A LYAPUNOV INEQUALITY AND FORCED OSCILLATIONS IN GENERAL NONLINEAR n TH ORDER DIFFERENTIAL-DIFFERENCE EQUATIONS \dagger
 by LU-SAN CHEN

(Received 9 March, 1976)

1. Introduction. The purpose of this paper is to consider the general nonlinear nth order differential-difference equation

$$
\begin{equation*}
\left.\left[r(t) h\left(y^{\prime}(t)\right)\right]^{(n-1)}+a(t) y(t) f(y(t-\tau(t)))=b, t\right) \tag{1}
\end{equation*}
$$

and derive an inequality of Lyapunov type. Later we use this inequality to find conditions to ensure that the oscillatory solutions of equation (1) tend to zero as $t \rightarrow \infty$. The conditions that ensure that the oscillatory solutions of equation (1) tend to zero, also cause all solutions of equation

$$
\begin{equation*}
\left[r(t) h\left(y^{\prime}(t)\right)\right]^{(n-1)}+a(t) y(t) f(y(t-\tau(t)))=0 \tag{2}
\end{equation*}
$$

to be non-oscillatory.
The classical Lyapunov inequality states that if $y(t)$ is a non-trivial solution of the second order linear equation

$$
y^{\prime \prime}(t)+a(t) y(t)=0,
$$

where $a(t)$ is real and continuous, and if $y(t)$ vanishes at least twice on the interval $\left[t_{1}, t_{2}\right]$, then

$$
\left(t_{2}-t_{1}\right) \int_{t_{1}}^{t_{2}} a^{+}(t) d t>4, \quad \text { where } \quad a^{+}(t)=\max (a(t), 0)
$$

This inequality is well known to be the sharpest possible, so that 4 cannot be replaced by larger constant, cf. [1]. In general, this inequality is not true for delay equations. As an example, the equation

$$
y^{\prime \prime}(t)-y(t-\pi)=0
$$

has as a nontrivial solution $y(t)=\sin t$ on $(0, \infty)$ subject to $y(t)=\sin t, t \in[-\pi, 0]$, but taking $t_{1}=0, t_{2}=\pi, a(t)=-1$, we find that the conclusion of the inequality is not true.

Eliason [2] considered the equation

$$
\left[r(t) y^{\prime}(t)\right]^{\prime}+a(t) y(t) f(y(t))=0
$$

and proved a more general version of Lyapunov inequality. Recently, Dahiya-Singh [4] considered the equation

$$
\left[r(t) h\left(y^{\prime}(t)\right)\right]^{\prime}+a(t) y(t) f(y(t-\tau(t)))=0
$$

and, more recently, Singh [5] also considered the equation

$$
\left[r(t) y^{\prime}(t)\right]^{(n-1)}+a(t) y(t)=f(t)
$$

and proved an extension of this inequality which is a particular case of our result.
\dagger This research was supported, by the National Science Council.
Glasgow Math. J. 18 (1977) 161-166.
L

We shall consider only those solutions of the equation (1) which exist on some half-line [t_{ξ}, ∞), where t_{ξ} may depend on the particular solution, and are nontrivial in any neighbourhood of infinity. Such a solution is called oscillatory if it has arbitrarily large zeros; otherwise it is called non-oscillatory. In addition the following assumptions will be made for the rest of this paper.

Assumptions. (i) $a(t)$ and $b(t)$ are continuous real-valued functions on $[0, \infty)$.
(ii) $r(t)$ is a continuous and positive real-valued function on $[0, \infty)$.
(iii) $\tau(t)$ is continuous positive and bounded so that there exists some positive constant m such that $0<\tau(t) \leqq m$.
(iv) $h(x)$ is continuously differentiable on $(-\infty, \infty)$ and is an odd function such that $\operatorname{sgn} h(x)=\operatorname{sgn} x$; there exists $\beta>0$ such that $0<x / h(x) \leqq \beta$, and $\lim _{x \rightarrow 0}(x / h(x))$ exists finitely so
that $x / h(x)$ is continuously differentiable on $[0, \infty)$.
(v) $f(x)$ is a continuous, even, real positive function on ($-\infty, \infty$) and increasing on $[0, \infty)$ with $f(0)=0$.

