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Tens of thousands of genotype-phenotype associations have been discovered to date, yet not

all of them are easily accessible to scientists. Here, we describe GWASkb, a machine-

compiled knowledge base of genetic associations collected from the scientific literature using

automated information extraction algorithms. Our information extraction system helps

curators by automatically collecting over 6,000 associations from open-access publications

with an estimated recall of 60–80% and with an estimated precision of 78–94% (measured

relative to existing manually curated knowledge bases). This system represents a fully

automated GWAS curation effort and is made possible by a paradigm for constructing

machine learning systems called data programming. Our work represents a step towards

making the curation of scientific literature more efficient using automated systems.
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G
enome-wide association studies (GWAS) are widely used
for measuring the effects of genetic variants on human
traits1. About 2500–3000 studies have been performed to

date2,3; their results are used to estimate disease risks4,5, to
understand the function of specific genomic regions6,7, and to
train algorithms that predict the effects of new variants.8

Most applications require the GWAS associations to be
accessible in a structured format amenable to automated analysis
by a computer. Several manual curation efforts are underway to
catalogue published GWAS associations into structured
databases2,3; however, these efforts require time, domain exper-
tise, and can be prone to errors. As more studies are published,
the cost of curation is expected to increase.

Here, we describe GWASkb, a machine-compiled knowledge
base of thousands of genotype–phenotype associations. It repre-
sents a fully automated GWAS machine curation effort, made
possible by a paradigm for constructing machine learning systems
called data programming.9,10 GWASkb is constructed from 589
open-access GWAS publications, and recovers > 6000 associa-
tions from these publications at an estimated recall of 60–80%
and with an estimated precision of 78–94% (both depending on
stringency criteria and measured relative to existing manually
curated knowledge bases over the same input dataset).

GWASkb is useful to curators as it provides a large dataset of
candidate associations for inclusion into existing knowledge
bases. These associations are also useful to scientists and clin-
icians in order to study the genetic basis of human traits and to
estimate the disease risks of individuals. To facilitate these use
cases, we are making available the code used to create GWASkb,
and we also provide an online tool for browsing the associations
found by the system. More broadly, our work may form the basis
for further efforts to curate Mendelian variants and other biolo-
gical information.

Results
Automating biomedical literature curation with GWASkb. At a
high level, we extract genotype–phenotype relations from the
biomedical literature and place them in a structured database
(Fig. 1). A typical association consists of a genetic variant, its
associated phenotype, and a p-value indicating the significance of
the association (see Supplementary Note 3). GWASkb collects
these three specific characteristics. Associations also possess
additional properties that our system does not yet process; these
include an effect size, a risk allele, a target population, and others.
Finally, we support our findings with evidence from publications
(identified by their Pubmed ID), which are locations inside the
document.

When reporting phenotypes, human-curated databases can be
at times very specific (e.g., high systolic blood pressure) and at
other times less so (e.g., heart disease). In GWASkb, we report
simple and precise phenotypes; the former is a high-level
description that applies to every variant in the paper (e.g., effects
of proteins on inflammation), while the latter is a detailed
description that, when available, applies to specific variants (e.g.,
the name of a specific protein).

We also aim to collect a large set of associations that can be
refined by users according to their needs. This approach offers
more flexibility than collecting only high-confidence relations, a
common approach for manual curation efforts.

Creating GWASkb using IE algorithms. We have structured the
system used to generate GWASkb into a set of five components
that extract three key pieces of information: genetic variants, their
phenotypes, and their p values.

The first component of our system parses the title and abstract
of every paper to identify a simple phenotype that will be
associated with all its variants. The second component parses the
body of the paper to find tuples of Reference SNP cluster IDs
(RSIDs) and their associated precise phenotypes. Often, the
precise phenotype is abbreviated (e.g., body mass index (BMI))
and a third component attempts to resolve these abbreviations
(e.g., BMI). A fourth component extracts p values in the form of
(rsid, p value) tuples. Finally, the fifth component constructs a
single structured database from all these results.

