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Abstract. Let q(t) be a T -periodic potential such that
∫ T
0 q(t) dt < 0. The

classical Lyapunov criterion to stability of Hill’s equation −ẍ + q(t)x = 0 is

‖q−‖1 =
∫ T
0 |q−(t)|dt ≤ 4/T , where q− is the negative part of q. In this paper,

we will use a relation between the (anti-)periodic and the Dirichlet eigenvalues
to establish some lower bounds for the first anti-periodic eigenvalue. As a
result, we will find the best Lyapunov-type stability criterion using Lα norms
of q−, 1 ≤ α ≤ ∞. The numerical simulation to Mathieu’s equation shows
that the new criterion approximates the first stability region very well.

1. Introduction and main result

Let q(t) be a periodic function of period T > 0 such that q ∈ L1(0, T ). Recall
that Hill’s equation

− ẍ+ q(t)x = 0(1)

is stable (in the sense of Lyapunov) if any solution x(t) to (1) satisfies

sup
t∈R

(|x(t)| + |ẋ(t)|) <∞.

The stability of Hill’s equation is a basic and an important problem in the theory
of ordinary differential equations. Research on it goes back to the time of Lyapunov
(see, e.g., [3]). Many theoretical results concerning this problem can be found
in textbooks such as [5, 8]. Theoretically, the stability of (1) can be completely
described using the periodic and the anti-periodic eigenvalues; see [8, Theorem
2.1].

A classical stability criterion given by Lyapunov, Krein and Borg (see [8, p. 46])
is as follows. Suppose that q(t) ≤ 0 for a.e. t ∈ R and q(t) < 0 on a subset of
positive measure. If

‖q‖1 =
∫ T

0

|q(t)|dt ≤ 4
T
,(2)
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then (1) is stable. This can be shown using a Poincaré inequality. Condition (2) is
the simplest criterion for the first stability interval. It is also best possible in the
sense that for any ε > 0, there is some q such that

‖q‖1 <
4
T

+ ε,

while (1) is instable. Condition (2) has been generalized in several ways; see [8].
There are also many recent works on this problem and related ones such as deter-
mining the length of the stability intervals. See [4, 6, 7, 10].

In this paper, we will use certain Sobolev constants given by Talenti [9] and a
relation between the (anti-)periodic and the Dirichlet eigenvalues to establish some
lower bounds for the first anti-periodic values. Then we will give a stability criterion
to (1) using the Lα (1 ≤ α ≤ ∞) norms of the potential q(t). The main result of
this paper follows:

Theorem 1. Let q be a T -periodic function such that
∫ T

0
q(t)dt < 0. Assume that

q ∈ Lα(0, T ) for some 1 ≤ α ≤ ∞. Then (1) is stable when

‖q−‖α < K(2α∗), if 1 < α ≤ ∞,(3)

or

‖q−‖α ≤ K(∞) = 4/T, if α = 1.(4)

Here α∗ = α/(α − 1) and K(·) are certain Sobolev constants which will be given
explicitly in (8), and q−(t) = max{−q(t), 0} is the negative part of q(t), ‖ · ‖α
denotes the Lα norm on the interval [0, T ]. Furthermore, the upper bounds K(2α∗)
for ‖q−‖α in (3) are best possible.

When the first stability region of the parametrized Mathieu equation

ẍ+ λ(1 + ε cos t)x = 0 (λ > 0, ε ∈ [−1, 1])

is considered, a suitable choice of α in (3) depending on ε shows that the stability
condition (3) strongly approximates the stability region for all ε ∈ [−1, 1].

2. Proofs

Let q(t) be a periodic function of period T > 0 such that q ∈ L1(0, T ). Consider
the eigenvalue problems of

Lx = −ẍ+ q(t)x = λx(5)

subject to the periodic boundary condition

x(0)− x(T ) = ẋ(0)− ẋ(T ) = 0,(P )

or, to the anti-periodic boundary condition

x(0) + x(T ) = ẋ(0) + ẋ(T ) = 0.(A)

The following is a well-known result concerning eigenvalues and stability of (5).