To obtain our results we make use of the following lemma adapted from Singh [5].
Lemma. Assume that $\alpha_{1}>\alpha_{2}>\alpha_{3}>\ldots>\alpha_{n-2}$ are, respectively, zeros of

$$
\left[r(t) h\left(y^{\prime}(t)\right)\right]^{\prime}, \quad\left[r(t) h\left(y^{\prime}(t)\right)\right]^{\prime \prime}, \quad \ldots, \quad\left[r(t) h\left(y^{\prime}(t)\right)\right]^{(n-3)}, \quad\left[r(t) h\left(y^{\prime}(t)\right)\right]^{(n-2)}
$$

where $y(t)$ is a solution of equation (1). Furthermore, suppose that $t_{1}<\alpha_{n-2}$ and $t_{2}>\alpha_{1}$ are zeros of $y(t)$. Let

$$
L=\sup \left\{y(t): t \in\left(t_{1}-m, t_{2}\right), t_{1}, t_{2}>m\right\} \quad \text { and } \quad M=\sup \left\{|y(t)|: t \in\left[t_{1}, t_{2}\right]\right\} .
$$

Then

$$
\begin{equation*}
4 \leqq \beta \int_{t_{1}}^{t_{2}} \frac{d t}{r(t)}\left\{f(L) \int_{t_{1}}^{t_{2}} \frac{\left(t-t_{1}\right)^{n-2}}{(n-2)!}|a(t)| d t+\frac{1}{M} \int_{t_{1}}^{t_{2}} \frac{\left(t-t_{1}\right)^{n-2}}{(n-2)!}|b(t)| d t\right\} \tag{3}
\end{equation*}
$$

Proof. Integration of (1) $n-2$ times gives

$$
\begin{align*}
&(-1)^{n}\left[r(t) h\left(y^{\prime}(t)\right)\right]^{\prime}+\int_{t}^{\alpha_{1}} \int_{s_{2}}^{\alpha_{2}} \ldots \int_{s_{n-2}}^{\alpha_{n-2}} a(s) y(s) f(y(s-\tau(s))) d s d s_{n-2} \ldots d s_{2} \\
&=\int_{t}^{\alpha_{1}} \int_{s_{2}}^{\alpha_{2}} \cdots \int_{s_{n-2}}^{\alpha_{n-2}} b(s) d s d s_{n-2} \ldots d s_{2} \tag{4}
\end{align*}
$$

Since $\alpha_{1}>\alpha_{2}>\alpha_{3}>\ldots>\alpha_{n-2}$, we obtain from (4),

$$
\begin{aligned}
&\left|\left[r(t) h\left(y^{\prime}(t)\right)\right]^{\prime}\right| \leqq \int_{t}^{\alpha_{1}} \int_{s_{2}}^{\alpha_{1}} \ldots \int_{s_{n-2}}^{\alpha_{1}}|a(s)\|y(s)\| f(y(s-\tau(s)))| d s d s_{n-2} \ldots d s_{2} \\
&+\int_{t}^{\alpha_{1}} \int_{s_{2}}^{\alpha_{1}} \ldots \int_{s_{n-2}}^{a_{1}}|b(s)| d s d s_{n-2} \ldots d s_{2}
\end{aligned}
$$

which implies

$$
\begin{equation*}
\left|\left[r(t) h\left(y^{\prime}(t)\right)\right]^{\prime}\right| \leqq \int_{t}^{\alpha_{1}} \frac{(s-t)^{n-3}}{(n-3)!}|a(s)\|y(s)\| f(y(s-\tau(s)))| d s+\int_{t}^{\alpha_{1}} \frac{(s-t)^{n-3}}{(n-3)!}|b(s)| d s \tag{5}
\end{equation*}
$$

Let

$$
\begin{equation*}
M=\left|y\left(t_{0}\right)\right|, \quad t_{0} \in\left[t_{1}, t_{2}\right] . \tag{6}
\end{equation*}
$$

Now

$$
\pm M=y\left(t_{0}\right)=\int_{t_{1}}^{t_{0}} y^{\prime}(t) d t
$$

which implies

$$
\begin{equation*}
M \leqq \int_{t_{1}}^{t_{0}}\left|y^{\prime}(t)\right| d t \tag{7}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
M \leqq \int_{t_{0}}^{t_{2}}\left|y^{\prime}(t)\right| d t \tag{8}
\end{equation*}
$$

