
A MAC Protocol to Reduce Sensor Network
Energy Consumption Using a Wakeup Radio

Technical Report

July 2004

Matthew J. Miller
Department of Computer Science, and

Coordinated Science Laboratory
University of Illinois at Urbana-Champaign

mjmille2@uiuc.edu

Nitin H. Vaidya
Department of Electrical and Computer Engineering, and

Coordinated Science Laboratory
University of Illinois at Urbana-Champaign

nhv@uiuc.edu

Abstract— For increasing the life of sensor networks, each node
must conserve energy as much as possible. In this paper, we
propose a protocol in which energy is conserved by amortizing the
energy cost of communication over multiple packets. In addition,
we allow sensors to control the amount of buffered packets since
storage space is limited. To achieve this, a two-radio architecture
is used which allows a sensor to “wakeup” a neighbor with a
busy tone and send its packets for that destination. However,
this process is expensive because all neighbors must awake and
listen to the primary channel to determine who is the intended
destination. Therefore, triggered wakeups on the primary channel
are proposed to avoid using the more costly wakeup procedure.
We present a protocol for efficiently determining how large the
period for these wakeups should be such that energy consumption
is reduced.

Index Terms— Sensor networks, Wireless sensor networks,
Network protocols, Power management.

I. INTRODUCTION

SENSOR networks present many new challenges in wire-
less ad hoc networks. While the precise application of sen-

sor networks is speculative, certain characteristics are typically
assumed. First, the sensors are static after initial deployment
(unless placed on a mobile entity [3]). Second, energy is scarce
and it is inconvenient or impossible to replenish the energy
source frequently.

Because energy should be conserved, power save protocols
are needed. This problem can be addressed at each layer of
the network stack. Our specific focus is the Medium Access
Control (MAC) layer since this gives a fine-grained control to
switch the wireless radio on and off. The fundamental question
MAC layer power save mechanisms seek to answer is: When
should a device switch to a low power mode and for how
long?

There are four major sources of energy waste at the MAC
layer [4]:
Collisions When packets collide, energy is wasted because

the packet, along with associated control overhead, must

This is an extended version of an article (edited for space considerations)
that appears in IEEE Transactions on Mobile Computing [1]. An earlier
version of this work appeared in the IEEE Wireless Communications and
Networking Conference [2].

TABLE I

CHARACTERISTICS OF A SENSOR RADIO [5].

Radio State Power Consumption (mW)
Transmit 81

Receive/Idle 30
Sleep 0.003

be retransmitted. Thus, the energy used to transmit and
receive the colliding packets is wasted. Collisions are
usually reduced by scheduling or deferring for random
intervals from medium access.

Overhearing This occurs when a node promiscuously listens
to a packet intended for a different destination. In this
case, the node could sleep rather than idly listening to
the channel.

Control Overhead Aside from the data packet, which has
additional header bytes prepended, usually other MAC
level packets add overhead. For example, an ACK packet
is usually required from the receiver to verify whether
the data transmission was a success or failure.

Idle Listening This is when a node is listening to the channel,
but not transmitting or receiving any data. This typically
consumes much more energy than if the node were to
sleep.

Radios typically have four power levels corresponding to
the following states: transmitting, receiving, listening, and
sleeping. Typically, the power required to listen is about the
same as the power to transmit and receive. The sleep power
is usually one to four orders of magnitude less. For Mica2
Mote sensors [5], these power levels are shown in Table I.
Thus, a sensor should sleep as much as possible when it is
not engaged in communication.

We present a protocol designed for a topology where all
sensors are within range of each other. This protocol is then
extended to the multiple hop and multiple flow cases. As
in previous work [6]–[8], we assume that a second radio is
available to awake neighbors. This second radio uses much less
power via either a low duty cycle [7] or hardware design [8]. It



is assumed the second radio is only capable of transmitting a
busy tone, rather than actual data. This allows a simpler, more
energy efficient design. However, it introduces a problem: each
busy tone must wakeup a node’s entire neighborhood since the
intended receiver’s identifier is not encoded on the wakeup
channel. The main contribution of this work is selectively
waking up the primary radio at nodes that have previously
engaged in communication via rate estimation. Analytically,
we derive equations to find the optimal wakeup interval to
minimize the energy consumption.

In Section II, we review related work. We describe the radio
energy model we use in Section III. Section IV describes and
analyzes our proposed protocol. Section V presents simulation
results. Finally, we conclude and discuss future work in
Section VI.

II. RELATED WORK

In this section, we present an overview of research in
power saving for ad hoc networks. Our primary focus is
decentralized schemes that involve the MAC layer. However,
we also present other relevant work that attempts to conserve
energy in wireless environments.

The IEEE 802.11 specification [9] is the standard currently
used by commercial WLAN cards. It specifies a MAC protocol
for wireless access in both ad hoc environments, called the
Distributed Coordination Function (DCF), and centralized
systems, called the Point Coordination Function (PCF). Ad-
ditionally, a Power Save Mode (PSM) is also specified in the
standard.

We will now describe IEEE 802.11’s PSM. Nodes are
assumed to be synchronized and awake at the beginning of
each beacon interval. After waking up, each node stays on
for a period of time known as the Ad hoc Traffic Indication
Message (ATIM) window. During the ATIM window, since
all nodes are guaranteed to be on, packets are advertised
that have been queued since the previous beacon interval.
These advertisements take the form of ATIM packets. More
formally, when a node has a packet to advertise, it sends an
ATIM packet to the intended destination during the ATIM
window (following the rules of IEEE 802.11’s CSMA/CA
mechanism). In response to receiving an ATIM packet, the
destination will respond with an ATIM-ACK packet (unless the
ATIM specified a broadcast or multicast destination address).
When this ATIM handshake has occurred, both nodes will
remain on after the ATIM window and attempt to send their
advertised data packets before the next beacon interval, subject
to CSMA/CA rules. If a node remains on after the ATIM
window, it must keep its radio on until the next beacon interval.
If a node does not receive an ATIM or ATIM-ACK (assuming
unicast advertisements), it will enter sleep mode at the end of
the ATIM window until the next beacon interval.

The 802.11 specification does describe a beaconing mecha-
nism for synchronization, but it is only useful in PCF or when
the topology is always fully connected. Various solutions to
synchronization have been proposed [10]–[13]. However, it
still remains a relatively open problem [14].

Proposed modifications to 802.11’s PSM allow increased
time in the sleep state. For example, a node can switch to
sleep state when it overhears an RTS or CTS not addressed to
it [15]. Another technique is allowing a node to sleep between
beacon intervals after it has sent and/or received all its packets
advertised in the ATIM window [16], [17].

The PAMAS protocol [6] adapts basic mechanisms of IEEE
802.11 [9] to a two-radio architecture. PAMAS allows a
node to sleep to avoid overhearing a packet intended for a
different destination or to avoid interfering with another node’s
reception by transmitting. However, unlike our work, it ignores
the idle listening problem. A similar approach is used in [18].
Here, the nodes will transmit a receive busy tone or send busy
tone upon receiving a RTS or CTS, respectively. This busy
signal addresses the problem of nodes moving into an area
where communication is occurring after missing the initial
RTS/CTS exchange. It also reduces the probability of control
packet collisions when traffic load and propagation delays are
high.

The PicoRadio [8], [19]–[21] design uses a low-power
wakeup channel. A MAC protocol has been designed to allow
nodes to wakeup a neighbor when data needs to be sent.
However, the design uses a CDMA scheme that requires each
neighbor within a 2-hop range to be assigned a unique channel
and discover and maintain the channel IDs for each 1-hop
neighbor. Also, the channel ID is encoded in the wakeup
signal, which increases the hardware complexity. Our approach
could be adapted to similar hardware which uses a busy tone
on the wakeup channel. A wakeup channel is also used in [22].
The protocol is implemented from off-the-shelf hardware and
tested. However, the protocol is designed for systems with
centralized access points or proxies and not fully distributed
networks.

A theoretical approach to multiple channel power save
is investigated in [23]. This presents a centralized approach
where nodes cycle through S sleep states. Each state uses
less power, but requires more energy to transition back to
the idle state. The base station uses a RF wakeup channel
to awake all nodes in a given sleep state. If a node determines
the base station has no data to send it, it returns to a sleep
state. The protocol operates to minimize energy consumption
while meeting QoS requirements.

S-MAC [4] is a protocol developed specifically to address
energy issues in sensor networks. It uses a simple scheduling
scheme to allow neighbors to sleep for long periods and
synchronize wakeups. In S-MAC, nodes enter sleep mode
when a neighbor is transmitting and fragment long packets
to avoid costly retransmissions. S-MAC is designed to save
energy on a single radio architecture. While this approach
does allow packets to be buffered, it provides no mechanism
to communicate with the receiver on-demand. Also, S-MAC
uses a fixed sleep interval regardless of traffic. Other attempts
at sensor network-specific protocols have tried to combine
routing and MAC [24] to propagate data to a base station.
This scheme uses beaconing to form a logical tree with the
base station as the root and an adaptive rate control mechanism



at the MAC layer.
STEM [7], [25] is a two-radio architecture which achieves

energy savings by letting the primary radio sleep until com-
munication is necessary while the wakeup radio periodically
listens using a low duty cycle. When a node has data to send, it
begins transmitting continuously on the wakeup channel long
enough to guarantee that all neighbors will receive the wakeup
signal. A variant of STEM [7] has been proposed that uses a
busy tone, instead of encoded data, for the wakeup signal.
Our protocol is similar to STEM, but achieves greater energy
savings by periodically listening on the primary channel and
buffering packets.