Theorem 2 ([8, Theorem 2.1]). There exist

λ0(q) < λ1(q) ≤ λ1(q) < λ2(q) ≤ λ2(q) < · · · < λk(q) ≤ λk(q) < · · ·
such that

(i) λ is an eigenvalue of (5)+(P ) if and only if λ = λk(q) or λk(q) for k =
0, 2, 4, · · · ;
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(ii) λ is an eigenvalue of (5)+(A) if and only if λ = λk(q) or λk(q) for k =
1, 3, 5, · · · ;

(iii) Equation (5) is stable if λ is in the intervals

(λ0(q), λ1(q)), (λ1(q), λ2(q)), · · · , (λk(q), λk+1(q)), · · · ;

(iv) Equation (5) is unstable if λ is in the intervals

(−∞, λ0(q)), (λ1(q), λ1(q)), · · · , (λk(q), λk(q)), · · · .

Our main theorem is proved using this theorem by showing that 0 is in the first
stability interval (λ0(q), λ1(q)). To this end, we will establish a lower bound for
the first anti-periodic eigenvalue λ1(q) of (5)+(A).

Let us introduce some notation. For 1 ≤ α ≤ ∞, we use ‖ · ‖α to denote the Lα

norm in the Lebesque space Lα(0, T ).
Consider also the eigenvalues of (5) subject to the Dirichlet boundary condition

x(0) = x(T ) = 0.(D)

Then (5)+(D) has a sequence of eigenvalues

λD1 (q) < λD2 (q) < · · · < λDk (q) < · · · .
It is well-known that the periodic and anti-periodic eigenvalues can be realized
using the Dirichlet eigenvalues in the following way: For any k ∈ N,

λk(q) = min{λDk (qs) : s ∈ R}, λk(q) = max{λDk (qs) : s ∈ R},(6)

where qs(·) are translations of q(·): qs(t) ≡ q(t+ s). Such a relation has also been
generalized to the one-dimensional p-Laplacian; see [12, Theorem 4.3].

We need also certain Sobolev constants. For any 1 ≤ α ≤ ∞, let K(α) be the
best Sobolev constant in the inequality

C‖u‖2α ≤ ‖u̇‖22 for all u ∈ H := H1
0 (0, T ),

i.e.,

K(α) = inf
u∈H\{0}

‖u̇‖22
‖u‖2α

.(7)

Proposition 3. (i) The constants K(α) are given by

K(α) =

 2π
αT 1+2/α

(
2

2+α

)1−2/α
(

Γ( 1
α )

Γ( 1
2 + 1

α )

)2

, if 1 ≤ α <∞,
4
T , if α =∞.

(8)

(ii) Let 1 ≤ α <∞. Then the infimum in (7) can only be attained by functions
u = c uα(t), where c 6= 0 and uα(t) is

uα(t) =
{
F−1
α

(
2Fα(1)t/T

)
, if t ∈ [0, T/2],

F−1
α

(
2Fα(1)(1− t/T )

)
, if t ∈ [T/2, T ],(9)

where Fα : [0, 1]→ R is given by

Fα(u) =
∫ u

0

du

(1− uα)1/2
.

Proof. These results are given in [9]. See also [11] for some generalizations.

Now we establish the following lower bound for the first Dirichlet eigenvalue
λD1 (q) of (5).
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Theorem 4. Let q be as before. Suppose that q ∈ Lα(0, T ) for some 1 ≤ α ≤ ∞
and θ = 1− ‖q−‖α/K(2α∗) ≥ 0. Then

λD1 (q) ≥ θ(π/T )2.(10)

Proof. Let us introduce the quadratic form in H:

Q(u) =
∫ T

0

(u̇2 + q(t)u2)dt, u ∈ H.

The following is a standard result.

λD1 (q) = inf
u∈H\{0}

Q(u)
‖u‖22

.(11)

Moreover, equality is attained if and only if u is an eigenfunction for λD1 (q).
Now let u ∈ H and u 6= 0. Then

Q(u) =
∫ T

0

(u̇2 + q(t)u2)dt

≥
∫ T

0

u̇2dt−
∫ T

0

q−(t)u2dt

≥ ‖u̇‖22 − ‖q−‖α‖u2‖α∗
= ‖u̇‖22 − ‖q−‖α‖u‖22α∗

≥ ‖u̇‖22 −
‖q−‖α
K(2α∗)

‖u̇‖22 = θ‖u̇‖22,

(12)

where the Hölder inequality and (7) are used in the proof. From these estimates,
one has

Q(u)
‖u‖22

≥ θ‖u̇‖
2
2

‖u‖22
≥ θ(π/T )2.

Thus (10) follows the characterization (11) on λD1 (q).

