d T + 55—
2ule

0
From Equation (54) it is seen that the minimum value of N
is zero when e is zero, so a bound on the system time
constant cannot be set by the figure of merit method.
However, an upper bound on the error after a step
change in parameter occurs, can be set. This can be seen
by examining the V function. Since the derivative of V

is negative semi-definite,

V(0) > V(t) for t >0 . (55)
When the integral of Equation (47) is evaluated, the result-
ing equation for V is,

2 5
vV = |e| + x1/214 Kp . (56)
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After Equation (31) is substituted for Xy and V is evaluated

at t = 0, the result is,

. 2
[b, + k. (0)K_ -~ b _.]
V() = |le(0)| + —= 1 "o ml’ (57)
2 4. K
My Ky
and if k (0) = e(0) =0,
2
[b, - b_.1
Vo) = —+_m : (58)
ZulKP

An examination of Equations (55) and (56) shows that the
absolute error will never be greater than V and that V is at
its maximum at t = 0. ©Now, for time greater than zero, if
the entire value of V were due to the error term, the maximum

2
[by = bq]
2ule

absolute error would be Hence Equaticn (58)

is an upper bound on the absolute error. The actual peak
error will probably be less than this. It is also
concluded that by increasing My the upper bound on the
absolute error is decreased.

Several experiments were performed with different
values of By - In particular, the system in Figure 6 was
simulated again using a value of My = 100. From Equation (58)
the upper bound on the error is .25 as compared to 25 with
My = 1. The results of this simulation are shown in
Figure 9. The peak error is less than 0.2. It is also

seen that there is now an increase in frequency of the high

frequency component of @S. This is because the switch used
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to implement sgn ¢ was oscillating at a faster rate about

e equals zero. It should be pointed out that there is no
equilibrium point for the system of Figure 6. If these

high frequencies are detrimental to the system, one possible
remedy would be to use a relay with deadzone in it. Then,
when the error became less than a certain amount, the
adaptive loop gain would be zero. Hence an eguilibrium
region would exist. This engineering aspect was not invest-

igated in this thesis.

D. Time Varying Parameters

Up to this point, the only cases covered were the
plant with unknown parameters, and the plant with paramecters
varying by steps. What about the plant with randomly
varying parameters? Certainly it would be nice to include
this case also.

The only difference in the equations derived in
Section III A is the introduction of an additional term in
the derivative of X1 for time varying parameters.

Now, with Kp constant and bl varying,

= K, . 59
Xq 1 + kal (59)
This reflects back into V, as shown below. Using the

adaptive control law of Equation (46), il now beccmes,
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X, = b, - K Hq @S sat a e . (60)

From (43), v is,

vV = --bm e sat o e + . (61)

Unfortunately, V is no longer negative semi-definite. There

bl ple

Kp My

is a disturbance term of which is of undetermined

sign. This term can be made smaller by increasing My
However, it must be realized that increasing My also
decreases the effect parameter misalignment has on V. There-
fore, the system is not satisfactory for time varying
varameters as it stands now.

There is a small modification of the system which will
increase the ability to handle time varying parameters.
The improvement was suggested by Phillipson7 to decrease
the oscillatory nature of the system. It also makes V more
negative and therefore tends to cancel out the disturbance
term of (61).

The modification suggested by Phillipson is to add an
additional feedback path including the derivative of kl as

secen in Figure 10. Bl is a constant which controls the

amount of derivate feedback.
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0
< [— i i
s + bml
r Y e
—e
+
K es
L ; > p
- s + bl
Ky v Biky y
Figure 10. System with kl Feedback Added
The system equations are now:
@m = _bmlem + Kmr, @S = --(bl +kal)@s + Kpr - KpBlklOS
(62)
If Kp = Km again,
e = —bmle + Osxl + KpBlkles . {(63)
When V is chosen as in Equation (40),

After substitution of (63) into (64), the result is,
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. . X%
v = -bml e sat o e + @le sat a e + Kpslkl@s sat o e + —=

Kp ul
(65)
If the adaptive control law of Equation (46) is implemented,

il will again be as in Equation (60) and thus,

V = -b e sat - K B @2 qat2 + 51 . (66)
- ml o € p 1H1%g S o € K :

p "1

A comparison of Equations (61) and (66) indicates that
V is more negative in Equation (66). Without the derivative
of kl in the feedback path, a small error would tend to make
the disturbance term the sign determining factor. However,
with the additional feedback, the second term of (66),
which can be made very large by increasing My will usually
be much larger than the disturbance term. Although V is
not negative semi-definite, confidence that it will not be
positive is certainly increased. The only possibility of a
problem is when @S remains very small. Under most circum-
stances, this will not be the case.

