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1. Introduction. The purpose of this paper is to consider the general nonlinear nth order
differential-difference equation

bj) (l)

and derive an inequality of Lyapunov type. Later we use this inequality to find conditions to
ensure that the oscillatory solutions of equation (1) tend to zero as t -* oo. The conditions that
ensure that the oscillatory solutions of equation (1) tend to zero, also cause all solutions of
equation

[K0fc(y'(0)]("~1} + a(t)y(t)f(y(t - T(0)) = 0 (2)
to be non-oscillatory.

The classical Lyapunov inequality states that if y(t) is a non-trivial solution of the second
order linear equation

where a(t) is real and continuous, and if y(t) vanishes at least twice on the interval [tu t2], then

(f2 - f i) a+(t) dt > 4, where a+(t) = max (a(t), 0).
J

This inequality is well known to be the sharpest possible, so that 4 cannot be replaced by
larger constant, cf. [1]. In general, this inequality is not true for delay equations. As an
example, the equation

y"(t)-y(t-n) = 0

has as a nontrivial solution y(t) = sin/ on (0, oo) subject to y(t) = sint, te[-n,0], but taking
j x = 0, t2 = ft, a(0 = — 1, we find that the conclusion of the inequality is not true.

Eliason [2] considered the equation

and proved a more general version of Lyapunov inequality. Recently, Dahiya-Singh [4]
considered the equation

) = 0,

and, more recently, Singh [5] also considered the equation

and proved an extension of this inequality which is a particular case of our result.
t This research was supportecL.by the National Science Council.
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We shall consider only those solutions of the equation (1) which exist on some half-line
[tf, oo), where ti may depend on the particular solution, and are nontrivial in any neighbourhood
of infinity. Such a solution is called oscillatory if it has arbitrarily large zeros; otherwise it is
called non-oscillatory. In addition the following assumptions will be made for the rest of this
paper.

ASSUMPTIONS, (i) a{t) and b(t) are continuous real-valued functions on [0, oo).
(ii) r{t) is a continuous and positive real-valued function on [0, oo).

(iii) T(/) is continuous positive and bounded so that there exists some positive constant
m such that 0 < %{t) =g m.

(iv) h(x) is continuously differentiable on (—00,00) and is an odd function such that
sgn h(x) = sgn x; there exists fi > 0 such that 0 < xlh(x) ^ /?, and lim (x//i(x)) exists finitely so
that x/h(x) is continuously differentiable on [0, 00). *~*°

(v) /(*) is a continuous, even, real positive function on (—00,00) and increasing on
[0,oo)with/(0) = 0.

To obtain our results we make use of the following lemma adapted from Singh [5].

LEMMA. Assume that at > a 2 > a 3 > . . . > an_2 are, respectively, zeros of

M O W ) ) ] ' , M O W ) ) ] " , •••> M0*(/(0)]("~3), M 0 W ) ) ] ( " ~ 2 \
where y(t) is a solution of equation (1). Furthermore, suppose that tx < an_2 and t2 > at are
zeros ofy{t). Let

L= sup{y(t):te(t l -m,t2) , tu t2>m} and M = sup{\y(t)\:te[t1,t2]}.
Then

Proof Integration of (1) n—2 times gives

(-l)BM0fc(/(0)]'+ f" P . . . r~2a(s)y(s)f(y(s-x(s)))dsdsn_2...ds2
Jl J«2 JSn-2

("ai p«2 p«n-2

. . . b(s)dsdsn-2...ds2. (4)
Jf Js2 JSn-2

Since at > a2 > a3 > . . . > an_2) we obtain from (4),

I MOW))]'I ^ f P . . . f' \a(s)\\y(s)\\f(y(s-x(s)))\dsdsn.2...ds2
Jt JS2 Jsn-2

+ . . . \b(s)\dsdsn.2...ds2,
Jt JS2 JSn-2

which implies

I MOW))]'I £ r ( -^U| f l (s ) | X«)I/(3'(s-t(s)))|dS+ f " ( i Z ^ ! | 4(5)1*. (5)
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Let
\ i0e[*,,f2]. (6)

Now

which implies

M ^[° \y\t)\dt. (7)

Similarly

Mz\'2\y'(t)\dt. (8)
J'o

From (7) and (8),
f'2

2M£\ | / (01 dr.