From (7) and (8),

$$
2 M \leqq \int_{t_{1}}^{t_{2}}\left|y^{\prime}(t)\right| d t
$$

By Schwarz's inequality, we get

$$
\begin{equation*}
4 M^{2} \leqq \int_{t_{1}}^{t_{2}} \frac{y^{\prime}(t)}{h\left(y^{\prime}(t)\right)} \frac{d t}{r(t)} \int_{t_{1}}^{t_{2}}\left[r(t) h\left(y^{\prime}(t)\right)\right] y^{\prime}(t) d t, \tag{9}
\end{equation*}
$$

since $y^{\prime}(t) / h\left(y^{\prime}(t)\right)$ is continuous and positive. Therefore

$$
4 M^{2} \leqq \beta \int_{t_{1}}^{t_{2}} \frac{d t}{r(t)} \int_{t_{1}}^{t_{2}}\left[r(t) h\left(y^{\prime}(t)\right)\right] y^{\prime}(t) d t,
$$

since $0<y^{\prime}(t) / h\left(y^{\prime}(t)\right) \leqq \beta$.
Integrating the second integral of the right-hand side by parts, we have

$$
\begin{equation*}
\frac{4 M^{2}}{\beta \int_{t_{1}}^{t_{2}} \frac{d t}{r(t)}} \leqq-\int_{t_{1}}^{t_{2}} y(t)\left[r(t) h\left(y^{\prime}(t)\right)\right]^{\prime} d t \tag{10}
\end{equation*}
$$

since $y\left(t_{1}\right)=y\left(t_{2}\right)=0$. It follows, from (10), that

$$
\begin{equation*}
\frac{4 M^{2}}{\beta \int_{t_{1}}^{t_{2}} \frac{d t}{r(t)}} \leqq \int_{t_{1}}^{t_{2}}\left|y(t) \|\left[r(t) h\left(y^{\prime}(t)\right)\right]^{\prime}\right| d t \tag{11}
\end{equation*}
$$

From (6) and (11),

$$
\begin{equation*}
\frac{4 M}{\beta \int_{t_{1}}^{t_{2}} \frac{d t}{r(t)}} \leqq \int_{t_{1}}^{t_{2}}\left|\left[r(t) h\left(y^{\prime}(t)\right)\right]^{\prime}\right| d t \tag{12}
\end{equation*}
$$

From (5) and (12), we have

$$
\begin{align*}
& \frac{4 M}{\beta \int_{t_{1}}^{t_{2}} \frac{d t}{r(t)}} \leqq \int_{t_{1}}^{t_{2}} \int_{s}^{\alpha_{1}} \frac{(x-s)^{n-3}}{(n-3)!}|a(x) \| y(x)| f(L) d x d s \\
&+\int_{t_{1}}^{t_{2}} \int_{s}^{\alpha_{1}} \frac{(x-s)^{n-3}}{(n-3)!}|b(x)| d x d s \tag{13}
\end{align*}
$$

Dividing by M and noting that $t_{2}>\alpha_{1}$, we have, from (13),

$$
\begin{align*}
\frac{4}{\beta \int_{t_{1}}^{t_{2}} \frac{d t}{r(t)}} \leqq & f(L) \int_{t_{1}}^{t_{2}} \int_{s}^{t_{2}} \frac{(x-s)^{n-3}}{(n-3)!}|a(x)| d x d s \\
& +\frac{1}{M} \int_{t_{1}}^{t_{2}} \int_{s}^{t_{2}} \frac{(x-s)^{n-3}}{(n-3)!}|b(x)| d x d s \tag{14}
\end{align*}
$$

