
A Machine-checked Proof of the Average-case
Complexity of Quicksort in Coq

Eelis van der Weegen? and James McKinna
eelis@eelis.net, james.mckinna@cs.ru.nl

Institute for Computing and Information Sciences
Radboud University Nijmegen

Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands

Abstract. As a case-study in machine-checked reasoning about the
complexity of algorithms in type theory, we describe a proof of the
average-case complexity of Quicksort in Coq. The proof attempts to fol-
low a textbook development, at the heart of which lies a technical lemma
about the behaviour of the algorithm for which the original proof only
gives an intuitive justification.

We introduce a general framework for algorithmic complexity in type the-
ory, combining some existing and novel techniques: algorithms are given
a shallow embedding as monadically expressed functional programs; we
introduce a variety of operation-counting monads to capture worst- and
average-case complexity of deterministic and nondeterministic programs,
including the generalization to count in an arbitrary monoid; and we give
a small theory of expectation for such non-deterministic computations,
featuring both general map-fusion like results, and specific counting ar-
guments for computing bounds.

Our formalization of the average-case complexity of Quicksort includes
a fully formal treatment of the ‘tricky’ textbook lemma, exploiting the
generality of our monadic framework to support a key step in the proof,
where the expected comparison count is translated into the expected
length of a recorded list of all comparisons.

1 Introduction

Proofs of the O(n log n) average-case complexity of Quicksort [1] are included
in many textbooks on computational complexity [9, for example]. This paper
documents what the authors believe to be the first fully formal machine-checked
version of such a proof, developed using the Coq proof assistant [2].

The formalisation is based on the “paper proof” in [9], which consists of three
parts. The first part shows that the total number of comparisons performed
by the algorithm (the usual complexity metric for sorting algorithms) can be
written as a sum of expected comparison counts for individual pairs of input
list elements. The second part derives from the algorithm a specific formula for

? Research carried out as part of the Radboud Master’s programme in “Foundations”

2

this expectation. The third and last part employs some analysis involving the
harmonic series to derive the O(n log n) bound from the sum-of-expectations.

Of these three parts, only the first two involve the actual algorithm itself—
the third part is strictly numerical. While the original proof provides a thorough
treatment of the third part, its treatment of the first two parts is informal in
two major ways.

First, it never actually justifies anything in terms of the algorithm’s formal
semantics. Indeed, it does not even formally define the algorithm in the first
place, relying instead on assertions which are taken to be intuitively true. While
this practice is common and perfectly reasonable for paper proofs intended for
human consumption, it is a luxury we can not afford ourselves.

Second, the original proof (implicitly) assumes that the input list does not
contain any duplicate elements, which significantly simplifies its derivation of
the formula for the expected comparison count for pairs of individual input list
elements. We take care to avoid appeals to such an assumption.

The key to giving a proper formal treatment of both these aspects lies in
using an appropriate representation of the algorithm, capable of capturing its
computational behaviour—specifically, its use of comparisons—in a way suit-
able for subsequent formal reasoning. The approach we take is to consider such
operation-counting as a side effect, and to use the general framework of monads
for representing side-effecting computation in pure functional languages. Ac-
cordingly we use a shallow embedding, in which the algorithm, here Quicksort,
is written as a monadically expressed functional program in Coq. This definition
is then instantiated with refinements of operation-counting monads to make the
comparison count observable.

The embedding is introduced in section 2, where we demonstrate its use
by first giving a simple deterministic monadic Quicksort definition, and then
instantiating it with a simple operation counting monad that lets us prove its
quadratic worst-case complexity.

For the purposes of the more complex average-case theorem, we then give
(in section 3) a potentially-nondeterministic monadic Quicksort definition, and
compose a monad that combines operation counting with nondeterminism, sup-
porting a formal definition of the notion of the expected comparison count, with
which we state the main theorem in section 4.

The next two sections detail the actual formalised proof. Section 5 corre-
sponds to the first part in the original proof described above, showing how the
main theorem can be split into a lemma (stated in terms of another specialized
monad) giving a formula for the expected comparison count for individual pairs
of input elements, and a strictly numerical part. Since we were able to fairly di-
rectly transcribe the latter from the paper proof, using the existing real number
theory in the Coq standard library with few complications and additions, we
omit discussion of it here and refer the interested reader to the paper proof.

Section 6 finishes the proof by proving the lemma about the expected com-
parison count for individual input list elements. Since this is the part where the
original proof omits the most detail, and makes the assumption regarding dupli-

3

cate elements, and where we really have to reason in detail about the behaviour
of the algorithm, it is by far the most involved part of the formalisation.

Section 7 ends with conclusions and final remarks.
The Coq source files containing the entire formalisation can be downloaded

from http://www.eelis.net/research/quicksort/. We used Coq version 8.2.