The components of our information extraction (IE) system are
composed of three stages: parsing, candidate generation, and
classification (Fig. 2). Parsing is performed with Snorkel10, a
knowledge base construction framework for documents with
richly formatted data (data expressed via textual, structural,
tabular, and/or visual cues), such as XML documents. Content is
first parsed for structure—the XML tree is traversed and
converted into a hierarchical data model with text assigned to
tables, cells, paragraphs, sentences, etc. Then, each sentence or
cell is parsed for content using the Stanford CoreNLP pipeline11,
which performs sentence tokenization, part-of-speech tagging,
and syntactic parsing. In candidate generation, we identify in the
text mentions of some target relation (e.g., p value/rsid pairs).
Regular expressions or dictionaries are used to identify candidates
that may be valid instances of the relation we are looking for
(erring on the side of high recall over high precision). Finally, in
the classification stage, we determine which of these candidates
are actually correct relation mentions using a machine learning
classifier. We use a Naive Bayes classifier with a small number of

Biomedical publication Structured database

Machine

reading

Fig. 1 The automated information extraction system used to compile GWASkb. The GWASkb system takes as input a set of biomedical publications

retrieved from PubMed Central (left) and automatically creates a structured database of GWAS associations described in these publications (right). For

each association, the system identifies a genetic variant (purple), a high-level phenotype (pertaining to all variants in the publication), a detailed low-level

phenotype (specific to individual variants, if available; red), and a p value (orange). Acronyms are also resolved (red)
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hand-crafted features (between 4 and 12), and we train the model
using the recently proposed data-programming paradigm.9

One of the most significant bottlenecks in developing machine
learning-based IE systems is collecting large sets of hand-labeled
training data. Data programming is a paradigm for training
models using higher-level, less precise supervision to avoid this
bottleneck.9 In this approach, users write a set of LFs: black-box
functions that label data points, and that can subsume a wide
variety of heuristic approaches such as distant supervision12—
where an external knowledge base is used to label data points—
regular expression patterns, heuristic rules, and more. These LFs
are assumed to be better than random, but otherwise may have
arbitrary accuracies, may overlap, and may conflict. A generative
model is used to learn their accuracies and correlations from
unlabeled data. The predictions of this model can then be used for
classification, or to generate labels for a second, discriminative
model. For further details see Supplementary Note 1.

In this work, we use data programming to train a generative
Naive Bayes classifier over a small number (4–12) of hand-crafted
LFs (Supplementary Note 6). We then directly apply these

probabilistic labels as predictions. We refer the reader to the
appendix for more details.

Reproducibility. In order to make our results fully reproducible,
we have released Jupyter notebooks that can be used to generate
GWASkb and recreate most of our figures and tables. The
notebooks and the source code used to generate GWASkb is
freely available on GitHub at github.com/kuleshov/gwaskb.

In addition, we have built an interactive website (see
Supplementary Note 10) that enables users to browse associations
that have been extracted in GWASkb. Users can search the data
by study, phenotype or variant rsid. The entire dataset can also be
downloaded from GitHub in CSV format or using the link
provided in Supplementary Note 11.

Machine reading helps automate GWAS curation. We compiled
GWASkb from 589 open-access GWAS papers, which are papers
that are not affected by copyright restrictions that limit our right
to perform automated text mining. These papers represent
approximately 25% of studies recorded at the time of writing in
the NHGRI-EBI GWAS Catalog, a popular human-curated
database. We retrieved these papers from the PubMed Central
(PMC) repository in XML format and passed the XML source
code as input to the IE system. Note that our system can also be
deployed on nonopen-access papers if a user has legal rights
to do so.

Genome-wide associations are typically identified in a
discovery cohort and then replicated in a separate replication
cohort. Some curation projects (such as GWAS Catalog) only
include associations that have been successfully replicated, while
others (such GWAS Central) tend to include most associations.
GWASkb follows the latter approach; this offers more flexibility
and allows researchers to refine the data according to the level of
confidence that best suits their needs.