The STEM protocol specifies a mechanism to wakeup a
host from a sleeping state. The STEM protocol is general
in that it can be used in conjunction with any MAC layer
transmission scheduling scheme. Also, STEM can be used in
conjunction with any mechanism to determine when a host
should return to sleep. For instance, a host that is awakened
from a sleeping state may remain up long enough to receive
a “session” of packets [26]. Alternatively, STEM can be used
to wakeup a host whenever packets are pending for that host.
In this case, when node A wakes up another node, B, node A
would transmit all pending packets for B before B may return
to sleep again. The latter approach is used in this paper when
testing STEM.

T-MAC [27] extends S-MAC by adjusting the length of
time sensors are awake between sleep intervals based on
communication of nearby neighbors. Thus, less energy is
wasted due to idle listening when traffic is light. However,
T-MAC is still limited by a one-radio architecture.

In [28], energy is also saved by adjusting to traffic. The
protocol works with on-demand routing and uses 802.11’s
PSM when a node is not engaged in sending, receiving, or
forwarding data. When a node is communicating, soft-timers
are used to transition the node to an idle listening mode
which reduces latency and preserves throughput better than
only using 802.11’s PSM. However, the timers do not adjust
to the traffic rate, so if traffic is not frequent enough to refresh
the timers, the benefits of the protocol are lost.

In [29], renewal theory is used to analyze schemes where
mobile devices wake up to receive data from a base station
with a queue of size zero or ∞. Our protocol also attempts to
intelligently wakeup to reduce energy consumption. However,
our protocol is different because it benefits from a second
radio.

Other work has been proposed in which a subset of the
nodes in a system can enter a low power state without signifi-
cantly degrading the performance achievable if all nodes were
to remain in high power mode. AFECA [30] and GAF [31] al-
low nodes to sleep based on the size of their neighborhood and
geographic location, respectively. The basic idea is to maintain
the connectivity of a network while allowing most nodes to
sleep. Similarly, the goal of SPAN [32] is to save energy while
not degrading the latency and throughput achievable in 802.11
without PSM. Neighborhood information is used to maintain
connectivity in the network with uniform energy usage among

TABLE II

RADIO TRANSITION CHARACTERISTICS [47].

Parameter Value
Ttrans on 2450 µs
Ttrans off 250 µs
Ptrans on 30 mW
Ptrans off 30 mW

the nodes. The LEACH protocol [33] is designed specifically
for sensor networks that frequently send data to a single
sink. Certain nodes are selected as cluster-heads. These nodes
are responsible for scheduling transmission within the cluster,
aggregating data, and transmitting the data at a potentially long
distance to the sink.

Another method of conserving energy in sensor networks
is by doing TDMA to schedule traffic in the network and
allowing nodes to sleep when they are not scheduled to send or
receive. Such an approach lends itself well to sensor networks,
when compared to ad hoc networks in general, because a
relatively static topology is expected and traffic patterns may
be more regular (e.g., periodically sending updates to a sink).
The key research challenge is determining how slots can be
assigned in multiple hop networks to avoid collisions [34]–
[36].

In addition to power conservation at the MAC layer,
protocols have been developed at the routing layer [37]–
[39], transport layer [40], and application layer [41]–[43].
More extensive surveys on power saving techniques are also
available [44]–[46].

III. ENERGY MODEL

As mentioned in Section I, we use an energy model based
on the Mica2 Motes [5]. This hardware is widely used in
sensor network research. The values in Table I are for a 3V
power supply. The transmit power is for the maximum possible
transmit power, so it may be less in practice depending on the
desired range. According to [5], this transmit power gives an
outdoor, line-of-sight range of 152.4 m (500 ft). In addition,
our energy model accounts for the time and power required
for the radio to transition from the sleep state to idle and
from the idle state to sleep. In practice, these values are non-
negligible, but not accounted for in most previous work. We
denote the time and power required for a sleep to idle transition
as Ttrans on and Ptrans on, respectively. Similarly, the idle to
sleep transition is characterized by Ttrans off and Ptrans off .
Based on the radio used in Mica2 Motes, we use the values
in Table II.

The time values are based on the typical transition time from
the radio’s datasheet [47] and correspondence with Chipcon
technical support. The power values are conservative estimates
which assume power consumption remains at the level of the
highest power state (i.e., idle) during the entire transition. We
feel this assumption is justified since the transition period is
when the power level has changed and the electrical com-
ponents must reach an operational, steady state. We note that



the sleep to idle transition, in particular, takes a relatively long
time.

IV. PROTOCOL DESCRIPTION AND ANALYSIS

A. Triggered Wakeups with Queuing

As mentioned previously, two channels are assumed: pri-
mary and wakeup. The primary channel is used for sending
data and control packets, whereas the wakeup channel is used
to wakeup neighbors. For the rest of the paper, we assume that
the wakeup radio achieves low power consumption via a duty
cycle. Thus, the two radios have identical power characteristics
(described in Section III). A node will listen for a busy tone
on the wakeup channel for τ1 time, then sleep for τ2 time
(τ1 ¿ τ2). The sender of a wakeup signal must transmit for
Twake TX time to guarantee all neighbors hear the wakeup
signal, where, Twake TX = 2τ1 + τ2 + Ttrans on + Ttrans off .
The duty cycle of the wakeup channel is defined as:

Ttrans on + τ1 + Ttrans off

Ttrans on + τ1 + Ttrans off + τ2
(1)

Thus, a lower duty cycle reduces idle listening energy, but
increases the delay to wake a node’s neighborhood. A queue
threshold, L, is specified for the protocol. This threshold could
be used to control delay or limit the storage usage on a sensor.
For simplicity, L is expressed in packets and all data packets
are the same size1. When the queue holds L packets, a wakeup
signal must be sent so the queue size can be reduced by
transmitting packets to a receiver immediately. We refer to
this as a full wakeup because all sensors within one hop of the
sender, after detecting the signal, must wakeup their primary
radio. They then listen on the primary channel until a filter
packet is sent (on the primary channel) to indicate which
neighbor’s radio should remain on for reception. The other
neighbors then return to sleep. To avoid costly full wakeups, a
sensor estimates the rate at which it is sending data and tries
to schedule a triggered wakeup with a receiver T seconds after
its previous data transmission. Figure 1 illustrates this concept
with a fixed T value. The dotted arrows represent a “causes”
relationship between events. At t0, a triggered wakeup occurs
T time after the last transmission, even though the sender’s
queue contains less than L packets. A full wakeup begins
at t2 because the sender’s queue reaches size L. At t4, all
neighbors are guaranteed to have their primary radios on, so
a filter packet (shown as F in the figure) and L data packets
(shown as D) are sent on the primary channel. Unlike the
figure, our protocol will dynamically adjust T since the rate
is not known in advance and may vary with time.

Intuitively, if T is too small, the sender and receiver waste
energy by waking up when the queue has no packets. This
is called an empty triggered wakeup and shown in Figure 1
at t5. An empty triggered wakeup results in idle listening
because the primary radios stay on long enough, say Tthresh

duration, to make sure no data is available (Tthresh is not
shown in Figure 1). Thus, they are on for Tthresh after doing

1Alternatively, L could be specified in bytes.

Time

T

D D

D DF

T

D

D D

Packet Arrivals
At Sender’s

Queue

Wakeup Radio

Receiver

Status

Sender

Wakeup Radio

Primary Radio
Receiver

Status SLEEP

"ON"

SLEEP

"ON"

Transmissions

Transmissions
Sender’s

On Primary
Channel

< T

W

PSfrag replacements

t0 t1

t2

t3

t4

t5

Fig. 1. Static T and L = 2 (D = data packet, F = filter packet, W = wakeup
signal).

a triggered wakeup or sending/receiving a packet. If no data
is sent/received within Tthresh time, the primary radios return
to sleep. Our goal is to find the optimal T value, Topt, for
a given data rate, which minimizes the energy consumption.
We assume that both the sender and receiver sleep until a
triggered or full wakeup occurs. However, the protocol could
be modified for the case where the sender is always awake
(e.g., a base station).

Initially, no triggered wakeup is scheduled and a full wakeup
occurs when the queue contains L packets2. Another timer
needs to be used to make sure a packet does not remain in
the queue indefinitely if the sender stops generating packets3.
The sender will piggyback its chosen T value (in ms in our
simulations) on each data packet sent. The sender and receiver
will then schedule a triggered wakeup T time in the future,
taking into account transmission delay. If no more data is sent
or received for Tthresh time, the sensors will return to sleep
and wakeup T − Tthresh time later. A minimum value, Tmin,
is specified for T such that Tmin > Tthresh. We describe how
T is adjusted in Section IV-B.1.

Recall that STEM is a protocol for waking up sleeping
hosts, and it may be used in conjunction with a variety of
mechanisms to decide when a host may return to sleep. In
this paper, we evaluate the version of STEM wherein a host
may return to sleep after receiving all pending packets from
the host that woke it up. This version of STEM [7] can be
represented as a special case of our protocol with T = ∞ and
L = 1. Unlike STEM, our protocol avoids some full wakeups
by using triggered wakeups. Our protocol is different from
T-MAC [27], and similar protocols, which adjust the time a
radio is on once it enters the idle state. Our protocol tries to
sleep as soon as possible after data communication and predict
when it should next wakeup based on previous traffic patterns.