To verify the ability to adapt to time varying para-
meters the system of Figure 10 was simulated using the
control law of Equation (51). Only a slight modification
on the simulation diagram for Figure 6 was necessary. An

additional amplifier and potentiometer were added to supply

the derivative of kl feedback. The following parameters

were used:
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Kp = 2, bml =1, Bl = 0.1
Hy = 100, @S(O) = 0, r = sin t, (67)
@m(O) = 0, kl(O) =0 and

b, is a random variable with Gaussian distribution, mean = 8,

1

standard deviation = 3.14, bandwidth = 1 radian/second.

The results in Figure 11 indicate excellent adaption.
Also, the high frequency signal is no longer present in GS;
however, it does show up in the feedback term kl + Blﬁl.
The affects of this high frequency signal should definitely

be taken into consideration when designing a system.

E. Modification for the Gain Parameter Varying

From a system in which the model and the plant have
the same gain parameter, it is a simple step to add another
loop to compensate for the varying or unknown additional
parameter of the plant. The system in Figure 12 can
compensate for changes in Kp by changing Kc.

To derive the adaptive control laws, the system

equations are- examined.

By = (K, + BRIK r = (bg + (kp + B kKR YO, (68)
ém =Kr-b . 0 (69)
andg,
e = -b e + (K - KK)r BZRCK r+ (by + kK~ b )0
+ sll'cleés . (70)
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The following definitions are made,

Xy = bl + kl Kp - bml (71)
and

X, = Km - Kc hp . (72)
Now,
e = -bmle + X, = BchKPr + Xles + Bllepes . (73)

A choice of V function similar to Equation (40) is

made but with a term to include the variation in gain

parameter.
< 2 2
X3 X5
vV = J sat o T d T + + (74)
2ule 2u2Kp
0
Kp, although varying, is assumed to be always positive,
hence V is positive definite.
vV = —bml e sat o e + x, r sat o e - BZKcKp r sat a e
. Xlél xiﬁp
+ x,.6_ sat o e + Bk, K O sat a e + -
1°s 11 p s u.K 2
1'p 2ule
L] 2I
3 Xx,K
L <22 T2 B (75)
u,K
2'p 2u2Kp

In order to make V as negative as possible, adaptive

control laws similar to Equation (46) are chosen,
C - - (76)
kl ulGS sat a e

and

e
il

u, r sat o e . (77)
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Now, if both Kp and bl are time varying,

Xl=bl+kK + k.K (78)
and,

X -X K - K
2 cp cp

Rle

(79)

When Equation (76) is substituted into Equation (78) and (77)

is substituted into (79), the result is, with kl(O) = KC(O)

=0, t
Xy = bl - ule@s sat o e - Ulﬁp [ @S(T) sat a e(t) 4 1
0 (80)
and,
t
X, = -uzKpr sat o e - uzKp J r(t) sat a e(1t) 4 1 (81)
0
V is now,
- _ 2 __.2 2 2
A% bml e sat o e uszKpr cat”™ o e - ulBle@S sat” o e
. e 2. . t
X.b X7K X, K K x
1 1 2 1
+ - P_ _ P__ _P 0 (1) sat a e(1) d 1
ul b 21 K2 21 K2 Kp S
1p 2'p 0
. t
K x2
- —%—— r(t) sat a e(1) d t . (82)
P
0

1

Ld
five terms in Equation (82) are zero and V is negative semi-

When the parameters Kp and b, are constant, the last

definite. However, when Kp and b1 are varying the last five
terms in Equation (82) are sign undetermined disturbances

on V. Although the negative terms can be made very large by
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increasing the adaptive loop gains, stability cannot be
guaranteed while the plant parameters are changing.