Related work In his Ph.D thesis [12], Hurd presents an approach to formal
analysis of probabilistic programs based on a comprehensive formalisation of
measure-theoretic constructions of probability spaces, representing probabilistic
programs using a state-transforming monad in which bits from an infinite supply
of random bits may be consumed. He even mentions the problem of proving the
average-case complexity of Quicksort, but leaves it for future work.

In [11], Audebaud and Paulin-Mohring describe a different monadic approach
in which programs are interpreted directly as measures representing probability
distributions. A set of axiomatic rules is defined for estimating the probability
that programs interpreted this way satisfy certain properties.

Compared to these approaches, our infrastructure for reasoning about non-
deterministic programs is rather less ambitious, in that we only consider finite
expectation based on näıve counting probability, using a monad for nondeter-
minism which correctly supports weighted expectation. In particular, we do not
need to reason explicitly with probability distributions.

A completely different approach to type-theoretic analysis of computational
complexity is to devise a special-purpose type theory in which the types of terms
include some form of complexity guarantees. Such an approach is taken in [4],
for example.

2 A Shallow Monadic Embedding

As stated before, the key to giving a proper formal treatment of those parts of
the proof for which the original contents itself with appeals to intuition, lies in
the use of an appropriate representation of the algorithm. Indeed, we cannot
even formally state the main theorem until we have both an algorithm definition
and the means to denote its use of comparisons.

Since we are working in Coq, we already have at our disposal a full functional
programming language, in the form of Coq’s CIC [3]. However, just writing
the algorithm as an ordinary Coq function would not let us observe its use
of comparisons. We can however see comparison counting as a side effect. As
is well known and standard practice in functional languages such as Haskell,
side effects can be represented using monads: a side-effecting function f from
A to B is represented as a function A → M B where M is a type constructor
encapsulating the side effects. “Identity” and “composition” for such functions
are given by ret (for “return”) of type A → M A and bind (infix: >>=) of type
M A→ (A→ M B)→ M B satisfying certain identities (the monad laws). For
a general introduction to monadic programming and monad laws, see [5].
Furthermore, we use Haskell’s “do-notation”, declared in Coq as follows

http://www.eelis.net/research/quicksort/

4

Notation "x <- y ; z" := (bind y (λx : ⇒ z))

and freely use standard monadic functions such as:

liftM : ∀ (M : Monad) (A B : Set), (A→ B)→ (M A→ M B)
filterM : ∀ (M : Monad) (A : Set), (A→ M bool)→ list A→ M (list A)

Here, the Coq type Monad is a dependent record containing the (coercible)
carrier of type Set → Set , along with the bind and ret operations, and proofs of
the three monad laws.

We now express Quicksort in this style, parameterizing it on both the monad
itself and on the comparison operation. A deterministic Quicksort that simply
selects the head of the input list as its pivot element, and uses two simple filter
passes to partition the input list, looks as follows:

Variables (M : Monad) (T : Set) (le : T → T → M bool).
Definition gt (x y : T) : M bool := liftM negb (le x y).
Program Fixpoint qs (l : list T) {measure length l } : M (list T) :=

match l with
| nil ⇒ ret nil
| pivot :: t ⇒

lower ← filterM (gt pivot) t >>= qs;
upper ← filterM (le pivot) t >>= qs;
ret (lower ++ pivot :: upper)

end.

We use Coq’s Program Fixpoint facility [7] to cope with Quicksort’s non-
structural recursion, specifying list length as an input measure function that is
separately shown to strongly decrease for each recursive call. For this definition
of qs, these proof obligations are trivial enough for Coq to prove mostly by itself.

For recursive functions defined this way, Coq does not automatically define
corresponding induction principles matching the recursive call structure. Hence,
for this qs definition as well as the one we will introduce in section 3, we had
to define these induction principles manually. To make their use as convenient
as possible, we further customized and specialized them to take advantage of
specific monad properties. We will omit further discussion of these issues in this
paper, and will henceforth simply say: “by induction on qs, ...”.

By instantiating the above definitions with the right monad, we can transpar-
ently insert comparison-counting instrumentation into the algorithm, which will
prove to be sufficient to let us reason about its complexity. But before we do so,
let us note that if the above definitions are instead instantiated with the identity
monad and an ordinary elementwise comparison on T , then the monadic scaf-
folding melts away, and the result is equivalent to an ordinary non-instrumented,
non-monadic version, suitable for extraction and correctness proofs (which are
included in the formalisation for completeness). This means that while we will
instantiate the definitions with less trivial monads to support our complexity
proofs, we can take some comfort in knowing that the object of those proofs is,

5

in a very concrete sense, the actual Quicksort algorithm (as one would write it in
a functional programming language), rather than some idealized model thereof.