2L is not necessarily equal to the capacity of the queue.
3The simulated flows do not test this because packets never cease being

generated.



Note that our protocol is different from previous work
which attempts to adjust how long nodes stay awake after
a communication event before returning to sleep (i.e., adjust
Tthresh in our protocol). This technique is popular in research
to efficiently spin-down hard disks [41], [48], [49].

B. Energy Analysis of Triggered Wakeups

To find Topt, we derive equations for the expected energy
consumption per bit. We make some simplifying assumptions
in the analysis. First, it is assumed that there is one sender
transmitting to one receiver among N sensors. The remaining
N − 2 nodes do not send or receive any data. Second, we
assume that once a sensor starts sending a wakeup signal or
does a triggered wakeup, only packets in the queue at the
beginning of the wakeup are sent. Thus, exactly L packets
are sent for a full wakeup and at most L − 1 packets are
sent for a triggered wakeup. We remove this constraint in
the simulations. We leave out idle energy consumed during
backoff periods and due to collisions to keep the analysis
tractable. These terms are relatively independent of the T value
in our protocol. For ease of analysis, data packets are assumed
to be transmitted instantaneously in time, though the energy
cost is counted. During these instantaneous transmissions, we
only count the energy for the sender and receiver since this is
expected to dominate the energy of sleeping neighbors. How-
ever, the simulations model all of the energy costs, including
the sleeping energy of neighbors during the transmission.

Our parameters, shown in Table III, are based on Mica2
Motes and 802.11 (we use the power values shown in Tables I
and II). The RTS, CTS, and ACK packet sizes and contents
are unmodified from the 802.11 standard. If a smaller MAC
layer byte overhead is assumed [4], the energy per packet will
decrease somewhat. However, the effect of changing the MAC
layer byte overhead does not change the relative performance
of the protocols tested in Section V. The average power used
while sleeping for the two-radio architecture, Psleep, is set
according to Equation 3. Let Tcycle be:

Tcycle = τ1 + τ2 + Ttrans on + Ttrans off (2)

When a node is sleeping, its data radio will only con-
sume Radiosleep power . The wakeup radio will consume
Radiosleep power for τ2

Tcycle
of the time and Radioidle power

for the remaining τ1

Tcycle
of the time.

Psleep = Radiosleep power

(

τ2

Tcycle
+ 1

)

+

Radioidle power

(

τ1

Tcycle

)

+

Radiotrans on power

(

Ttrans on

Tcycle

)

+

Radiotrans off power

(

Ttrans off

Tcycle

)

(3)

We set τ1 and τ2 to be 1 ms and 299 ms, respectively. These
values are similar to those used in [50]. Thus, according to

TABLE III

PROTOCOL PARAMETER VALUES.

Parameter Value
Physical Layer Header (PLCP ) 4 bytes
Network Layer Header (IP ) 20 bytes
MAC Layer Header (MAC) 32 bytes
Data Size (DATAsize) 30 bytes
Bytes in each Data Packet DATAsize + MAC +

PLCP + IP

Bytes in a Filter Packet 33 + PLCP

Bytes in a RTS Packet 20 + PLCP

Bytes in a CTS Packet 14 + PLCP

Bytes in a ACK Packet 14 + PLCP

Bitrate 40 kbps
Tthresh 20 ms
Tmin 50 ms
TDIFS 50 µs
TSIFS 10 µs
Tprop 2 µs
τ1 1 ms
τ2 299 ms

Equation 3, Psleep is:

Psleep = 0.003

(

299

302.7
+ 1

)

+ 30

(

1

302.7

)

+

30

(

2.45

302.7

)

+ 30

(

0.25

302.7

)

≈ 0.373 mW (4)

Ebit is the cumulative energy used by all nodes (in Joules)
per data bit delivered. Recall that L is the queue threshold
and N is the number of sensors. Let R be the packet arrival
rate. The interarrival time of packets is assumed to have an
exponential distribution. Later, we consider time-varying rates.
First, we derive pf , the probability a full wakeup occurs. Let
X be the length of time until the L-th packet arrival and Y
be the number of packet arrivals that occur over time T (i.e.,
Y ∼ Poisson(λ = RT )).

Pr[X ≥ T ] = Pr[Y < L on the interval [0, T )]

pf = Pr[X < T ]

= 1 − Pr[X ≥ T ]

= 1 −

L−1
∑

i=0

(RT )i

i!
e−RT (5)

Equation 5 comes from the Poisson distribution [51]. Let pe

be the probability of an empty triggered wakeup and p f+e be
the probability of a non-empty triggered wakeup. We have:

pe = e−RT (6)

p f+e =

L−1
∑

i=1

(RT )i

i!
e−RT (7)

Next, let Q f+e be the expected number of packets in the



queue at time T for a non-empty triggered wakeup. Thus,

Q f+e =

∑L−1
i=1 i (RT )i

i! e−RT

∑L−1
i=1

(RT )i

i! e−RT

=

∑L−1
i=1 i (RT )i

i!
∑L−1

i=1
(RT )i

i!

(8)

We need to find Tsleep full , the expected sleep time given
a full wakeup occurs. Let Z be the expected time of the L-
th packet arrival. The gamma distribution models the waiting
time until the L-th event occurs for events that follow a
Poisson distribution [51]. Thus, Tsleep full = Ex[Z|Z ≤ T ]
and Z ∼ Gamma

(

α = L, β = 1
R

)

. We let f(z) denote the
probability density function of the gamma distribution [51]:

f(z) =
zα−1e−z/β

Γ(α)βα
(9)

Where the complete gamma function, Γ(L), is defined to
be [51]:

Γ(L) =

∫

∞

0

xL−1e−x dx (10)

For Tsleep full, we have:

Tsleep full =

∫ T

0
zf(z) dz

∫ T

0
f(z) dz

=

∫ T

0
RL

Γ(L)z
Le−Rz dz

∫ T

0
RL

Γ(L)z
L−1e−Rz dz

=

∫ T

0
zLe−Rz dz

∫ T

0
zL−1e−Rz dz

(11)

Now, we can express the expected energy consumed for
each type of wakeup. Let

Epkt = EMAC RX + Edata RX +

EMAC TX + Edata TX (12)

be the energy required to send and receive one packet, where
Edata TX and Edata RX is the energy to send and receive a
data packet, respectively. EMAC TX is the energy consumed
by the transmitter to send an RTS and receive a CTS and ACK.
Similarly, EMAC RX is the energy consumed by the receiver
to get an RTS and send a CTS and ACK. Thus, we have:

EMAC TX = EDIFS + 3ESIFS +

4Eprop + ERTS TX +

ECTS RX + EACK RX (13)

EMAC RX = EDIFS + 3ESIFS +

4Eprop + ERTS RX +

ECTS TX + EACK TX (14)

where EDIFS and ESIFS are the idle energy consumed
during DIFS and SIFS durations, respectively, and Eprop is
the idle energy during propagation delays. DIFS and SIFS are
interframe spacing times specified in 802.11 [9].

Thus, for an empty triggered wake, the energy is:

Eempty = 2 (Ethresh + Etrans on + Etrans off ) +

NPsleepT (15)

where Ethresh is the energy needed to listen to the channel for
Tthresh time. Equation 15 follows from the fact that both the
sender and receiver must wakeup and keep their data radios
on for Tthresh time and all N nodes have slept T time since
the last wakeup.

For non-empty triggered wakeups:

Etriggered = 2Etrans on + Q f+eEpkt + 2Ethresh +

NPsleepT + 2Etrans off (16)

Equation 16 is similar to Equation 15 except that extra energy
is consumed to send Q f+e packets.

For a full wakeup, the equation is:

Efull = Ewake TX + (N − 1)Ewake RX +

NEtrans on + NEDIFS +

Efilter TX + (N − 1)Efilter RX +

2NEprop + LEpkt + 2Ethresh +

NEtrans off + NPsleepTsleep full (17)

Equation 17 states that the sender must transmit a wakeup
signal and (N − 1) receivers must listen to it. Then, all N
nodes must turn their data radio on and wait until the filter
packet is received. All the other nodes can return their data
radios to a sleep state, but the sender and receiver remain on to
exchange L packets. Finally, each node has slept Tsleep full

time since the last wakeup, unlike in Equations 15 and 16
where the nodes slept T time since the last wakeup.

Thus, the expected energy consumed per bit is:

Ebit =
pfEfull + p f+eEtriggered + peEempty

Datasize × 8 × (pfL + p f+eQ f+e)
(18)

Using Equation 18, Figure 2 shows Ebit as a function of T
for R = 1.0, L = 2, and N = 8. Recall that R, L, and N
are the sending rate, queue threshold, and number of nodes,
respectively. Note that Ebit is minimized at T = Topt ≈
0.251 s. Clearly, choosing T = Topt should minimize energy
consumption.