Some simulations were made with the system of Figure 12,
with both bl and Kp time varying. The controlled plant
again responded the same as the model. Since this topic
could he made into a separate report, the investigations

were not pursued any further,
F. Comments

In Section III a first order model referenced system
was examined. The adaptive control law proposed in
Equation (51) was shown to be an effective gain adjustment
criteria for controlling a plant with unknown or step
changing varameters. The new adaptive control law has an
advantage over the previous adaptive control law which
requires a multiplier, since it can be implemented by a
switch. On the basis of the first order system, adaption is
faster using the new adaptive control law than using the
old one. It was shown that an upper bound on the error can
be set to any value by adjusting the adaptive loop gain.
However, high gains increased the frequency of the spurious
signal present in the output.

Randomly varying parameters are another problem.
Addition of the derivative feedback path increases the
protability of system stability by making the derivative of
V more negative. Unfortunately, stability still cannot be

guaranteed while the parameters are changing.
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A. Choice of V Function

ORDER SYSTEM -- NEW DESIGN
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Of primary importance in deriving the adaptive control

laws for the ﬁb

function.

formal procedure for choosing the V function.

order system 1is the proper choice of V
As stated in the introduction, there is no

A trial and

error procedure was used until the desired adaptive control

laws were obtained.

will be used throughout this section.

new matrices will be defined.

The matrix notation used in Section IIA

In addition, some

The sat function will be

used in the derivations for the reasons mentioned previously.

Zn n x n matrix Q is first defined as follows:

—

912

ham—

qln

qnn

Also an n column matrix is defined,

—

sat

sat

—

€

o] Q
o s
|®

QO
|

. (83)

(84)
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Finally, define a vector function

F;'—
1
Y2
wiQ e) = : (85)
w
n
where,
T e
9; &
w, = [ sat a1t dT . (86)
0
Now, the following choice of V function is made:
n
V= 3% w. + 1 xT M—l X (87)
. i 2K = = =
i=1 p

where X is defined in Equation (10) and M is defined in

Equation (14). V is positive definite if Q is non-singular.

Differentiation of V gives,

Ve(sategeoet T x e T kL (88
P P

N

Substitution of é from Equation (12) yields,

E)T QA e + (sat o Q e)T Q F x + %— %? g—

- T p

vV = (sat o 1

o

pu—

(89)
The objective again is to choose the adaptive control
laws so that V is negative semi-definite. A procedure is

used similar to that of the scalar case in Equation (43).
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The second term of (89) is cancelled by the third term by

choosing,

[%. e
Il

i

=
1=
]

©

e
0

o

r'-

R
0
|®

(90)

Now,

*

V=(satage)ga e . (91)

V is not necessarily negative semi-definite as it was for
the scalar case. It may be negative semi-definite for
certain values of Q. The problem now is to determine the
proper Q, if it exists.

One way for a function of the form,

V =y sat o x (92)
to be negative definite is for the following relationship to
hoid,

Yy = CcX ; (93)
where, ¢ is a negative constant. Applying this criteria to
Equation (91) implies

CQe=20Q ém e . (94)

Eguation {94) is certainly true if,

If C is a diagonal matrix of negative real constants, then
(91) will bc negative semi-definite. Since Q is nonsingular,
o qs -1
Equation (95) can be post multiplied by Q and then,
_ ~-1 96
c=0a.0 . (96)
The prcblem is now reduced to diagonalizing the model

12
matrix A by a similarilty transform. It can be shown
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that if the eigenvalues of a matrix ém are distinct, then
it can be tranformed into a diagonal matrix A as follows:

I |
A=T A T . (97)

A is a diagonal matrix of the eigenvalues Ai’ and T is the

Vandermonde matrix as follows,

— _
1 1 .« . e 1
S
2 .2 2

= |[M M *n : (98)
n-1 .n-1 n-1
S A

If the mcdel is stable and all eigenvalues of ém are real,
A will be a diageonal matrix of negative real constants and
the conditions for negative semi-definiteness of (91) will

be satisfied.