For reasons that will become clear in later sections, we construct the monad
with which we will instantiate the above definitions using a monad transformer
[8] MMT (for “monoid monad transformer”), which piggybacks a monoid onto
an existing monad by pairing.

Variables (monoid : Monoid) (monad : Monad).
Let CMMT (T : Set) : Set := monad (monoid × T).
Let retMMT (T : Set) : T → CMMT T := ret ◦ pair (monoid zero monoid).
Let bindMMT (A B : Set) (a : CMMT A) (ab : A→ CMMT B) : CMMT B :=

x ← a; y ← ab (snd x); ret (monoid mult monoid (fst x) (fst y), snd y).
Definition MMT : Monad := Build Monad CMMT bindMMT retMMT .

(In the interest of brevity, we omit proofs of the monad laws for MMT and all
other monads defined in this paper. These proofs can all be found in the Coq
code.)

We now use MMT to piggyback the additive monoid structure on N onto
the identity monad, and lift elementwise comparison into the resulting monad,
which we call SP (for “simply-profiled”).

Definition SP : Monad := MMT (N, 0,+) IdMonad .
Definition leSP (x y : N) : SP bool := (1, le x y).

When instantiated with this monad and comparison operation, qs produces the
comparison count as part of its result.

Definition qsSP := qs SP leSP .

Eval compute in qsSP (3 :: 1 :: 0 :: 4 :: 5 :: 2 :: nil).
= (16, 0 :: 1 :: 2 :: 3 :: 4 :: 5 :: nil)

Defining cost and result as the first and second projection, respectively, we triv-
ially have identities such as cost (retSP x) = 0, cost (leSP x y) = 1, and
cost (x >>=SP f) = cost x + cost (f (result x)). This very modest amount
of machinery is sufficient for a straightforward proof of Quicksort’s quadratic
worst-case complexity.

Proposition. qs worst : ∀ l , cost (qsSP l) 6 (length l)2.1

Proof. The proof is by induction on qs. For l = nil , we have cost (qsSP nil) =
cost (ret nil) = 0 6 (length l)2. For l = h :: t , the cost decomposes into

cost (filter (le h) t) + cost (qsSP (result (filter (le h) t))) +
cost (filter (gt h) t) + cost (qsSP (result (filter (gt h) t))) +
cost (ret (result (qsSP (result (filter (le h) t))) ++

h :: result (qsSP (result (filter (gt h) t))))).

1 We do not use big-O notation for this simple statement, as it would only obfuscate.
Big-O complexity is discussed in section 4.

6

The filter costs are easily proved (by induction on t) to be length t each. The
cost of the final ret is 0 by definition. The induction hypothesis applies to the
recursive qsSP calls. Furthermore, by induction on t , we can easily prove

length (result (filter (le h) t)) + length (result (filter (gt h) t)) 6 length t ,

because the two predicates filtered on are mutually exclusive. Abstracting the
filter terms as flt and flt ′, this leaves

length flt + length flt ′ 6 length t →
length t + (length flt)2 + length t + (length flt ′)2 + 0 6 (S (length t))2,

which is true by elementary arithmetic. ut

We now extend the technique to prepare for the average-case proof.

3 Nondeterminism and Expected Values

The version of Quicksort used in the average-case complexity proof in [9] differs
from the one presented in the last section in two ways. This is also reflected in
our formalisation.

First, the definition of qs is modified to use a single three-way partition pass,
instead of two calls to filter , thus avoiding the pathological quadratic behaviour
which can arise when the input list does not consist of distinct elements.

Second, and more significantly, we use nondeterministic pivot selection, thus
avoiding the pathological quadratic behaviour from which any deterministic
pivot selection strategy inevitably suffers. While this means that we have proved
our result for a subtly different presentation of Quicksort, this nevertheless fol-
lows the textbook treatment, in line with common practice.

These two modifications together greatly simplify the formalisation, because
they remove the need to carefully track input distributions in order to show
that ‘good’ inputs (for which the original deterministic version of the algorithm
performs well) sufficiently outnumber ‘bad’ inputs (for which the original version
performs poorly). They further ensure that the O(n log n) average-case bound
holds not just averaged over all possible input lists, but for each individual input
list as well. In particular, it means that once we prove that the bound holds for
an arbitrary input, the global bound immediately follows.

This also means that for a key lemma near the end of our proof, we can use
straightforward induction over the algorithm’s recursive call structure, without
having to show that given appropriately distributed inputs, the partition step
yields lists that are again appropriately distributed. Such issues are a major tech-
nical concern in more ambitious approaches to average-case complexity analysis
[10, for example] and to the analysis of probabilistic algorithms.