Figure 3(a) shows energy savings we can expect when Topt

is used compared to setting T = ∞ (i.e., a full wakeup occurs
every time the queue fills up). The graph shows how the energy
savings changes with R, L, and N , based on our analysis. The
horizontal axis is the value of the changing parameter (i.e., R,
L, or N ) while the other two parameters stay fixed. The fixed
values are: R = 1.0, L = 2, N = 8. For example, when R and
L stay fixed and N = 40, Topt gives about a 67% improvement
(i.e., it uses only 33% of the energy per bit that T = ∞ uses).
As another example, when R and N stay fixed and L = 40,
there is only about a 20% improvement for reasons discussed
below.

From Figure 3(a), we can observe how each of the pa-
rameters affects the energy savings. The energy savings re-
mains almost constant as R changes. At very low rates, the



0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.5

1

1.5
x 10

−4

PSfrag replacements

E
ne

rg
y

(J
/b

it)

Timeout (s)

Fig. 2. Energy versus timeout.

ratio asymptotically approaches one because the sleep time
between packets is so large that the energy spend sleeping
between packets dominates the difference in energy to do a
full wakeup versus a triggered wakeup. Otherwise, the ratio
remains constant as R changes due to the fact that the rate
primarily functions as a scaling factor that does not change
the relative energy difference. As N increases, Topt results
in more energy savings because the entire neighborhood will
only awake with probability pf when packets are sent. When
T = ∞, the neighborhood will awake every time packets are
sent, obviously resulting in increased relative energy usage
when N is large. In general, increasing L results in less
energy savings because the full wakeup costs are amortized
over more packets. Note, however, this trend is reversed when
L is between about 2 and 5. This can be attributed to the fact
that, despite the increased amortization of full wakeup costs,
there is a large variance in when the L-th packet arrival occurs
when L is small. Thus, there will be more full wakeups and
empty triggered wakeups (i.e., p f+e, from Equation 7, will
be small). For example, when L = 2, p f+e is about 0.2, but
when L increases to 5, p f+e increases to about 0.7. Therefore,
when L is small, the p f+e factor dominates the relative energy
savings, but as L grows larger, the amortization factor begins
to dominate.

1) Adjusting T : The sender estimates its sending rate via
a weighted average of the interarrival time of packets. The
estimate, Rest = 1

test
, is updated according to the equation:

test = ρtest + (1 − ρ)tdiff (19)

where tdiff is the most recent sample of interarrival time.
Figure 3(b) shows how the ratio Topt

L/R (where L/R is the
expected time for the queue to reach L packets) changes with
R, L, and N , based on our analysis. The horizontal axis is the
value of the changing parameter (i.e., R, L, or N ) while the
other two parameters stay fixed. The fixed values are: R = 1.0,
L = 2, N = 8. From Figure 3(b), when L and N are fixed,
we observe that for some constant γ,

Topt = γ
L

R
(20)

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
N
L
R

PSfrag replacements

R
at

io

(a)
Ebit when T=Topt

Ebit when T=∞

ratio.

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
N
L
R

PSfrag replacements

R
at

io

(b)
Topt

L/R
ratio.

Fig. 3. Effects of N , L, and R

where γ is independent of R. However, Figure 3(b) also shows
that γ is not constant if L and N are dynamic in the network4.
In our evaluation, we assume L and N are known in advance.
Thus, γ is calculated as a function of L and N .

2) Communicating with Multiple Neighbors: The protocol,
as described, is designed for a sending node transmitting to
one neighbor and a receiving node getting packets from one
neighbor. However, to perform in a more general setting,
the protocol must be modified to handle communication with
multiple neighbors.

The first situation to consider is when a receiving node is
getting data from multiple senders. This type of communica-
tion is prevalent in sensor network with routing protocols that
form tree structures rooted at data sinks [24]. Our protocol
is not affected at the sender, because each sender has only
one flow. However, the receiver must adopt multiple schedules
and respond to wakeups from multiple senders. This does not
change our protocol. If a receiver has scheduled overlapping
triggered wakeups, then the senders have to compete according
to the MAC protocol. In the future, we plan to explore how the
triggered wakeups can be scheduled more efficiently to reduce

4Because we require L to be constant for Equation 20 to hold, L could be
included in the γ term and we would have Topt = γ 1

R
. We separate L from

γ for ease of explanation.



overlapped triggered wakeups and reduce channel contention.
The second situation is when a sending node is transmitting

data to multiple receivers. This scenario is more complicated
than the first because the sender’s queue is essentially shared
among flows intended for different destinations. The filter
packets are capable of advertising up to M addresses of
receivers that should remain awake. Choosing M represents a
tradeoff between the byte size of the filter packet and number
of distinct destinations that can be kept awake after the wakeup
procedure. In our implementation, we set M = 4. Therefore,
if the sender has packets intended for different destinations
when it does a full wakeup, it will use the filter packet to tell
all of the destinations to remain on to receive data packets.
With multiple receivers, we still update each T according to
Equation 20, but now R refers to the cumulative rate of all
flows. Thus, each destination may receive the same T value,
but at different times. Also, at different times, T may be
different since the rate estimate changes. Note that this requires
receivers to do triggered wakeups more frequently than if all
packets in the queue were destined for only one destination.
This is necessary because the queue is shared and therefore the
frequency of full wakeups is based on cumulative rate rather
than the rate to each destination independently.

The intuition behind this scheme is as follows. Assume that
there are n flows at a sender. Let Lvi

refer to virtual queue
threshold for flow i, and Ri denote the rate of the flow. Thus,

Lvi
=

Ri
∑n

j=1 Rj
L (21)

where R =
∑n

j=1 Rj is the cumulative rate of all flows.

Therefore, Ti = γi
Lvi

Ri
= γi

L
R . However, γi cannot be

calculated online since it changes with respect to Lvi
. Also,

for L = 2, at least n − 1 of the Lvi
values will be less than

one. This cannot be calculated in our analysis since it requires
L ≥ 2. Therefore, for γi, we just use the γ value for L. This
does have a small effect on the protocol since the chosen value
of Ti is larger than if γi had been used. When the number of
receivers is small, the average number of full wakeups per
receiver increases as the number of receivers grows instead of
remaining constant.

In general, a node can be both a sender and receiver. For
example, a node may do a triggered wakeup to receive packets
at the same time that it does a full wakeup to send packets. If a
node is awake in the role of a sender and receiver at the same
time, the MAC protocol allows a node multiplex its sending
and receiving during the wakeup.

V. EXPERIMENTAL RESULTS

We implemented our protocol from Section IV-B in ns-
2 [52] by modifying the 802.11 MAC and physical layer code
in ns-2. Eight sensor nodes were placed within range of each
other and a random sender and receiver were chosen to begin
communicating with Poisson traffic at rate R. The remaining
six nodes did not send or receive any data. We tested several
R values of 0.2, 0.5, 1.0, 1.5, and 2.0 packets per second.
The resulting Topt values were always greater than Tmin.

Unlike the analysis, packets were sent if they arrived after
a wakeup occurred. We set L = 2 for all simulations in this
section to demonstrate the simplest case of our protocol: rather
than sending a packet immediately, we try to delay it until a
triggered wakeup occurs. Each data point is averaged over 50
runs and error bars show standard deviation. The simulation
time was such that the expected number of packets sent was
the same regardless of rate (unless otherwise noted, this value
was set to 200). Thus, if the desired expected number of
packets is P , the test for rate Ri would be run for P

Ri
time.

The values in Tables I, II, and III were used when applicable.

A. Effects of ρ

First, we investigate how ρ, from Equation 19, affects
energy consumption. Recall that ρ is the weight given to the
previous, cumulative interarrival estimate when a new arrival
occurs to obtain a new interarrival time estimate. Intuitively, if
ρ is large, the rate estimate is slow to adjust to rate variations,
but more robust to occasional outliers. If ρ is small, T will
adjust quickly to rate changes, but occasionally erroneously
adjust too much in response to outliers.

Our simulations show that the energy consumption is fairly
constant regardless of the ρ value for relatively low (R = 0.2)
and relatively high (R = 2.0) rates. The only exception is
when ρ is very close to 1.0. In this case, the rate estimate is
based almost completely on the interarrival time of the first two
packets and does not adjust to subsequent packet interarrival
times. When ρ is close to 1.0, we see a slightly higher average
energy consumption and much larger variance. Based on our
results, we use ρ = 0.9 for subsequent tests, unless stated
otherwise.

B. Comparison of Different Protocols

For comparison, we evaluated several protocols:

Rate Estimation (RATE EST) Our proposed protocol; γ is
analytically calculated to be 0.1253.

Static Optimal (OPT) T is statically set to be Topt, calcu-
lated analytically using the given rate. Thus, RATE EST
estimates the rate dynamically, whereas OPT “magically”
knows the rate.

STEM This is the version of STEM with a busy tone [7]
evaluated in this paper.

T = ∞ (INFINITY) In this case, packets are only sent by
full wakeups. Triggered wakeups never occur. Essentially,
this is a STEM variant that buffers up to L packets before
doing the wakeup procedure.

1) Energy Comparison: Figure 4(a) plots the energy con-
sumption of the protocols with rate on the horizontal axis.
We see that regardless of rate, our protocol and the static
optimal result in comparable energy consumption (the two
curves almost overlap), which is significantly lower than the
other protocols.