The reguired value of Q is

Q =17 . (99)
Q0 will be a real matrix since all Xi are recal. The derivative

of V is now,

ATt e (100)

7= (sat a1 )T

Since (100) is negative semi-definite, the model-referenced
system is stable anc the error goes to zero.
The adaptive control laws can now be determined from

Equation (90). It is assumed that the plant parameters are

sonsirent during adaption as in Eguation (24). Equating
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Equation (24) and Equation (90) yields,

g = -M ET QT sat @ Q e . (101)
In summary, the results of this sect@on show that the
scalar case of control law (46) can be extended to the vector
case of control law (101). The model is restricted to be
stable and to have real distinct eigenvalues. These restric-

tions will be discussed again in Section IV C.

B. A Second Order Example

To provide more insight into a system other than first
order, the system of Figure 13 was examined. Plant para-

meters b1 and b2 are considered to be unknocwn or subject to

unknown step changes.

s” 4+ 3s + 2

£..___....A|
K Gs
B P
s” + bzs + bl
kZS + kl L&
L

Figure 13. Second Order System
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The system equations are,

0 1 0
Qm = Qm + r (102)
-2 =3 K
m
]
and,
0 1 0
Qs = Qs + r . (103)
—(b1+kal) —(b2+ka2) Kp
T — .

For simplification, Kp and K are again made equal. The

error equation is then,

e=0 -0 =aA e+ (A -A) O , (104)
- —m -5 —-m - —m -s’ =s
or,
. — ~ .
0 1 l—o 0
e = e + o
-2 =3 ;bl+xpkl-2 b, + Kk, - 3
- _ L ]
(105)

If the folleowing definitions are made,

= bl + kal - 2 and X, = b2 + Rpkz - 3 (106)
then,
[ [ ]
0 1 0 0
¢ = e + X . (107)
-2 —~3-J esl 652

Ta derive the adaptive control laws, V is chosen as 1in

Eguation (87},
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Y1 Yo

[ ( 1 T -1
Vv = J sat o T d T + J sat o T d T + F— X MU ox (108)

P

0 8]

where,
T T
y; =47 e and vy, = g5 e . (109)

If q; # b 9yr V is positive definite. To determine Q the

eigenvalues of ém are evaluated, and

Xl = -1 and AZ = -2 . (110)

Now, from Equation (98)

1 1
T = (111)
i
and,
2 1
Q = 2‘1 = . (112)
-1 -1
Also,
~
€y
y, = [2 1] = 2e, + e, (113)
€5
and
—
€1
v, = [-1  -1] = —e; - e, . (114)
2 .,




. _ . . l oT _l
V = Yq sat o vyt Y, sat a Y, + =% M X . (115)
p

From (113) and (114)

Yy, = 2el + e, _ (1l6)
and, '

y, = ¢, - &, . (117)
Egquation (107) shows that,

e; = e, (118)
and,

e, = —2el - 3e, + Xlesl + xzesz . (119)

After substitution of (118) and (119) into (116) and (117),

and (116) and (117) into (115), V can be written,

*

vV = “Yq sat o Yy - 2y2 sat o Yo

+ %y Osl(sat ay, - sat o y2)

+ X, @Sz(sat @y, - sat a YZ)
S S S (120)
P

To make V negative semi-definite, x is chosen accord-

ing to Equation (90),

Hy 0 0 Gsl 2 -1 sat o Yy
= p
0 u 0 ] tl -1 sat oy
2 s2 2
- L —

or,
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. “Hy Kp @sl(sat @y, - sat a y2)
x = | . (122)
-1, K @Sz(sat @y, - sat o yz)

<P R

Substitution of (122) back into (120) yields,

V = -Yy sat o Yy - 2y2 sat o Yy - (123)

<
L

V is negative semi-definite as expected. The following

adaptive control laws can be concluded

kl = -y Osl(sat oy, - sat a y2) (124)
and,

k2 = U, esz(sat @y - sat a y2) . (125)

A further simplification of the adaptive control laws
can be made by using the fact that the derivative of the V
function does not have to be negative definite in e to
guarantee asymptotic stebility. V can be negative semi-
definitézin e as long as the system does not have any other

equilibrium point except when V = 0.