For the purpose of evaluating the precision and recall of our
system, we formed a dataset of all automatically extracted
associations that were determined to be significant at p < 10−5 in
at least one experiment in the study (such as in one cohort or one
statistical model). This criterion recovered a significant number of
associations present in existing databases, while maintaining
sufficiently high precision (Table 1).
It is important to note that our inclusion criterion is different

from the one used by databases such as the GWAS Catalog, which
typically includes associations that are significant in a combined
discovery and replication cohort, unless only discovery data are
available and no replication was attempted. Our criterion
approach of accepting all associations with their metadata is
more flexible, as it allows researchers to refine the data according
to their needs. A disadvantage of this approach is that it is also
includes low-confidence associations, such as ones that have not
been replicated, that originate from an earlier study, or that may
arise from non-GWAS experiments. A lower-confidence dataset
may still be useful for certain applications, such as for testing
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Fig. 2 General structure of a GWASkb system module. The system contains

separate modules for extracting variants, phenotypes, p values, and for

resolving acronyms. Each module consists of three stages. At the parsing

stage, we process papers using the Stanford CoreNLP pipeline, performing

full syntactic parsing. Next, given a target relation (e.g., variant-phenotype),

we generate a large set of candidates, some of which could be correct

instances of the target object on relation. Then, at the classification stage,

we determine which candidates are correct using a machine learning

classifier

Table 1 Numbers of associations contained in different

GWAS databases; statistics are over open-access papers

Database Papers Associations Unique associations

GWAS Catalog 589 8384 >2026

GWAS Central 516 5914 >364

GWASkb (ours) 589 6231 >2777

Unique associations are contained in one database and in none of the others. Human curated

databases (GWAS Catalog and GWAS Central) significantly differ in their scope. Our machine-

compiled repository (GWASkb) automatically recovers a large fraction of known results and

also finds a comparable number of unique associations
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whether certain pathways are enriched for associated variants.
However, this also requires manually filtering variants that do not
meet the significance threshold for other applications, which can
be burdensome. To assist with this process, we are releasing
metadata that helps identify the cohort associated with a given
variant (see Supplementary Note 9). This metadata can later be
used to train classifiers that automatically identify the target
cohort.

GWASkb recovers up to 80% of manually curated associations.
GWAS Central and GWAS Catalog contain, respectively 3008
and 4023 accessible associations linked to the 589 open-access
studies. These associations are defined as tuples of PubMed ID,
variant RSID, phenotype, and p value for which the RSID is
contained in the open-access XML content made available
through PubMed Central. For GWAS Catalog we use the reported
trait for our analysis rather than the ontology terms (EFO). To
measure recall relative to human-curated databases, we need to
determine whether each (PubMed ID, RSID, phenotype, p value)
tuple reported in GWASkb is also present in the human-curated
database. This requires deciding whether phenotypes reported in
GWASkb are equivalent to ones reported by human curators; to
determine this, we manually created a mapping between
GWASkb phenotypes and phenotypes reported in either GWAS
Central or GWAS Catalog for the same PubMed ID and RSID
(see Methods).

Since databases use different levels of precision to describe
traits (e.g., smoking behaviors vs. cigarette packs per day), we also
specify whether our reported phenotype is exact or approximate;
in the latter case, it is still useful, but lacks some detail. Table 2
contains examples of relations contained in GWASkb at different
levels of precision.

The dataset reported in GWASkb contained 2487 (82%)
associations from GWAS Central with approximately correct
phenotypes, as well as 3245 (81%) associations from the GWAS
Catalog. It also recovered 1890 (63%) associations from GWAS
Central and 2762 (69%) associations from GWAS Catalog with
full accuracy on the phenotype. Some associations were not
correctly recovered because the GWASkb reported phenotype
was incorrect: 89 (3%) for GWAS Central and 147 (4%) for
GWAS Catalog. In the remaining cases, we were not able to
report the variant itself. The main causes of this are when the
variants are expressed only in the text and not in tables, or when
the format of the table is particularly difficult to parse (e.g., when
multiple RSIDs and p values are reported in the same row).
Overall, GWASkb recovered 81–82% of manually curated

associations at a level of quality that will be useful in many
applications.