Figure 4(a) shows that rate estimation represents about 65%
improvement over STEM regardless of rate. When compared
to T = ∞, the rate estimation shows about 45% improvement.
This shows the need to schedule triggered wakeups even if the



0

5e-05

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0 0.5 1 1.5 2

Jo
ul

es
/B

it

Rate (pkts/sec)

OPT
RATE EST

INFINITY
STEM

(a) Energy consumption of protocols.

0

500

1000

1500

2000

2500

3000

0 0.5 1 1.5 2

m
s

Rate (pkts/sec)

OPT
RATE EST

INFINITY
STEM

(b) Latency of protocols.

Fig. 4. Comparison of protocols.

full wakeup cost is amortized over multiple packets. In general,
all the protocols improve as the rate increases. This is due to
the decrease in sleep time between packets at higher rates.

Figure 4(a) also compares favorably to the analytical ex-
pectation shown in Figure 2. Both show the energy per bit to
be about 70 µJ when R = 1.0. The 45% improvement over
T = ∞ is also close to what is predicted in Figure 3(a).

2) Latency Comparison: Our protocol’s performance is
even better when the average packet latency is considered in
Figure 4(b). Again, the rate estimation and the static optimal
performance overlap. Rate estimation shows more than 70%
improvment compared to T = ∞. Thus, we can see our
protocol performs much better than setting T = ∞ for both
energy consumption and average packet latency. As expected,
STEM’s latency is nearly constant at each rate. This latency
corresponds to the time to do a full wakeup and shows virtually
no variance. At higher rates, our protocol performs better than
STEM since Topt is less than the time required to do a full
wakeup. At low rates, Topt is larger than the time to send a
wakeup signal, which is why STEM has a lower latency at low
rates. Note that T = ∞ will asymptotically approach STEM’s
latency, but never do better. On the other hand, because our
protocol can avoid full wakeups, the latency will continue to
be reduced until T reaches Tmin. Thus, the theoretical bound,
as R increases, of the ratio of the latency of rate estimation
to T = ∞ and STEM is Tmin

Twake T X
. which is about 0.165 with

our experimental setup (i.e., an 83.5% improvement).

TABLE IV

MEASURED LATENCY FOR T = ∞ VERSUS ANALYSIS FOR SINGLE HOP,

SINGLE FLOW SCENARIO (IN MS).

Rate Analytical Measured Latency
Expectation Avg. Std. Dev.

0.2 2803.7 2746 239
0.5 1303.7 1269 97
1.0 803.7 743 57
1.5 637 577 39
2.0 553.7 491 26

We can easily check to see that the experimental results for
the latency at T = ∞ are close to their expected value. In this
case, we expect the average per packet latency for L = 2 to
be:

(1/R + Twake TX) + Twake TX

2
(22)

because the first packet will wait, on average, the expected
interarrival time between packets (1/R) plus the time to send
a wakeup signal (Twake TX ), whereas the second packet will
only have to wait long enough to send a wakeup signal
(Twake TX ). We then divide the total latency by 2 since L = 2
to obtain Equation 22. Table IV shows the analytical expec-
tation for the latency with T = ∞ according to Equation 22
matches relatively well with the observed experimental values.
At a higher rate, Equation 22 is not as accurate since it does
not account for packets which arrive during the wakeup and
are sent without incurring the wakeup delay. At a higher rate,
this happens more frequently, thereby reducing the average
packet latency.

C. Effects of Traffic with a Time-Variant Rate

A major strength of our protocol is the ability to adjust
to traffic on-demand as the sending rate changes. To test the
dynamic adaptation of our protocol, R was changed from 0.2
to 2.0 packets per second and back periodically. We use α
to refer to the frequency with which the rate changes. More
specifically, α is the expected number of packets generated
at the current rate before switching to the other rate. For
example, if α = 10, packets are generated at R = 0.2 for
10
0.2 = 50 seconds, then at R = 2.0 for 10

2.0 = 5 seconds.
This behavior was repeated for several cycles until the total
expected number of packets sent per rate was 500. For the
static optimal, we ran two separate scenarios at the different
rates and averaged the results. This essentially represents the
best energy consumption possible if the protocol adjusted to
rate changes immediately.

1) Energy Comparison: Figure 5(a) plots energy consump-
tion with α on the horizontal axis. As expected, rate estimation
does better when the sender spends a long time at a fixed
rate before switching rates. When rate change is infrequent,
rate estimation uses only about 5% more energy than the
static optimal. When ρ = 0.6, rate estimation converges more
quickly toward the static optimal since it is more responsive
to rate change. STEM and T = ∞ stay relatively constant and
use significantly more energy than our protocol.



0

5e-05

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

0 50 100 150 200 250

Jo
ul

es
/B

it

OPT

INFINITY
STEM

PSfrag replacements

ρ = 0.6
ρ = 0.9

α

(a) Energy consumption for traffic with time-variant rates.

0

500

1000

1500

2000

0 50 100 150 200 250

m
s

OPT

INFINITY
STEM

PSfrag replacements

ρ = 0.6
ρ = 0.9

α

(b) Latency for traffic with time-variant rates.

Fig. 5. Traffic with time-variant rates.

Even in the worse case, where the rate is changing very
frequently, our protocol only uses about 22-29% more energy
than the static optimal (depending on the ρ value). By com-
parison, T = ∞ always uses about 68% more energy than the
static optimal and STEM always uses over 2.5 times as much
energy as the static optimal.

2) Latency Comparison: The trends for the latency with
time-variant traffic, shown in Figure 5(b), are similar to those
seen in Figure 4(b). STEM stays near constant at the time
to do a wakeup. The rate estimation protocol remains almost
constant with the static optimal regardless of α. The latency
of the static optimal energy protocol remains constant since
α does not affect the static optimal in our experiments. The
latency of the rate estimation and static optimal protocols
is slightly above STEM because if we were to average the
latencies of R = 0.2 and R = 2.0 from Figure 4(b), they are
slightly higher than STEM for reasons discussed in Section V-
B.2.

Again, we can verify that the experimental results for
T = ∞ match the expected average per packet latency. From
Equation 22, we can average the expected latency at R = 0.2
(2803.7 ms) and R = 2.0 (553.7 ms) to get 1678.7 ms. This
is close the experimental average values, which are observed
to be between 1593 and 1632 ms.

BA C D E

Fig. 6. Topology for testing multiple hop performance.

D. Multiple Hop Performance

After examining the performance of our protocol in a single-
hop, single-flow scenario, we wanted to see how it would
perform in more complex scenarios. The first we tested was
the multiple hop scenario in Figure 6. Traffic was sent from
A to E, the rate was varied, and the simulation time was
varied inversely with the rate such that the expected number
of packets generated during a simulation run (set to be 200)
remained constant.

Each node in the topology had seven neighbors, to allow
comparison to the tests in Section V-B. Note that neighbors
not on the data path are not shown in Figure 6. Thus, the
two end nodes in the topology have six neighbors and the
intermediate nodes have five neighbors. The neighbors not on
the data path were placed such that they could overhear exactly
one node on the data path (i.e., nodes A, B, C, D, E do not
share any neighbors other than those shown in Figure 6). For
example, A has six neighbors not shown in Figure 6 which do
not send or receive data and receive A’s wakeup signal, but
are out-of-range of B’s wakeup signal. In addition to these
six neighbors, A has B as a neighbor, as shown by the link in
Figure 6, giving A a total of seven neighbors. In the discussion,
the term downstream neighbor refers to a node that is closer to
the destination than the current node (e.g., C is a downstream
neighbor of B). The term upstream neighbor refers to a node
that is closer to the source than the current node (e.g., C is an
upstream neighbor of D).

Figure 7(a) shows that energy consumption follows a similar
trend to that of Figure 4(a). It is reasonable to expect that the
results from Figure 4(a) would be scaled by a factor of about
four since there are now four links per packet delivery rather
than one. However, there are some effects due to the depen-
dence of packet arrivals on a link. For example, in STEM,
if A is able to send two packets during a wakeup instead
of just one, then each node along the path will also send
two packets during the wakeup of their downstream neighbor
instead of one. Thus, STEM and T = ∞ only increase energy
consumption by a factor of about 3.9. This factor is obtained
by taking the ratio of the results in Figure 7(a) to those in
Figure 4(a). However, rate estimation and the static optimal
are negatively affected by the link dependence. If A causes
a full wakeup, then the full wakeup will cascade down the
entire path instead of being independent at each hop. This
effect does not cause major degradation, however, with the
energy consumption increased by a factor of 4 to 4.5 over the
single hop case depending on the rate.

We note an issue that occurred with our protocol when it
was implemented on the multiple hop topology. When multiple
packets are sent to the next hop, they come in a quick burst.
Therefore, the receiver’s rate estimation calculates a very short



0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0 0.5 1 1.5 2

Jo
ul

es
/B

it

Rate (pkts/sec)

OPT
RATE EST

INFINITY
STEM

(a) Energy consumption for multiple hop scenario.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 0.5 1 1.5 2

m
s

Rate (pkts/sec)

OPT
RATE EST

INFINITY
STEM

(b) Latency for multiple hop scenario.

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.5 1 1.5 2

P
ac

ke
ts

 D
ro

pp
ed

/P
ac

ke
ts

 S
en

t

Rate (pkts/sec)

OPT
RATE EST

INFINITY
STEM

(c) Packet drop percentage for multiple hop scenario.