The second modification is based on a new monad (again defined using MMT ,
but this time transforming a nondeterminism monad) with which the new defi-
nition can be instantiated, capturing the expected comparison count.

7

The first modification is relatively straightforward. Instead of calling filterM ,
which uses a two-way comparison operation producing a monadic bool , we define
a function partition. It takes a three-way comparison operation producing a
monadic comparison, which is an enumeration with values Lt , Eq , and Gt . We
represent the resulting partitioning by a function of type comparison → list T
rather than a record or tuple type containing three lists, because in the actual
formalisation, this saves us from having to constantly map comparison values to
corresponding record field accessors or tuple projections. This is only a matter
of minor convenience; a record or tuple could have been used instead without
problems.

Variables (T : Set) (M : Monad) (cmp : T → T → M comparison).
Fixpoint partition (t : T) (l : list T) : M (comparison → list T) :=

match l with
| nil ⇒ ret (const nil)
| h :: l ′ ⇒

c ← cmp h t ; f ← partition t l ′;
ret (λc′ ⇒ if c = c′ then h :: f c′ else f c′)

end.

Next, we redefine qs to use partition, and have it take as an additional param-
eter a pick operation, representing nondeterministic selection of an element of a
non-empty list of choices. An ne list T is a non-empty list of T ’s, inductively
defined in the obvious way.

Variable pick : ∀ A : Set ,ne list A→ M A.
Program Fixpoint qs (l : list T) {measure length l } : M (list T) :=

match l with
| nil ⇒ ret nil
| ⇒

i ← pick [0 ... length l − 1];
let pivot := nth l i in
part ← partition pivot (remove l i);
low ← qs (part Lt);
upp ← qs (part Gt);
ret (low ++ pivot :: part Eq ++ upp)

end.

The functions nth and remove select and remove the nth element of a list,
respectively.

Note that the deterministic Quicksort definition in section 2 could also have
been implemented with a partition pass instead, which might well have made
the worst-case proof even simpler. We chose not to do this, in order to emphasise
that the properties the average-case proof demands of the algorithm rule out the
näıve but familiar implementation using filter passes.

Nondeterminism can now be emulated by instantiating these definitions with
a suitable monad and pick operation. A deterministic, non-instrumented version

8

can still be obtained, simply by using the identity monad and any deterministic
pick operation, such as head or ‘median-of-three’ (not considered here).

Let us now consider what kind of nondeterminism monad would be suitable
for reasoning about the expected value of a nondeterministic program like

x ← pick [0, 1]; if x = 0 then ret 0 else pick [1, 2].

When executed in the list monad (commonly used to emulate nondeterministic
computation), this program produces [0, 1, 2] as its list of possible outcomes.
Unfortunately, the information that 0 is a more likely outcome than 1 or 2 has
been lost. Such relative probabilities are critical to the notion of an expected
value: the expected value of the program above is avg [0, avg [1, 2]] = 3

4 6= 1 =
avg [0, 1, 2]. This makes list nondeterminism unsuitable for our purposes.

Using tree nondeterminism instead solves the problem: we introduce the type
ne tree of non-empty trees, building on ne list :

Inductive ne tree (T : Set) : Set :=
| Leaf : T → ne tree T
| Node : ne list (ne tree T)→ ne tree T .

Definition retne tree {A : Set } : A→ ne tree A := Leaf .
Fixpoint bindne tree (A B : Set)

(m : ne tree A) (k : A→ ne tree B) : ne tree B :=
match m with
| Leaf a ⇒ k a
| Node ts ⇒ Node (ne list .map (λx ⇒ bindne tree x k) ts)
end.

Definition Mne tree : Monad := Build Monad ne tree bindne tree retne tree .

Definition pickne tree (T : Set) : ne list T →Mne tree T
:= Node ◦ ne list .map Leaf .

We use non-empty trees because we do not consider partial functions, and using
potentially empty trees would complicate the definition of a tree’s average value
below. This is also why we used ne list for pick .

With this monad and pick operation, the same program now produces the tree
Node [Leaf 0,Node [Leaf 1,Leaf 2]], which preserves the relative probabilities.
The expected value now coincides with the weighted average of these trees:

Definition ne tree.avg : ne tree R→ R := ne tree.fold id ne list .avg .

Relative probabilities are also the reason we use an n-ary choice primitive
rather than a binary one, because correctly emulating (that is, without skewing
the relative probabilities) an n-ary choice by a sequence of binary choices is only
possible when n is a power of two.

To denote the expected value of a discrete measure f of the output of a
program, we define

Definition expec (T : Set) (f : T → N) : ne tree T → R
:= ne tree.avg ◦ ne tree.map f .

9

Thus, given a program P of type Mne tree (list bool), expec length P denotes
the expected length of the result list, if we interpret values of type Mne tree T
as nondeterministically computed values of type T .