For ﬁhe system of Figure 13, V can be chosen,
Yy
V o= sat 1 d 1T + z%— §? gﬁl X . (126)
p
0

The adaptive control laws then become,

f. o= - (127)
kl “1 esl sat a Yy

and,

e
i

2 —1, 652 sat o ¥y . (128)
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Now,

vV = ~Yq sat o Yy . (129)

V is only negative semi-definite since

yl = 2el + e2 = 0 (130)

is a condition in which V is zero and the error may not be
zero. However, solving (13) yields,

2e + e =0 (131)
and

e =ce?t (132)
indicating that the error will still decay to zero. Hence,
the adaptive control laws of (127) and (128) can be used
with a reduction in hardware.

Before simulation, the sat function was replaced by

the sgn function as before, the final adaptive control laws

becomes
L, = ~Hq @S sgn(2e + e)

and (133)

. - - + .
k2 1P es sgn (2e e)

The system of Figure 13 was simulated using the adaptive

control laws of Equation (133) and the following

parameters,

Kp = 2, By = 100 , u, = 100 ,
o (¢) =0, 0_(0) =0, k,(0) =0
m S 1 ’ (134)
k2(0) =0, r = s1n t, bl = 20,
b. =5 + s(t) , s(t) = square wave of amplitude #3

2
frequency of 1 radian/second .
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The derivative of kl and the derivative of k2 were added
to the feedback as discussed in Section III D. The
simulation diagram is in the Appendix and the results are
shown in Figure 14.

A comparison of the output of the plant without
adaption and the output with adaption, indicates a rapid
adaption with very little error. The results definitely

confirm that the adaptive control laws derived in Section

IV A are useful.

C. Restrictions on the Model

The derivation of the adaptive control laws in
Section IV A imposed restrictions on the model so that v

would be negative semi-definite. The restrictions are

s

epeated here for emphasis. The model must satisfy the
following requirements:

1. it must be stable,

2. all eigenvalues must be distinct, and

3. all eigenvalues must be real.

The stability of the model is required so that the
matrix A, of Equation (97), will have all negative numbers
on its diagonal. If this were not true, then V would
contain a positive definite term. The model will most
likely be stable in any practical system, therefore, this
is really not a limitation.

Next, the restriction of distinct eigenvalues was

imposed so that a transformation was guaranteed to exist
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which would yield a diagonal matrix A in Equation (97).
If ém does not have distinct eigenvalues, then it may not
be similar to a diagonal matrixlz. This, however, does
not imply that V of Equation (91) will not be negative
semi-definite, but it does imply that all cases of non-
diagonal matrices must be checked to see if V could
possibly be positive. This was not done because it was
thought that in most cases the model would have distinct
eigenvalues. Further investigations should include a
study of the effects of non-distinct eigenvalues on V.

So far, none of the restrictions have been a serious
limitation. However, there will undoubtedly be many cases
where a model with complex roots will be desired. The
choice of Q made in Equation (99) does not work if the
model has complex roots. An examination of T in Equation
(98) indicates that complex eigenvalues would make T
cowplex and in turn Q complex. The adaptive control laws
of (101) cannot be implemented in this casc because they
require the saturation function with complex argument which
is undefined. This situation can be partially resolved by
making an additional transformation.

Instead of transforming ém to a diagonal matrix A

as in (97), it will be now transformed into a matrix J of

the formlz,
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F‘A 7
1 0
g W
J = ; (135)
- o]
0 A
n
L__ —

where ¢ is the real part of the complex eigenvalue and w is
the imaginary part. This transformation can be made as
follows:

tela s (136)

J =
— — —n

|\

T is the same as defined in (98) and S is,

1 0
r -3
2 2
s = . (127)
1 i
2 2
0 1

The significance is that not only is J real but so is T S.

Now Q can be chosen as follows:

g =5ttt | (138)

The adaptive control laws will be the same as in Equation

(101} except with the Q of (138), which is real.