Fig. 7. Multiple hop scenario.

interarrival time. This problem can be addressed by ignoring
interarrival times that are smaller than a certain threshold. This
modification is not implemented in the simulations.

Figure 7(b) shows the latency of the protocols. This shows
a similar trend to Figure 4(b). However, like the energy
consumption results, these results do not always scale by a
factor of four. At a low rate, STEM does show a 4.4 times
increase (when compared to the single hop case) because at
each hop, the packet must wait for the wakeup to occur and
a small amount of contention is now induced (e.g., when
A tries to send to B and C tries to send to D, one must
defer their transmission to avoid a collision). However, the
protocols which use L = 2 show less of an increase because
the intermediate hops can immediately send packets to their

downstream neighbor when they receive L packets from their
upstream neighbor. For example, at R = 0.2 for T = ∞, the
latency increases by a factor of only 1.44. In the single hop
case, the first packet to arrive in the empty queue for T = ∞
has to wait, on average, 5 seconds plus the wakeup time.
However, now both packets only have to wait about a wakeup
time at each intermediate node. Similarly, rate estimation and
the static optimal have their latency increase by a factor of
only about 2.9 due to the decreased latency on full wakeups.

If we use Equation 22 to verify the latency for T = ∞ at
R = 0.2, the first hop still has an expected latency of 2803.7
ms (as shown in Section V-B.2). However, the next three links
have an average latency of only 302.7 ms. Thus, the overall
expected latency is (2803.7+3× 302.7) = 3711.8 ms, which
is within the deviation shown in Figure 7(b).

At a higher rate, the burstiness at downstream links does not
help the L = 2 protocols as much because the interarrival time
of packets is smaller. Also, at a higher rate, all the protocols
show an increase in latency, relative to the single hop case,
significantly greater than at a low rate. This is due to the
increased contention on the links as the rate increases.

The effects of increased contention are also seen in the data
packet drop rate, shown in Figure 7(c). As the rate increases,
more drops occur due to the medium being increasingly busy.
Packet drops generally occur because a sender miscalculates
when the receiver will be up and does not receive a response
to its RTS. In ns-2, a data packet is dropped after an RTS
for the packet has been retransmitted seven times without
receiving a CTS. For the protocols with triggered wakeups,
this can occur when a packet is lost and hence the nodes
believe they should wakeup at different times. For example,
a sender could transmit a data packet telling the receiver to
wakeup Tnew seconds after reception. However, if the receiver
does not receive the packet due to a collision and the sender
is not able to retransmit the packet before the pair’s scheduled
sleep times, the receiver may believe it is supposed to wakeup
Told time after it estimates the sender has turned off.

Packet drops can occur during a full wakeup due to ex-
cessive retransmissions also. For example, B could begin
transmitting a wakeup signal for C and shortly thereafter, A
begins transmitting a wakeup signal for B. Thus, B may not
receive A’s wakeup signal because it never listened on the
wakeup channel during that time. Thus, A could believe B
to be awake when it finishes transmitting the wakeup signal
even though B has already finished its data transmission to
C and returned to sleep without ever hearing A’s wakeup
signal. STEM is most affected by this since it does about
twice as many wakeups as T = ∞ for L = 2. This is because
STEM does a wakeup for every packet whereas T = ∞ does
a wakeup for every other packet.

In the rate estimation protocol, if a sender is not able to
successfully transmit an RTS or data packet within the number
of retransmissions specified in 802.11, T will be set to ∞.
This forces a full wakeup the next time L packets arrive for
that destination. This assures that two nodes will not become
persistently unsynchronized in their triggered wakeups.



...
...

.PSfrag replacements

S1

S2

Sn

R

(a) Topology for testing
multiple senders.

...
...

.PSfrag replacements

R1

R2

Rn

S

(b) Topology for testing
multiple receivers.

Fig. 8. Multiple flow topologies.

E. Multiple Flow Performance

In this section, we look at the effects of having multiple
flows on the protocols. Section IV-B.2 describes how the rate
estimation protocol works in multiple flow settings. We do
not consider the static optimal in these scenarios since it only
represents the static optimal in the single flow case. In these
scenarios, we doubled the number of nodes to be 16 (compared
to tests in Section V-B that had N = 8). This is because
we needed to increase the number of flows beyond eight to
show interesting behavior. This is also the reason the energy
values are higher in these scenarios when there is only one
flow than in previous sections. For each scenario, connections
between nodes were chosen to have a rate probabilistically.
More specifically, each link has a rate of R = 0.2 or R = 1.0
with a probability of 0.5. Thus, the average rate per link is
R = 0.6, or one packet every 1.67 seconds (even though this
specific rate is never chosen for a link). This was done to
show how the rate estimation performs when nodes are sending
or receiving at multiple rates to or from different neighbors.
Each simulation run lasts 500 seconds. Because each scenario
could have links with two different rates, there was no way to
normalize the simulation time such that the expected number
of packets generated per link remained constant and each link
contended for medium access throughout the entire simulation
run.

For testing multiple sender flows, we used the topology
shown in Figure 8(a). The parameter we varied is the number
of senders. The overall number of nodes in the scenario
remains constant at 16 and all nodes are within range of each
other.

Figure 9(a) shows that the energy consumption of each
protocol remains relatively constant as the number of senders
increases. This implies that the extra energy incurred by an
additional flow is compensated by the extra packets that are
delivered. The rate estimation protocol represents about a
50% improvement over T = ∞ and a 65% improvement
over STEM. This is consistent with the results discussed in
Section V-B.1. The rate estimation protocol does slightly better
in the multiple sender scenario because N = 16 instead of 8.
As explained in reference to Figure 3(a), the larger N makes

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0 1 2 3 4 5 6 7 8 9

Jo
ul

es
/B

it

Number of Senders

RATE EST
INFINITY

STEM

(a) Energy consumption for multiple sender scenario.

0

500

1000

1500

2000

2500

3000

0 1 2 3 4 5 6 7 8 9

m
s

Number of Senders

RATE EST
INFINITY

STEM

(b) Latency for multiple sender scenario.

Fig. 9. Multiple sender scenario.

full wakeups more expensive.
We present the latency for the protocols in the multiple

sender scenario in Figure 9(b). The latency remains relatively
constant for the rate estimation protocol and T = ∞ regardless
of the number of senders. The latency for these protocols is the
same as the interpolated latency for R = 0.6 in Figure 4(b).
STEM shows a slight increase as the number of senders
increases due to the increased contention caused by more
wakeups occurring for the receiver. All protocols show a much
greater variance when the number of senders is low. This is due
to the large difference in latency according to which rates are
probabilistically chosen on the links. For example, when there
is only one sender, about half the scenarios will have R = 0.2
for the connection, while the other half will have R = 1.0,
which results in drastically different average latencies.

Few packet drops occurred in this scenario. The packet loss
was less than 0.2% regardless of the protocol or number of
senders. Because there is only one receiver, even if the sender
begins sending RTS packets when it incorrectly predicts the
receiver will be on, they may still get a response if the receiver
is up for a different sender.

To test flows with multiple receivers, we used the topology
shown in Figure 8(b). The parameter we varied is the number
of receivers. The overall number of nodes in the scenario
remains constant at 16 and all nodes are within range of each
other.

The energy consumption of the protocols is shown in Fig-



0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0 2 4 6 8 10 12

Jo
ul

es
/B

it

Number of Receivers

RATE EST
INFINITY

STEM

(a) Energy consumption for multiple receiver scenario.

0

500

1000

1500

2000

2500

3000

0 2 4 6 8 10 12

m
s

Number of Receivers

RATE EST
INFINITY

STEM

(b) Latency for multiple receiver scenario.

0

0.001

0.002

0.003

0.004

0.005

0.006

0 2 4 6 8 10 12

P
ac

ke
ts

 D
ro

pp
ed

/P
ac

ke
ts

 S
en

t

Number of Receivers

RATE EST
INFINITY

STEM

(c) Packet drop percentage for multiple receiver scenario.

Fig. 10. Multiple receiver scenario.

ure 10(a). STEM’s energy begins to drop when the number of
receivers is increased because the overall rate is increasing and
hence the sleep time per packet is decreased. For T = ∞ and
the rate estimation protocol, the energy starts to increase with
the number of receivers because, when multiple destinations
are awakened, all but one of the receivers must idly listen
to the transmission. Also, as discussed previously, the rate
estimation protocol results in more full wakeups per receiver
as the number of receivers increases.

When the number of receivers reaches about 6 or 7, a couple
of interesting events occur. First, the overall rate becomes
high enough that the expected interarrival time of packets
is less than the time to perform a full wakeup. Thus, the
service rate is less than the arrival rate for STEM and its

queue begins building up. As the queue length increases,
it actually decreases the energy consumption because the
probability that multiple packets can be sent from the queue
on a wakeup is increased. When the number of receivers is
about 9 or 10, the overall rate becomes high enough that the
expected interarrival time of packets is less than half the time
to perform a full wakeup. Thus, the queue begins building
up for T = ∞ and its energy consumption converges with
STEM. When this situation occurs, the queue will eventually
start dropping packets due to finite storage space. Also at
about 6 or 7 receivers, the overall rate is high enough that
Topt drops below Tmin. Thus, the rate estimation protocol
begins to gradually decrease at this point as the time between
triggered wakeups cannot decrease further. This decrease is
because periodic wakes cannot occur more frequently, yet the
queue fills up faster. Thus, more packets in the queue increases
the probability multiple packets can be sent when a wakeup
occurs.