The function expec gives rise to a host of identities, such as

0 ≤ expec f t
expec (λx ⇒ f x + g x) t = expec f t + expec g t

expec ((∗c) ◦ f) = (∗c) ◦ expec f
(∀ x ∈ t → f x 6 g x)→ expec f t ≤ expec g t

(∀ x ∈ t → f x = c)→ expec f t = c

(∀ x ∈ t → f x = 0)↔ expec f t = 0
expec f (t >>= (ret ◦ g)) = expec (f ◦ g) t

expec (f ◦ g) t = expec f (ne tree.map g t) (1)

To form the monad with which we will instantiate qs for the main theorem,
we now piggyback the additive monoid on N onto Mne tree using MMT , and call
the result NDP (for “nondeterministically profiled”):

Definition MNDP : Monad := MMT (N, 0,+) Mne tree .

Definition cmpNDP (x y : T) : MNDP bool := retne tree (1, cmp x y).
Definition qsNDP := qs MNDP cmpNDP (lift pickne tree).

We can now denote the expected comparison count for a qsNDP application by
expec cost (qsNDP l), and will use this in our statement of the main theorem in
the next section.

But before we do so, we define a slight refinement of expec that specifically
observes the monoid component of computations in monads formed by trans-
forming Mne tree using MMT (like NDP).

Definition monoid expec (m : Monoid) (f : m → N) {A : Set }
: (MMT m Mne tree A)→ R := expec (f ◦ fst).

Since cost = fst , we have expec cost t = monoid expec id t .
In addition to all the identities monoid expec inherits from expec, it has some

of its own. One identity states that if one transforms Mne tree using a monoid
m, then for a monoid homomorphism h from m to the additive monoid on N,
monoid expec h distributes over bind , provided that the expected monoid value
of the right hand side does not depend on the computed value of the left hand
side:

monoid expec plus : ∀ (m : Monoid) (h : m → (N, 0,+)),
monoid homo h → ∀ (A B : Set)
(f : MMT m Mne tree A) (g : A→ MMT m Mne tree B) :
(∀ x y ∈ f → monoid expec h (g (snd x)) = monoid expec h (g (snd y))),
monoid expec h (f >>= g) =

monoid expec h f + monoid expec h (g (snd (ne tree.head f))).

10

Since id is a monoid homomorphism, monoid expec plus applies to NDP and
expec cost . In section 5, we will use monoid expec plus with another monoid and
homomorphism.

4 The Statement

The last thing needed before the main theorem can be stated, is the notion of
big-O complexity. We use the standard textbook definition, except that we make
explicit how we measure inputs to f , namely with respect to a measure function
m:

Definition bigO (X : Set) (m : X → N) (f : X → R) (g : N→ R) : Prop
:= ∃ c n,∀ x ,n 6 m x → f x 6 c ∗ g (m x).

Notation “wrt m, f = O (g)” := bigO m f g .

We now state the main theorem.

Theorem qs avg : wrt length, expec cost ◦ qsNDP = O (λn ⇒ n ∗ log2 n).

Thanks to the property discussed at the start of the previous section, qs avg
follows as a corollary from the stronger statement

qs expec cost : ∀ l , expec cost (qsNDP l) 6 2 ∗ length l ∗ (1 + log2 (length l)),

the proof of which is described in the next two sections.

5 Reduction to Pairwise Comparison Counts

As described in the introduction, the key ingredient in the proof is a lemma
giving a formula for the expected comparison count for individual pairs of input
list elements, indexed a certain way. More specifically, if X ≡ XI0 . . . XIn−1 is
the input list, with I a permutation of [0 ... n − 1] such that X0 . . . Xn is sorted,
then the expected comparison count for any Xi and Xj with i < j is at most
2/(1 + j − i). In other words, the expected comparison count for two input list
elements is bounded by a simple function of the number of list elements that
separate the two in the sort order. We prove this fact in the next section, but
first show how qs expec cost follows from it.

Combined with the observation that the total expected comparison count
ought to equal the sum of the expected comparison count for each individual
pair of input elements, the property described above suggests breaking up the
inequality into

expec cost (qsNDP l) 6
∑

(i,j)∈IJ

ecc i j 6 2 ∗ length l ∗ (1 + log2 (length l)),

where IJ := {(i, j) ∈ [0, length l) | i < j}, and ecc i j := 2 / (1 + j − i).

11

The right-hand inequality is a strictly numerical affair, requiring a bit of
analysis involving the harmonic series. As stated before, this part of the proof
was fairly directly transcribed from the paper proof, with few complications and
additions, and so we will not discuss it.