From (14), we have

$$
4 \leqq \beta \int_{t_{1}}^{t_{2}} \frac{d t}{r(t)}\left\{f(L) \int_{t_{1}}^{t_{2}} \frac{\left(s-t_{1}\right)^{n-2}}{(n-2)!}|a(s)| d s+\frac{1}{M} \int_{t_{1}}^{t_{2}} \frac{\left(s-t_{1}\right)^{n-2}}{(n-2)!}|b(s)| d s\right\}
$$

and the proof is complete.
Remark 1. Eliason [2] has discussed the lemma in the case $n=2, h\left(y^{\prime}(t)\right) \equiv y^{\prime}(t)$, $b(t) \equiv 0$ and $f(y(t-\tau(t))) \equiv f(y(t))$. Dahiya-Singh [4] has discussed it in the case $n=2$, $b(t) \equiv 0$, and Singh [5] also has discussed it in the case $r(t) \equiv 1, b(t) \equiv 0, h\left(y^{\prime}(t)\right) \equiv y^{\prime}(t)$ and $f(y(t-\tau(t))) \equiv 1$.
2. Theorems. We now give a generalization of Lyapunov inequality for the equation

$$
\begin{equation*}
y^{(n)}(t)+a(t) y(t)=0 \tag{15}
\end{equation*}
$$

Theorem 1. Assume that $r_{2}>r_{3}>\ldots>r_{n-1}$ are zeros of $y^{\prime \prime}(t), y^{\prime \prime \prime}(t), \ldots, y^{(n-1)}(t)$ respectively, where $y(t)$ is a solution of equation (15). Let $t_{1}<r_{n-1}$ and $t_{2}>r_{2}$ be zeros of $y(t)$. Then

$$
\begin{equation*}
\frac{4}{t_{2}-t_{1}} \leqq \int_{t_{1}}^{t_{2}} \frac{\left(t-t_{1}\right)^{n-2}}{(n-2)!}|a(t)| d t \tag{16}
\end{equation*}
$$

Proof. In the lemma, we put

$$
r(t) \equiv 1, \quad h\left(y^{\prime}(t)\right) \equiv y^{\prime}(t), \quad f(y(t-\tau(t))) \equiv 1 \quad \text { and } \quad b(t) \equiv 0
$$

and the conclusion follows.
Theorem 2. Assume that $f(x)$ is bounded and

$$
\begin{equation*}
\int^{\infty} t^{n-2}|a(t)| d t<\infty \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
\int^{\infty} t^{n-2}|b(t)| d t<\infty \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\int^{\infty} \frac{d t}{r(t)}<\infty \tag{19}
\end{equation*}
$$

Let $y(t)$ be an oscillatory solution of equation (1). Then

$$
\lim _{t \rightarrow \infty} y(t)=0
$$

Proof. Let

$$
\begin{equation*}
M_{1}=\sup _{0 \leqq x<\infty} f(x) \tag{20}
\end{equation*}
$$

Suppose to the contrary that $\lim _{t \rightarrow \infty} y(t) \neq 0$. Then

$$
\begin{equation*}
\liminf _{t \rightarrow \infty}|y(t)|=0 \tag{21}
\end{equation*}
$$

and for some positive d,

$$
\begin{equation*}
\limsup _{t \rightarrow \infty}|y(t)|>2 d \tag{22}
\end{equation*}
$$

Due to the oscillatory nature of $y(t),\left[r(t) h\left(y^{\prime}(t)\right)\right]^{(n-2)}$ must be oscillatory. In fact if $\left[r(t) h\left(y^{\prime}(t)\right)\right]^{(n-2)}$ is non-oscillatory, then $r(t) h\left(y^{\prime}(t)\right)$ assumes one sign eventually. Since $r(t)>0$, $\operatorname{sgn} h\left(y^{\prime}(t)\right)=\operatorname{sgn} y^{\prime}(t), h\left(y^{\prime}(t)\right)$ is continuous and odd, $y^{\prime}(t)$ becomes non-oscillatory which in turn forces $y(t)$ to be non-oscillatory, which is a contradiction. Hence $\left[r(t) h\left(y^{\prime}(t)\right)\right]^{(n-2)}$ is oscillatory. Similarly

$$
\left[r(t) h\left(y^{\prime}(t)\right)\right]^{(n-3)},\left[r(t) h\left(y^{\prime}(t)\right)\right]^{(n-4)}, \ldots,\left[r(t) h\left(y^{\prime}(t)\right)\right]^{\prime}
$$

are all oscillatory. Let T be large enough so that

$$
\begin{gather*}
\int_{T}^{\infty} t^{n-2}|a(t)| d t<\frac{1}{M_{1}}, \tag{23}\\
\int_{T}^{\infty} t^{n-2}|b(t)| d t<d \tag{24}
\end{gather*}
$$

and

$$
\begin{equation*}
\int_{T}^{\infty} \frac{d t}{r(t)}<\frac{1}{\beta} \tag{25}
\end{equation*}
$$