The form of V will now be,

V=2(sataQe)l JQe (139)

All terms of V will be negative definite as before, except

for those corresponding to the off diagonal elements of J
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due to the complex eigenvalues. A closer examination of

{139) is necessary.

Defining y = Q e and multiplying out J y yields,

MY
. oy _twy
vV = [satayl se sataym sataym+l s satqyn] m mt]
—wym+0ym+l
ALY
n‘n
L —
(141)
The terms of V due to complex roots are,
Y sataym + WY 41 sataym
and, ‘ (142)
TWYp satoyn,qy tf O¥pyg Satey,y .

Since the model is stable, ¢ is negative; hence, the
first and last term of (142) are both negative definite.
The second and third terms can be of either sign, but they

are of different sign from each other. Therefore,

ey, satey - ey satay ., < w max (]ym+l},[ym[) . (143)

*

The largest possible positive contribution to V is
w[max([ym+l|, ly 1. If |o] > w, then the first or fourth

terms of (142) will always be more negative than the positive



terms. Hence, V will again be negative semi-definite,
the system will be stable and e will go to zero.

Thus the restriction of the model having only real
roots has been reduced to the model having only real roots
and complex roots whose real part is greater than its
imaginary part. This will permit much more flexibility in
the choice of a model. The same technique can be applied

to models with more than one set of complex poles.

57
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V. SUMMARY AND RECOMMENDATIONS

Some comment on the use of Lyapunov's direct method
as a design technique is in order. Much of the time spent
developing this new design was in trial and error. The
desired results were known but the Lyapunov function was
not. HMany different V functions were tried without success.
Finally, an adeqguate one was chosen. Although trial and
error was involved in arriving at the design procedure,
from this point on there is no trial and error involved if
signum function adaptive control laws are desired. The
Lyapunov direct method definitely has merit as a design
technique. Quite often it will be the only method
available.

The design presented in this thesis provides a method
for the control of all of the parameters of a controlled
plant. Explicit identification of the plant dynamics is
unnecessary since a model is used as a reference for
adjusting the parameters. Each parameter is adjusted by
means of a feedback loop. The form of the feedback loop
is determined by the adaptive control law for that loop.
Each adaptive control law can be implemented by a switch
and an integrator. The main advantage of the system is
that it is guaranteed to be asymptotically stable when the
parameters are not varying. Hence, this design is most

applicable to systems in which the plant parameters are
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ccenstant but cannot be measured. It is also applicable

to systems in which the plant parameters are changing in
steps since the time when the parameters are varying is
small. There is a very high probability that the system
will be stable for slowly varying parameters, but strictly
speaking, stability can only be guaranteed when the para-
meters are constant. |

When choosing a design for a particular system, the
advantages must be weighed against the disadvantages. There
are some disadvantages inherent in the design presented in
this thesis. First of all, if the model has complex poles
the real part of the complex poles must be greater than the
imaginary part. Second, a number of derivatives of the
error and the plant output must be generated. The problems
associated with taking derivatives in a physical system are
well kncwn.

Hopefully, some of the limitations can be removed, or
at least lessened, as a result of further research. Some
suggestions follow.

1. Extend the design to a system whose model has

arbitrary poles. Possibly a different trans-
formation of the model matrix, or a different V
function will produce this result.

2. TReduce the adaptive control laws to logic form.

For the first order case, this would be il =
sgn SS sgn e. The product of two signum

Y1
functions can be implemented by an exclusive-or

gate.
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Investigate the engineering aspects of this
design in more detail. The use of switches with
deadzone and/or hysteresis should be investigated.
Extend the design to systems where the model and
the plant are of different order. There may be

a problem in this extension due to purely

algebraic control loops.
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APPENDIX

2’

a+b+c <0

Cour
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Y

Comparator and Electronic Switch Diagram
©1
a
b c ES
©2
—e,, a + b +c >0
CouT
-e



Analog Simulation Drawing of First Order System With

sat Function Control Law
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Analog Simulation Drawing of First Order System With

sgn Function Control Law
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Analog Simulation Drawing of First Order System With

Product Control Law
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Analcg Simulation Drawing of Second Order System With

SGN Control Law
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