Remark. By the relation (6), the first anti-periodic eigenvalue λ1(q) can be realized
by λ1

D(qs0) for some s0. Note that ‖(qs0)−‖α = ‖q−‖α. Thus, under the assumption
of Theorem 4, one has

λ1(q) ≥ θ(π/T )2 =
( π
T

)2
(

1− ‖q−‖α
K(2α∗)

)
.(13)

Proof of Theorem 1. First, it is well-known that the zeroth periodic eigenvalue
λ0(q) ≤ T−1

∫ T
0
q(t)dt; see [8, Theorem 4.4]. By the assumption of Theorem 1,

λ0(q) < 0 in this case. On the other hand, if (3) holds, then θ > 0. By (13) the
first anti-periodic eigenvalue λ1(q) ≥ θ(π/T )2 > 0. Thus 0 is inside the interval
(λ0(q), λ1(q)). Now Theorem 2 shows that equation (1), which corresponds to (5)
with λ = 0, is stable. If (4) holds, we know from (13) that λ1(q) ≥ θ(π/T )2 ≥ 0.
We assert that λ1(q) is always positive even when θ = 0. Let us simply prove that
λD1 (q) > 0 in this case. Suppose that u0 is an eigenfunction of (5)+(D) associated
with λD1 (q). Proceeding as in the proof of (12), we have

λD1 (q)‖u0‖22 ≥ ‖u̇0‖22 − ‖q−‖1‖u0‖2∞ > (4/T − ‖q−‖1)‖u0‖2∞.(14)
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Note that the last inequality must be strict since u0 ∈ H cannot be the extremal
of the inequality

(4/T )‖y‖2∞ ≤ ‖ẏ‖22
which (up to multiplication by constants) is the linear spline

y = u∞(t) =
{

(2/T )t, t ∈ [0, T/2],
−(2/T )t+ 2, t ∈ [T/2, T ],

It then follows from (4) and from (14) that λD1 (q) > 0. Similarly, λ1(q) > 0 in this
case.

Finally, we prove the last statement in Theorem 1. Suppose that 1 < α ≤ ∞.
Let

u(t) = u2α∗(t) ∈ H
and

q(t) = qη(t) := −ηu2α∗/α
2α∗ (t),

where uβ(t) is given by (9) and η is a positive parameter. By Proposition 3, one
has

‖u‖22α∗ =
1

K(2α∗)
‖u̇‖22.

It is easy to check that

‖q−‖α = η‖u‖2α
∗/α

2α∗

and ∫ T

0

q(t)u2dt = −η‖u‖2α∗2α∗ = −‖q−‖α‖u‖22α∗ .

Thus

Q(u) =
∫ T

0

(u̇2 + q(t)u2)dt = (1− ‖q−‖α/K(2α∗))‖u̇‖22.(15)

Let η = η0 be such that θ = 1− ‖q−‖α/K(2α∗) = 0, i.e.,

η0 = K(2α∗)/‖u2α∗‖2α
∗/α

2α∗ .

For this q = qη0 , (13) implies that λ1(q) ≥ 0. On the other hand, it follows from
(15) that

λ1(q) ≤ λD1 (q) = inf
y∈H\{0}

Q(y)
‖y‖22

≤ 0.

Thus, λ1(q) = 0 in this case. Consequently, if one takes η > 0 a little bit bigger than
η0, then q = qη does not satisfy (3), i.e., ‖q−‖α > K(2α∗). It follows again from
(15) that λ1(q) < 0. This means that 0 is out of the stable interval (λ0(q), λ1(q))
and (1) will be unstable.

Assume that q(t) = −w(t) in (1), where w(t) is T -periodic and satisfies w(t) ≥ 0
for a.e. t, w(t) > 0 on a subset of positive measure. (We write this as w � 0.)
Instead of making use of eigenvalues of (5), one may consider the weighted (anti-)
periodic eigenvalues of

− ẍ = λw(t)x(16)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3330 MEIRONG ZHANG AND WEIGU LI

subject to (P ) or (A). Let us use {µn(w) : n ∈ Z+} and {µ
n
(w) : n ∈ N} to denote

the complete sequence of all weighted periodic and anti-periodic eigenvalues of (16).
Then µ0(w) = 0. Like the estimate (13), we have the following lower bound on the
first weighted anti-periodic eigenvalue.

Theorem 5. Assume that w � 0. If w ∈ Lα(0, T ) for some 1 ≤ α ≤ ∞, then

µ
1
(w) ≥ K(2α∗)

‖w‖α
if 1 < α ≤ ∞,(17)

µ
1
(w) >

K(∞)
‖w‖1

if α = 1.(18)

Since equation (1) is stable if 1 ∈ (0, µ
1
(w)), one can use (17) and (18) to obtain

the same stability conditions (3) and (4) when q = −w, w � 0.