We gain further intuition into the protocols’ behavior by
looking at the latency in Figure 10(b). When the number
of receivers is small, as the number of receivers increases,
the latency curves show a decrease for our protocol and
T = ∞. However, STEM and T = ∞ begin showing
increased latency when the number of receivers gets larger and
packets must spend more time in the queue. Again, STEM and
T = ∞ converge in this metric when the number of receivers
is about 10, which is the point that both protocols have a
service rate smaller than the arrival rate. The rate estimation
protocol is able to do much better in terms of latency because
it can service packets faster than the other two protocols.
Specifically, since T = Tmin at a high rate and Tmin is
significantly less than the time it takes to do a full wakeup
(a ratio of about 1

6 in our simulations), packets wait less time
in the queue.

Because there is only one sender, and hence no contention
for transmissions, the amount of packet drops remains rela-
tively low (i.e., less than 0.4% on average). The packet drops
for STEM and T = ∞ come predominantly from packets
left in the queue when the simulation ends (we count packets
queued at the end of the simulation as dropped packets). Thus,
this gives a rough estimate of how the sender’s queue size is
increasing with more receivers. Because the rate estimation
protocol has frequent triggered wakeups, the queue does not
build up in our simulations. Therefore, virtually no packets are
in the queue at the end of the simulation. Figure 10(c) shows
the packet drop percentage for the multiple receiver scenario.

We did observe an interesting source of MAC layer retrans-
missions with the rate estimation protocol. In ns-2, if the length
of time between when a receiver sends a CTS and when the
receiver gets the data packet is too long, the data packet will be
dropped by the receiver. Occasionally, the sender, S, initiates
a full wakeup for R1. Just before S sends its filter packet
for R1, S does a periodic wake with R2 and exchanges an
RTS and CTS. However, before the data packet can be sent
to R2, the filter packet is sent for R1. Thus, the data packet
is delayed longer than expected and when it is finally sent to



R2, it is dropped.

Giving the filter packet priority over the data packet is a
design decision in our protocol. The intuition is as follows.
If the filter packet gets delayed long enough, the intended
receiver could return to sleep while the sender is transmitting
a data packet to another destination. The energy cost of
doing another full wakeup in this situation is greater than just
retransmitting the data packet. As an alternative, when the
sender begins a full wakeup, it could block the transmission
of all data packets until the filter packet is sent. Another
possibility is the sender could delay sending a packet for a
triggered wakeup if the packet transmission would not finish
before the filter packet will be sent. These two modifications
are not implemented in the simulations.

F. Random Network Topologies

In this section, we tested the protocols in random topologies.
Thus, the protocols had to operate in a multiple hop and
multiple flow environment with potentially a large amount
of channel contention. For these experiments, we randomly
placed 50 nodes in a 1000 m ×1000 m area. Each scenario
had 10 flows, where the source and destination pairs are chosen
at random. Each data point is averaged over the results for 50
topologies where every node could reach every other node.
The shortest path routing table for each node is calculated
offline to avoid the effects of routing overhead. Also offline,
the size of each node’s neighborhood, N , is computed and the
appropriate γ value is input to each node. The simulation times
for each scenario are inversely proportional to the sending rate.
Thus, for each run, the expected number of packets during the
simulation is identical regardless of sending rate (set to be 200
packets).

To test performance when contention is high, the maximum
per-flow sending rate for these experiments is 4 packets per
second. For the data packet, RTS, CTS, and ACK, this is a
per-flow rate of about 4.7 kbps. For the 40 kbps channel that
we use, this is about 12% of the channel bitrate per flow. As
stated previously, each scenario consists of 10 multi-hop flows
accessing the channel. In addition, there is extra overhead for
filter packets, backoff slots, etc.

Figure 11 shows the energy, latency, and packet drop
percentage values that are obtained for the protocols in this
setting. As Figure 11 shows, there is a rather larger variance in
the data because of the randomness in topologies and connec-
tion patterns for each scenario. To gain a better understanding
of how the protocols perform relative to each other, without the
inherent randomness of the topologies, Figure 12 shows each
protocol’s performance normalized to the performance of rate
estimation for each individual scenario. We can see that the
rate estimation protocol always does better in terms of energy,
especially at relatively low sending rates. At a relatively high
sending rate, there is lots of contention on the medium and
the protocols’ performances begin to converge.

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0 0.5 1 1.5 2 2.5 3 3.5 4

Jo
ul

es
/B

it

Rate (pkts/sec)

RATE EST
INFINITY

STEM

(a) Energy consumption for random network topologies.

0

2000

4000

6000

8000

10000

12000

14000

0 0.5 1 1.5 2 2.5 3 3.5 4

m
s

Rate (pkts/sec)

RATE EST
INFINITY

STEM

(b) Latency for random network topologies.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.5 1 1.5 2 2.5 3 3.5 4

P
ac

ke
ts

 D
ro

pp
ed

/P
ac

ke
ts

 S
en

t

Rate (pkts/sec)

RATE EST
INFINITY

STEM

(c) Packet drop percentage for random network topologies.

Fig. 11. Random network topologies (absolute values).

VI. CONCLUSIONS AND FUTURE WORK

We have analyzed a protocol for sensor networks that in-
creases energy efficiency by allowing packet buffering, thereby
amortizing the energy cost of communication over multiple
packets. Because storage space may be a scarce resource in
sensors, we propose adding a second, low-power radio to allow
senders to force receivers to wakeup when a specified number
of packets are being buffered. Our analysis reveals an optimal
timeout value for periodically waking up to send and receive
packets which minimizes energy consumption. Our protocol
uses rate estimation to achieve results comparable to the static
optimal. In addition, we show significant energy savings over
other, similar protocols. The protocol seems to behave well
when multiple hop and multiple flow scenarios are introduced



0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3 3.5 4

E
ne

rg
y 

R
el

at
iv

e 
to

 R
A

T
E

 E
S

T

Rate (pkts/sec)

RATE EST
INFINITY

STEM

(a) Relative energy consumption for random network topolo-
gies.

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3 3.5 4

La
te

nc
y 

R
el

at
iv

e 
to

 R
A

T
E

 E
S

T

Rate (pkts/sec)

RATE EST
INFINITY

STEM

(b) Relative latency for random network topologies.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.5 1 1.5 2 2.5 3 3.5 4

D
ro

p 
P

er
ce

nt
ag

e 
R

el
at

iv
e 

to
 R

A
T

E
 E

S
T

Rate (pkts/sec)

RATE EST
INFINITY

STEM

(c) Relative packet drop percentage for random network
topologies.

Fig. 12. Random network topologies (relative values).

as well. In such situations, it almost always outperforms other
protocols in energy and latency.

For future work, we outline a few directions that could be
pursued:

More Realistic Environment We would like to adapt our
protocol into a more realistic environment. For example,
every sensor node could report periodically at a low rate
in steady state. Then, when an event occurs, the affected
sensors begin transmitting at a much higher rate for the
duration of the event.

Staggering Schedules We would also like to investigate how
to efficiently stagger multiple schedules such that inter-

fering nodes will minimize the time they are both on.
Multiple Wakeup Channels Currently, we assume all nodes

must share the same wakeup channel. However, inter-
esting problems arise if we consider the case in which
a few bits can be encoded in the wakeup signal. Then,
nodes only wakeup if their assigned ID is in the wakeup
signal. For example, if we know the rates at which nodes
are sending data and have k wakeup channels to use,
we would like to assign channels to the nodes in such
a way that reduces the energy consumption caused by
full wakeups. There are also other ways to partition the
wakeup channel, other than encoding bits in the wakeup
signal, which can be explored. For example, a different
frequency band could be used for each wakeup signal and
nodes could be assigned a frequency on which to listen
for wakeups.

Adjust Tthresh Dynamically Our protocol may be improved
if we integrate the hard disk spin-down techniques men-
tioned in Section IV-A with out protocol. Thus, Tthresh

would be adjusted dynamically rather than having a static
value. The advantage to this is, when traffic is heavy,
Tthresh could be made larger since it may take more time
for the sender to access the medium to transmit a packet.
The disadvantage of this approach is that it requires more
synchronization to make sure neighboring nodes agree on
a Tthresh value.

Eliminating Filter Packets The overhead of filter packets
can be reduced if the information they contain is pig-
gybacked onto RTS and/or DATA packets.

ACKNOWLEDGMENTS

We would like to thank Rex Min and Chipcon for answer-
ing hardware questions. We would also like to acknowledge
funding sponsors for the work: NSF grant ANI-0125859 and
a NDSEG fellowship.

REFERENCES

[1] M. J. Miller and N. H. Vaidya, “A MAC Protocol to Reduce Sensor Net-
work Energy Consumption Using a Wakeup Radio,” IEEE Transactions
on Mobile Computing, 2004, accepted for publication.

[2] ——, “Minimizing Energy Consumption in Sensor Networks Using a
Wakeup Radio,” in IEEE WCNC 2004, March 2004.

[3] P. Juang, H. Oki, Y. Wang, M. Martonosi, L.-S. Peh, and D. Rubenstein,
“Energy-Efficient Computing for Wildlife Tracking: Design Tradeoffs
and Early Experiences with ZebraNet,” in ACM Architectural Support
for Programming Languages and Operating Systems (ASPLOS) 2002,
October 2002.