Let $T<t_{1}<\alpha_{n-2}<\ldots<\alpha_{3}<\alpha_{2}<\alpha_{1}<T_{0}$ be points such that

$$
\begin{gather*}
y\left(t_{1}\right)=0 \tag{26}\\
{\left[r\left(\alpha_{i}\right) h\left(y^{\prime}\left(\alpha_{i}\right)\right)\right]^{(i)}=0, \quad i=1,2, \ldots, n-2,} \tag{27}
\end{gather*}
$$

and

$$
\begin{equation*}
M=\sup _{t \leq t \leq T_{0}}|y(t)|>d \tag{28}
\end{equation*}
$$

LU-SAN CHEN

Let $t_{2}>T_{0}$ be another zero of $y(t)$. Let

$$
M_{0}=\sup _{t_{1} \leqq t \leq t_{2}}|y(t)|
$$

Then $M_{0}>d$. From the conclusion of the lemma, we have

$$
\begin{equation*}
4 \leqq \beta \int_{t_{1}}^{t_{2}} \frac{d t}{r(t)}\left\{M_{1} \int_{t_{1}}^{t_{2}} \frac{\left(s-t_{1}\right)^{n-2}}{(n-2)!}|a(s)| d s+\frac{1}{M_{0}} \int_{t_{1}}^{t_{2}} \frac{\left(s-t_{1}\right)^{n-2}}{(n-2)!}|b(s)| d s\right\} \tag{29}
\end{equation*}
$$

From (23), (24), (25), the fact that $M_{0}>d$ and (29), we have

$$
\begin{equation*}
4 \leqq 1+(d / d)=2 \tag{30}
\end{equation*}
$$

This contradiction proves the theorem.
Remark 2. For the case $h\left(y^{\prime}(t)\right) \equiv y^{\prime}(t), f(y(t-\tau(t))) \equiv 1$, our Theorem 2 coincides with Theorem 1 of Singh [5].

Theorem 3. Suppose that (17) and (19) are satisfied, and that $f(x)$ is bounded. Then every solution of (2) is non-oscillatory.

Proof. Following the proof of Theorem 2, we arrive at conclusion (29). From (29), we get

$$
\begin{equation*}
4 \leqq \beta \int_{t_{1}}^{t_{2}} \frac{d t}{r(t)}\left\{M_{1} \int_{t_{1}}^{t_{2}} \frac{\left(s-t_{1}\right)^{n-2}}{(n-2)!}|a(s)| d s\right\} \leqq 1 \tag{31}
\end{equation*}
$$

using (23) and (25). This contradiction proves the theorem.
The author wishes to express his thanks to the referee for his helpful suggestions.

REFERENCES

1. P. Hartman, Ordinary differential equations (Wiley, 1964), 345-346, 401.
2. S. B. Eliason, A Lyapunov inequality for a certain second order nonlinear differential equation, J. London Math. Soc. (2) 2 (1970), 461-466.
3. J. S. Bradley, Oscillation theorems for a second order delay equation, J. Differential Equations 8 (1970), 397-403.
4. R. S. Dahiya and B. Singh, A Lyapunov inequality and nonoscillation theorem for a second order nonlinear differential-difference equation, J. Mathematical and Physical Sci. 7 (1973), 163-170.
5. B. Singh, Forced oscillations in general ordinary differential equations, Tamkang J. Math. 6 (1975), 5-11.
6. M. E. Hammelt, Nonoscillation properties of a nonlinear differential equation, Proc. Amer. Math. Soc. 30 (1971), 92-96.
7. S. Londen, Some nonoscillation theorems for a second order nonlinear differential equation, SIAM J. Math. Anal. 4 (1973), 460-465.

Department of Mathematics

National Central University
Chung-Li
Taiwan