3. An Example

In this section we give an example to illustrate our stability criterion.
Consider the first stability region of Mathieu’s equation

ẍ+ λ(1 + ε cos t)x = 0,(19)

where ε ∈ [−1, 1] and λ > 0. Let wε(t) = 1 + ε cos t, T = 2π. The first stability
region of (19) is

S1 :=
{

(λ, ε) : 0 < λ < µ
1
(wε)

}
.

Let us approximate S1 by several stability criteria. The classical stability result
(4) yields the stability of (19) only when

0 < λ ≤ H0(ε) :=
4

2π‖wε‖1
=

1
π2
≈ 0.10132(20)

for all ε ∈ [−1, 1]. Such a result is not satisfactory because when ε = 0, for example,
the first stability interval is 0 < λ < 1/4.

Now we use the criterion (3) by choosing α depending upon ε. Then equation
(19) is stable when λ satisfies

0 < λ <
K(2α∗)
‖wε‖α

=: H1(ε, α)

for some α ∈ [1,+∞]. Thus (19) is stable when

0 < λ < H1(ε) := sup
1≤α≤∞

H1(ε, α).(21)

A numerical evaluation shows that (21) is a very good approximation to S1 for all
ε ∈ [−1, 1]. See Figure 1.

Let us recall a lower bound result in [11] on the first weighted Dirichlet eigenvalue
µD1 (w) of (16)+(D). This is based essentially on the L2 norm of the primitive
W (t) =

∫ t
w(t)dt and is proved using Opial’s inequality in [1, 2].
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Theorem 6 ([11, Theorem 4.4]). Let w � 0 and W (t) be a primitive of w(t). De-
fine

κ1(ν) =

(
2
∫ T/2

0

t (W (t)− ν)2dt

)1/2

,

κ2(ν) =

(
2
∫ T

T/2

(T − t)(W (t)− ν)2dt

)1/2

.

Then the first weighted Dirichlet eigenvalue has the following lower bound:

µD1 (w) ≥ 1
minν∈Rmax{κ1(ν), κ2(ν)} .

Now we apply Theorem 6 to derive another stability result of (19). Note that
wεs(t) = 1 + ε cos(t+ s). Take a primitive of wε(t) as W ε

s (t) = t+ ε sin(t+ s). Then

κ2
1(ν) =

[
π4 + π2ε2

2
− 4ε(4− π2) cos s− 8πε sin s− πε2 sin 2s

2

]
+
[
−4π3

3
− 4πε cos s+ 8ε sin s

]
ν + π2ν2,

κ2
2(ν) =

[
11π4 + 3π2ε2

6
− 4ε(4 + π2) cos s− 8πε sin s+

πε2 sin 2s
2

]
+
[
−8π3

3
+ 4πε cos s+ 8ε sin s

]
ν + π2ν2.

Let

ν0 =
4π3 − 24πε cos s+ 3ε2 sin 2s

4π2 − 24ε cos s
.

By Theorem 6, we have the following lower bound on µD1 (wεs):

µD1 (wεs) ≥
1

minν∈Rmax{κ1(ν), κ2(ν)} =
1

κ1(ν0)

= 4
√

3 (π2 − 6ε cos s)/
[
(8π8 + 24π6ε2)− 96π4ε(8 + π2 + 3ε2) cos s

+288π2ε2(32 + π2 + 3ε2) cos2 s− 27648ε3 cos3 s

+288π2ε3 sin s sin 2s− 27ε4(32− π2) sin2 2s
]1/2

=: H2(ε, s).

Hence the first weighted anti-periodic has the following lower bound:

µ
1
(wε) = min

s
µD1 (wεs) ≥ min

s
H2(ε, s)

=
(

6
π4 + 96|ε|+ 3π2ε2

)1/2

=: H2(ε).

By Theorem 5, equation (19) is stable if

0 < λ < H2(ε), ε ∈ [−1, 1].(22)

This estimate also strongly approximates S1. For example, if ε = 0, then H2(0) .=
0.2481 ≈ 1/4.

Using the Sobolev constants in (8), one can numerically evaluate the function
H1(ε). In Figure 1, we have plotted, from the left to right, the curves λ = H0(ε) ≡
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1/π2, λ = H2(ε), λ = H1(ε), and λ = µ
1
(wε). It can be seen that the estimates

given in (21) and (22) are almost the same as the first stability region S1.

Figure 1. The first stability region of (19).
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