The left inequality is the challenging one. To bring it closer to the index
summation, we first write l on the left-hand side as map (nth (sort l)) li ,
where sort may be any sorting function (including qs itself), and where li is a
permutation of [0 ... n − 1] such that map (nth (sort l)) li = l (such an li can
easily be proven to exist).

Next, we introduce a specialized monad and comparison operation that go
one step further in focusing specifically on these indices.

Definition MonoidU : Monoid := (list (N×N),nil ,++).
Definition U : Monad := MMT MonoidU Mne tree .

Definition lookup cmp (x y : N) : comparison :=
cmp (nth (sort l) x) (nth (sort l) y).

Definition unordered nat pair (x y : N) : N×N :=
if x 6 y then (x , y) else (y , x).

Definition cmpU (x y : N) : U comparison :=
ret (unordered nat pair x y :: nil , lookup cmp x y).

Definition qsU : list N→ list N := qs U cmpU pickU .

The function qsU operates directly on lists of indices into sort l . Comparison of
indices is defined by comparison of the values they denote in sort l . Furthermore,
rather than producing a grand total comparison count the way NDP does, U
records every pair of indices compared, by using MMT with MonoidU , the free
monoid over N×N pairs, instead of the additive monoid on N we used until now.

We now rewrite
expec cost (qsNDP (map (nth (sort l)) li))

= monoid expec length (qsU li) = expec (length ◦ fst) (qsU li).

The first equality expresses that the expected number of comparisons counted
by NDP is equal to the expected length of the list of comparisons recorded by
U . In the formalisation, this is a separate lemma proved by induction on qs. The
second equality merely unfolds the definition of monoid expec.

After rewriting with identity 1 in section 3 on page 9, the goal becomes

expec length (ne tree.map fst (qsU li)) 6
∑

(i,j)∈IJ

ecc i j .

We now invoke another lemma which bounds a nondeterministically computed
list’s expected length by the expected number of occurrences of specific values
in that list. More specifically, it states that

∀ (X : Set) (fr : X → R) (q : list X) (t : ne tree (list X)),
(∀ x ∈ q , expec (count x) t 6 fr x)→
(∀ x /∈ q , expec (count x) t = 0)→ expec length t 6

∑
x∈q

fr x .

12

We end up with two subgoals, the first of which is

∀ (i , j) /∈ IJ , expec (count (i , j)) (ne tree.map fst (qsU li)) = 0.

Rewriting this using identity 1 from section 3 in reverse, then rewriting the expec
as a monoid expec, and then generalizing the premise, results in

∀ i j li , (i /∈ li ∨ j /∈ li)→ monoid expec (count (i , j)) (qsU li) = 0 (2)

which can be shown by induction on qs, although we will not do so in this paper.
We will use this property again in the next section.

The second subgoal, expressed with monoid expec, becomes

∀ (i , j) ∈ IJ ,monoid expec (count (i , j)) (qsU li) 6 ecc i j (3)

which corresponds exactly to the property described at the beginning of this
section. We prove it in the next section.

6 Finishing the Proof

Again, the proof of (3) is by induction on qs. But to get a better induction
hypothesis, we drop the (i , j) ∈ IJ premise (because as was shown in the last
section, the statement is also true if (i , j) /∈ IJ), and add a premise saying li is
a permutation of a contiguous sequence of indices.

∀ i j , i < j → ∀ (li : list N) (b : N),Permutation [b ... b + length li − 1] li →
monoid expec (count (i , j)) (qsU li) 6 ecc i j .

In the base case, li is nil , and the left-hand side of the inequality reduces to 0.
In the recursive case, qs unfolds:

monoid expec (count (i , j)) (
pi ← pick [0 ... n − 1];
let pivot := nth li pi in
part ← partitionU pivot (remove li pi);
lower ← qsU (part Lt);
upper ← qsU (part Gt);
ret (lower ++ pivot :: part Eq ++ upper)
) 6 ecc i j .

Since cmpU is deterministic, partitionU is as well. Furthermore, since we know
exactly what monadic effects partitionU has, we can split those effects off and
revert to simple effect-free filter passes. Finally, we rewrite using the following
monoid expec identity:

monoid expec f (pick l >>= m) = avg (map (monoid expec f ◦ m) l).

This way, the goal ends up in a form using less monadic indirection:

13

avg (map (monoid expec (count (i , j)) ◦ (λpi ⇒
let pivot := nth li pi in
let rest := remove li pi in
let flt := λc ⇒ filter ((= c) ◦ lookup cmp pivot) rest in
ne tree.map (map fst (++map (unordered nat pair pivot) rest)) (

lower ← qsU (flt Lt);
upper ← qsU (flt Gt);
ret (lower ++ pivot :: flt Eq ++ upper)

))) [0 ... n − 1]) 6 ecc i j .