By Schwarz's inequality, we get

since y\t)lh{y'{t)) is continuous and positive. Therefore

4M2 g^ [ A

since 0 < y'(t)lh(y'(t)) ^ P-
Integrating the second integral of the right-hand side by parts, we have

AM2

" rt0[K0*(/(0)]'* (10)

since ^(/x) = y(t2) = 0. It follows, from (10), that

AM2

From (6) and (11),

(11)
ti

K0

(12)
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From (5) and (12), we have

P J ( 1 KO

Dividing by M and noting that t2 > <xu we have, from (13),

From (14), we have

and the proof is complete.

REMARK 1. Eliason [2] has discussed the lemma in the case n = 2, h{y'(t)) s y'(t),
b(t) = O and f{y{t-i(t))) =f(y{t)). Dahiya-Singh [4] has discussed it in the case n = 2,
bit) = 0, and Singh [5] also has discussed it in the case r(t) = 1, b(t) = 0, h[y\t)) = y'{t) and

)

2. Theorems. We now give a generalization of Lyapunov inequality for the equation

/n\t) + a(t)y(t) = O. (15)

THEOREM 1. Assume that r2>r3> . . . >rn_1 are zeros of y"[t), y'"(i),...,/"-1)(0
respectively, where y(t) is a solution of equation (15). Let tx <rn_ t and t2 > r2 be zeros of y{t).
Then

Proof. In the lemma, we put

K0 = i, %'(0) = /(0, /(y0-<0)) = i and
and the conclusion follows.

THEOREM 2. Assume thatf(x) is bounded and

r (17)
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and

f"r-2|ft(0|d«<oo, (18)

f°° dt
— < oo. (19)

J KO
JJ(/) ie an oscillatory solution of equation (1). Then

= 0-

Proof. Let
M, = sup f{x). (20)

Ogx<oo

Suppose to the contrary that lim y(t) ^ 0. Then

hO, (21)

and for some positive d,
limsup|X0|>2d. (22)

Due to the oscillatory nature of y(t), [KOK/O))]*"2' must be oscillatory. In fact if
[r(t)h(y'(t))']ln~ 2) is non-oscillatory, then r(t)h(y'{t)) assumes one sign eventually. Since r(t) > 0,
sgn h(y'(t)) = sgnj'(0. A(y'(0) is continuous and odd, y'(t) becomes non-oscillatory which in
turn forces y(t) to be non-oscillatory, which is a contradiction. Hence \r(t)h(y'(t))yn~2) is
oscillatory. Similarly

are all oscillatory. Let T be large enough so that

•-2|a(O|*<-i-f (23)

t"-2\b(t)\dt<d (24)
Jr

and
r"-^<i (25)

Let T < tl < an_2 < ... < a3 < a2 < at < r 0 be points such that

X<i) = 0, (26)

[ K a ^ / t o ) ) ] * 0 = 0, i = l,2 »-2, (27)
and

M= sup \y(t)\>d. (28)
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Let t2 > To be another zero of y(t). Let

Mo = sup \y{t)\.

Then Mo > d. From the conclusion of the lemma, we have

From (23), (24), (25), the fact that M0>d and (29), we have

4^l+(d/d) = 2. (30)

This contradiction proves the theorem.

REMARK 2. For the case h{y'{t)) = y'(t),f(y(t—t(t))) = 1, our Theorem 2 coincides with
Theorem 1 of Singh [5].

THEOREM 3. Suppose that (17) and (19) are satisfied, and that f(x) is bounded. Then every
solution of (2) is non-oscillatory.

Proof. Following the proof of Theorem 2, we arrive at conclusion (29). From (29), we get

using (23) and (25). This contradiction proves the theorem.
The author wishes to express his thanks to the referee for his helpful suggestions.
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