[4] W. Ye, J. Heidemann, and D. Estrin, “An Energy-Efficient MAC Protocol
for Wireless Sensor Networks,” in IEEE Infocom 2002, June 2002.

[5] MICA2 Mote Datasheet, http://www.xbow.com/Products/
Product_pdf_files/Wireless_pdf/6020-0042-01_A_
MICA2.pdf.

[6] C. S. Raghavendra and S. Singh, “PAMAS – Power Aware Multi-
Access protocol with Signalling for Ad Hoc Networks,” ACM Computer
Communications Review, July 1998.

[7] C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M. Srivastava, “Optimizing
Sensor Networks in the Energy-Latency-Density Design Space,” IEEE
Transactions on Mobile Computing, vol. 1, no. 1, pp. 70–80, January-
March 2002.

[8] C. Guo, L. C. Zhong, and J. M. Rabaey, “Low Power Distributed
MAC for Ad Hoc Sensor Radio Networks,” in IEEE GlobeCom 2001,
November 2001.



[9] IEEE 802.11, Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications, 1999.

[10] Y.-C. Tseng, C.-S. Hsu, and T.-Y. Hsieh, “Power-Saving Protocols for
IEEE 802.11-Based Multi-Hop Ad Hoc Networks,” in IEEE Infocom
2002, June 2002.

[11] L. M. Feeney, “A QoS Aware Power Save Protocol for Wireless Ad Hoc
Networks,” in IFIP Med-Hoc-Net 2002, September 2002.

[12] M. J. McGlynn and S. A. Borbash, “Birthday Protocols for Low Energy
Deployment and Flexible Neighbor Discovery in Ad Hoc Wireless
Networks,” in ACM MobiHoc 2001, October 2001.

[13] R. Zheng, J. C. Hou, and L. Sha, “Asynchronous Wakeup for Ad Hoc
Networks,” in ACM MobiHoc 2003, June 2003.

[14] J. Elson and K. Römer, “Wireless Sensor Networks: A New Regime
for Time Synchronization,” in ACM Hot Topics in Networks (HotNets)
2002, October 2002.

[15] J.-C. Cano and P. Manzoni, “Evaluating the Energy-Consumption Re-
duction in a MANET by Dynamically Switching-off Network Inter-
faces,” in Sixth IEEE Symposium on Computers and Communications
(ISCC) 2001, July 2001.

[16] E.-S. Jung and N. H. Vaidya, “An Energy Efficient MAC Protocol for
Wireless LANs,” in IEEE Infocom 2002, June 2002.

[17] ——, “A Power Saving MAC Protocol for Wireless Networks,” Univer-
sity of Illinois at Urbana-Champaign, Tech. Rep., 2002.

[18] J. Deng and Z. J. Haas, “Dual Busy Tone Multiple Access (DBTMA): A
New Medium Access Control for Packet Radio Networks,” in IEEE In-
ternational Conference on Universal Personal Communication (ICUPC)
1998, October 1998.

[19] J. M. Rabaey, M. J. Ammer, J. L. da Silva Jr., D. Patel, and S. Roundy,
“PicoRadio Supports Ad Hoc Ultra-Low Power Wireless Networking,”
IEEE Computer, July 2000.

[20] J. M. Rabaey, J. Ammer, T. Karalar, S. Li, B. Otis, M. Sheets, and
T. Tuan, “PicoRadios for Wireless Sensor Networks — The Next
Challenge in Ultra-Low Power Design,” in IEEE International Solid-
State Circuits Conference (ISSCC) 2002, February 2002.

[21] L. C. Zhong, J. Rabaey, C. Guo, and R. Shah, “Data Link Layer Design
for Wireless Sensor Networks,” in IEEE MILCOM 2001, October 2001.

[22] E. Shih, P. Bahl, and M. J. Sinclair, “Wake on Wireless: An Event
Driven Energy Saving Strategy for Battery Operated Devices,” in ACM
MobiCom 2002, September 2002.

[23] C. F. Chiasserini and R. R. Rao, “Combining Paging with Dynamic
Power Management,” in IEEE Infocom 2001, April 2001.

[24] A. Woo and D. E. Culler, “A Transmission Control Scheme for Media
Access in Sensor Networks,” in ACM MobiCom 2001, July 2001.

[25] C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M. Srivastava, “Topology
Management for Sensor Networks: Exploiting Latency and Density,” in
ACM MobiHoc 2002, June 2002.

[26] C. Schurgers, V. Tsiatsis, and M. Srivastava, “STEM: Topology Man-
agement for Energy Efficient Sensor Networks,” in IEEE Aerospace
Conference 2002, March 2002.

[27] T. van Dam and K. Langendoen, “An Adaptive Energy-Efficient MAC
Protocol for Wireless Sensor Networks,” in ACM SenSys 2003, Novem-
ber 2003.

[28] R. Zheng and R. Kravets, “On-demand Power Management for Ad Hoc
Networks,” in IEEE Infocom 2003, April 2003.

[29] P. Nuggehalli, V. Srinivasan, K. Chebrolu, and R. Rao, “Energy Aware
Sampling Schemes,” in IEEE WCNC 2000, September 2000.

[30] Y. Xu, J. Heidemann, and D. Estrin, “Adaptive Energy-Conserving
Routing for Multihop Ad Hoc Networks,” USC/Information Sciences
Institute, Tech. Rep. 527, 2000.

[31] ——, “Geography-informed Energy Conservation for Ad Hoc Routing,”
in ACM MobiCom 2001, July 2001.

[32] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, “Span: An
Energy-Efficient Coordination Algorithm for Topology Maintenance in
Ad Hoc Wireless Networks,” in ACM MobiCom 2001, July 2001.

[33] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-
Efficient Communication Protocol for Wireless Microsensor Networks,”
in IEEE Hawaii International Conference on System Sciences 2000,
January 2000.

[34] M. L. Sichitiu, “Cross-Layer Scheduling for Power Efficiency in Wire-
less Sensor Networks,” in IEEE Infocom 2004, March 2004.

[35] V. Rajendran, K. Obraczka, and J. J. Garcia-Luna-Aceves, “Energy-
Efficient, Collision-Free Medium Access Control for Wireless Sensor
Networks,” in ACM SenSys 2003, November 2003.

[36] L. F. W. van Hoesel, S. Chatterjea, and P. J. M. Havinga, “An Energy
Efficient Medium Access Protocol for Wireless Sensor Networks,”
in IEEE Program for Research on Integrated Systems and Circuits
(ProRISC) 2003, November 2003.

[37] S. Singh, M. Woo, and C. S. Raghavendra, “Power-Aware Routing in
Mobile Ad Hoc Networks,” in ACM MobiCom 1998, October 1998.

[38] S. Banerjee and A. Misra, “Minimum Energy Paths for Reliable Com-
munication in Multi-hop Wireless Networks,” in ACM MobiHoc 2002,
June 2002.

[39] S. Doshi and T. X. Brown, “Minimum Energy Routing Schemes for a
Wireless Ad Hoc Network,” in IEEE Infocom 2002, June 2002.

[40] R. Krashinsky and H. Balakrishnan, “Minimizing Energy for Wire-
less Web Access with Bounded Slowdown,” in ACM MobiCom 2002,
September 2002.

[41] T. Simunic, L. Benini, P. Glynn, and G. D. Micheli, “Dynamic Power
Management for Portable Systems,” in ACM MobiCom 2000, August
2000.

[42] R. Kravets and P. Krishnan, “Application-driven power management for
mobile communication,” ACM Wireless Networks, pp. 263–277, July
2000.

[43] M. Anand, E. Nightingale, and J. Flinn, “Self-Tuning Wireless Network
Power Management,” in ACM MobiCom 2003, September 2003.

[44] V. Raghunathan, C. Schurgers, S. Park, and M. B. Srivastava, “Energy-
Aware Wireless Microsensor Networks,” IEEE Signal Processing Mag-
azine, March 2002.

[45] H. Woesner, J.-P. Ebert, M. Schläger, and A. Wolisz, “Power-Saving
Mechanisms in Emerging Standards for Wireless LANs: The MAC Level
Perspective,” IEEE Personal Communications, pp. 40–48, June 1998.

[46] C. E. Jones, K. M. Sivalingam, P. Agrawal, and J. C. Chen, “A Survey
of Energy Efficient Network Protocols for Wireless Networks,” ACM
Wireless Networks, July 2001.

[47] Chipcon CC1000 Datasheet, http://www.chipcon.com/files/
CC1000_Data_Sheet_2_1.pdf.

[48] D. P. Helmbold, D. D. E. Long, and B. Sherrod, “A Dynamic Disk
Spin-down Technique for Mobile Computing,” in ACM MobiCom 1996,
November 1996.

[49] P. Greenawalt, “Modeling Power Management for Hard Disks,” in IEEE
Conference on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS) 1994, January 1994.

[50] X. Yang and N. H. Vaidya, “A Wakeup Scheme for Sensor Networks:
Achieving balance between energy saving and end-to-end delay,” in
IEEE Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS) 2004, May 2004.

[51] E. W. Weisstein, “MathWorld,” http://mathworld.wolfram.
com.

[52] ns-2 – The Network Simulator, http://www.isi.edu/nsnam/
ns.