Here, map fst applies a function to a pair’s first component.
We now distinguish between five different cases that can occur for the non-

deterministically picked pivot (which, because we are in the U monad, is an
index). It can either be less than i , equal to i , between i and j , equal to j , or
greater than j . Each case occurs a certain number of times, and has an asso-
ciated expected number of (i , j) comparisons (coming either from the map fst
term representing the partition pass, or from the two recursive qsU calls). To
represent this split, we first rewrite the right-hand side of the inequality to

ecc i j ∗ (i− b) + 1 + 0 + 1 + ecc i j ∗ (b+ n− j)
n

.

This form reflects the facts that

– the case where pivot is less than i occurs i − b times, and in each instance,
the expected number of (i , j) comparisons is no more than ecc i j ;

– the case where the pivot is equal to i occurs once, and in this case no more
than a single (i , j) comparison is expected;

– in the case where pivot lies between i and j , the number of expected (i , j)
comparisons is 0, and hence it does not matter how often this case occurs;

– the case where the pivot is equal to j occurs once, and in this case no more
than a single (i , j) comparison is expected;

– the case where the pivot is greater than j occurs b + n− j times, and in each
instance, the expected number of (i , j) comparisons is no more than ecc i j .

With the right-hand side of the inequality in this form, we unfold the avg appli-
cation on the left into sum (...) / n, and then cancel the division by n on both
sides. Next, to actually realize the split, we apply a specialized lemma stating
that

∀ b i j X f n (li : list N)
(g : [0 ... n − 1]→ U X),Permutation [b ... b + length li − 1] li →
b 6 i < j < b + S n → ∀ ca cb, 0 6 ca → 0 6 cb →
(∀ pi ,nth li pi < i → expec f (g pi) 6 ca)→
(∀ pi ,nth li pi = i → expec f (g pi) 6 cb)→
(∀ pi , i < nth li pi < j → expec f (g pi) = 0)→
(∀ pi ,nth li pi = j → expec f (g pi) 6 cb)→
(∀ pi , j < nth li pi → expec f (g pi) 6 ca)→

sum (map (expec f ◦ g) [0 . .n]) 6
ca ∗ (i − b) + cb + 0 + cb + ca ∗ (b + n − j).

14

Five subgoals remain after applying this lemma—one for each listed case. The
first one reads

∀ pi ,
let pivot := nth li pi in
let rest := remove li pi in

pivot < i →
monoid expec (count (i , j))

(ne tree.map (map fst (++map (unordered nat pair pivot) rest)) (
foo ← qsU (filter ((= Lt) ◦ lookup cmp pivot) rest);
bar ← qsU (filter ((= Gt) ◦ lookup cmp pivot) rest);
ret (foo ++ (pivot :: filter ((= Gt) ◦ lookup cmp pivot) rest) ++ bar)))

6 ecc i j .

Since count (i , j) is a monoid homomorphism, we may rewrite using another
lemma saying that

∀ (m : Monoid) (h : m → (N, 0,+)),monoid homo h →
∀ (g : m) (A : Set) (t : MMT m Mne tree A),

monoid expec h (ne tree.map (map fst (monoid mult m g)) t) =
h g + monoid expec h t .

This leaves

count (i , j) (map (unordered nat pair pivot) rest) +
monoid expec (count (i , j))

(foo ← qsU (filter ((= Lt) ◦ lookup cmp pivot) rest);
bar ← qsU (filter ((= Gt) ◦ lookup cmp pivot) rest);
ret (foo ++ (nth v pi :: filter ((= Eq) ◦ lookup cmp pivot) rest) ++ bar))

6 ecc i j .

From pivot < i and i < j , we have pivot < j . Since each of the comparisons in
map (unordered nat pair pivot) rest involves the pivot element, it follows that
none of them can represent comparisons between i and j . Hence, the first term
vanishes. Furthermore, monoid expec plus lets us distribute monoid expec over
the bind applications. Since the ret term does not produce any comparisons
either (by definition), its monoid expec term vanishes, too. What remains are
the two recursive calls:

monoid expec (count (i , j)) (qsU (filter ((= Lt) ◦ lookup cmp pivot) rest)) +
monoid expec (count (i , j)) (qsU (filter ((= Gt) ◦ lookup cmp pivot) rest))

6 ecc i j .

All indices in the first filtered list denote elements less than the element denoted
by the pivot. Since the former precede the latter in sort l , it must be the case
that these indices are all less than pivot . And since pivot < i , it follows that the
first qsU term will produce no (i , j) comparisons (using property (2) at the end
of section 5 on page 12). Hence, the first monoid expec term vanishes, leaving

15

monoid expec (count (i , j))
(qsU (filter ((= Gt) ◦ lookup cmp pivot) rest)) 6 ecc i j .

We now compare nth (sort l) i with nth (sort l) pivot .

– If the two are equal, then i will not occur in the filter term, and so (again)
no (i , j) comparisons are performed.

– If nth (sort l) i<nth (sort l) pivot , then we must have i<pivot , contradicting
the assumption that pivot < i .

– If nth (sort l) i >nth (sort l) pivot , then we apply the induction hypothesis.
For this, it must be shown that filtering the list of indices preserves contiguity,
which follows from the fact that the indices share the order of the elements
they denote in sort l .

This concludes the case where pivot < i . The case where j < pivot is symmetric.
The other three cases use similar arguments. The proof is now complete.

7 Final Remarks

In the interest of brevity, we have omitted lots of detail and various lemmas in
the description of the proof. Still, the parts shown are reasonably faithful to the
actual formalisation, with two notable exceptions.

First, we have pretended to have used ordinary natural numbers as indices
into ordinary lists, completely ignoring issues of index validity that could not be
ignored in the actual formalisation. There, we use vectors (lists whose size is part
of their type) and bounded natural numbers in many places instead. Using these
substantially reduces the amount of i< length l proofs that need to be produced,
converted, and passed around, but this solution is still far from painless.

Second, using the Program facility to deal with Quicksort’s non-structural
recursion is not completely as trivial as we made it out to be. Since the re-
cursive calls are nested in lambda abstractions passed to the bind operation of
an unspecified monad, the relation between their arguments and the function’s
parameters is not locally known, resulting in unprovable proof obligations. To
make these provable, we Σ-decorated the types of filter and partition in the
actual formalisation with modest length guarantees.

The formalised development successfully adopted from the original proof the
idea of using a nondeterministic version of the algorithm to make the O(n log n)
bound hold for any input list, the idea of taking an order-indexed perspective
to reduce the problem to a sum-of-expected-comparison-counts, and the use of
the standard bound for harmonic series for the strictly numerical part. How-
ever, for the actual reduction and the derivation of the formula for the expected
comparison count, the intuitive arguments essentially had to be reworked from
scratch, building on the monadic representation of the algorithm and the various
comparison counting/nondeterminism monads.

The shallow monadic embedding provides a simple but effective representa-
tion of the algorithm. Being parameterized on the monad used, it allows a single

16

definition to be instantiated either with basic monads (like the identity monad
or bare nondeterminism monads) to get a non-instrumented version suitable for
extraction and correctness proofs, or with MMT -transformed monads to support
complexity proofs. Furthermore, since this approach lets us re-use all standard
Coq data types and facilities, including the powerful Program Fixpoint com-
mand, the actual algorithm definition itself is reasonably clean.

We have shown that it is straightforward to give a fully formal treatment
in type theory of a classical result in complexity theory. This clearly shows the
utility and applicability of the general monadic approach we have developed.

References

1. Hoare, C.: Quicksort. The Computer Journal 5 (1962) 10–15
2. The Coq Development Team: The Coq Proof Assistant Reference Manual – Version

V8.2. (February 2009) http://coq.inria.fr.
3. Bertot, Y., Castéran, P.: Coq’Art: Interactive Theorem Proving and Program

Development. Texts in Theoretical Computer Science. Springer (2004)
4. Constable, R.L.: Expressing computational complexity in constructive type theory.

In Leivant, D., ed.: LCC ’94. Volume 960 of LNCS., Springer (1995) 131–144
5. Wadler, P.: Monads for functional programming. In Jeuring, J., Meijer, E., eds.:

Advanced Functional Programming. Volume 925 of LNCS., Springer (1995) 24–52
6. Sedgewick, R.: The analysis of quicksort programs. Acta Inf. 7 (1977) 327–355
7. Sozeau, M.: Subset coercions in Coq. In Altenkirch, T., McBride, C., eds.: Types

for Proofs and Programs. Volume 4502 of LNCS. Springer (2007) 237–252
8. Liang, S., Hudak, P., Jones, M.P.: Monad transformers and modular interpreters.

In: POPL ’95, ACM (1995) 333–343
9. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, Sec-

ond Edition. MIT Press (September 2001)
10. Schellekens, M.: A Modular Calculus for the Average Cost of Data Structuring.

Springer (2008)
11. Audebaud, P., Paulin-Mohring, C.: Proofs of Randomized Algorithms in Coq. In

Uustalu, T., ed.: MPC’06. Volume 4014 of LNCS., Springer (2006) 49–68
12. Hurd, J.: Formal Verification of Probabilistic Algorithms. PhD thesis, University

of Cambridge (2002)

	Eelis van der Weegen and James McKinna eelis@eelis.net, james.mckinna@cs.ru.nl
	Bibliography