Machine curation uncovers useful new associations. In total,
GWASkb contains 6422 associations within the 589 input papers,
2959 (46%) of which could not be mapped to GWAS Catalog or
GWAS Central. We investigated this further by first manually
inspecting a random subset of 100 novel associations (with
independent validation from two independent annotators). We
found that 88 associations fully met the specifications of our
system, 7 were incorrect, and 5 were originally identified by a
different study (and referenced as background material). Most of
the errors of our system can be attributed to incorrect
phenotypes.

Of the 88 associations matching system specifications, 44 were
not significant at 10−5 in all cohorts, hence were excluded from
GWAS Catalog for scientific reasons. We report these variants
because they may still be useful in applications in which a noisy
dataset is acceptable. Another 36 were excluded because they were
in the same locus as a more significant variant; however, these
were generally not in perfect linkage disequilibrium (LD) and 27
were in weak LD with the GWAS Catalog variant (r2 < 0.5 as
determined by the LDLink tool). We argue for cataloguing these
variants, as the LD cutoff for what constitutes a significant variant
may depend on the scientific application. Another eight variants
were not included because they were determined to be significant
in both the target study and an earlier study (note that GWAS
Catalog guidelines state that such variants should be catalogued).

LD between new and existing variants. To validate the novel
variants found by our system, we conducted a series of analyses
aimed at characterizing the variants’ function.

First, we reasoned that detected variants may be in LD with
known variants (because they originate from the same LD block),
or among themselves, thereby inflating our number of truly novel
associations. We estimated LD from the Thousand Genomes
dataset (see Supplementary Note 2); Fig. 3 shows the histogram of
r2 distances between each novel variant, and its closest variant in
the GWAS Catalog. The distribution of r2 scores is highly
multimodal, with large peaks at r2= 1, and many more at r2= 0.

Using a threshold of r2 > 0.5, we filtered our set of new [pmid,
rsid, phen, pvalue] associations from 3170 to 1494 by removing
variants in LD with known manually curated variants; of the 1676
variants that we eliminated, 765 were not in the 1000 Genomes
database or their closest previously known variant was not in the
database; the remaining 911 single-nucleotide polymorphisms

Table 2 Examples of associations identified by GWASkb

Study Association Simple phenotype

(GWASkb)

Precise

phenotype

(GWASKb)

p Value

(GWASkb)

Phenotype

(GWAS Cat)

p Value

(GWAS Cat)

Genome-wide pharmacogenomic

study of metabolic side effects to

antipsychotic drugs

rs17661538 Antipsychotic

drugs/metabolic

side effects

Clozapine—

Triglycerides

1.00E−06 Clozapine-induced

change in

triglycerides

1.00E−06

Genome-wide meta-analysis

identifies seven loci associated with

platelet aggregation in response to

agonists

rs12566888 Platelet aggregation – 5.00E−19 Platelet aggregation,

and epinephrine

5.00E−19

A genome-wide association study

of the Protein C anticoagulant

pathway

rs13130255 Protein C funcPS 3.00E−06 Anticoagulant levels

(funcPS)

3.00E−06

Associations can be classified as correct (rs17661538), partially correct (rs12566888; the precise phenotype is missing) and incorrect (rs13130255). We also compare these associations to their

corresponding entries in the GWAS Catalog.
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(SNPs) were in LD with known variants. We further reduced this
set to 1304 associations by eliminating novel variants that were in
LD with each other. Thus, although many variants are in LD with
known variants, over 40% of our discovered variants do not
appear to be linked to variants previously identified in GWAS
databases.

Although our system reported multiple variants from the same
LD block, these variants may still be useful, since we do not know
which variant an LD block is truly causal and the r2 cutoff for
defining LD blocks is somewhat arbitrary and may vary. We
believe that filtering should be performed by the user, depending
on their goal; this is also the approach taken by the GWAS
Central repository.

Comparison to other approaches for estimating significance.
Our second analysis focuses on the biological function of the
novel variants. We focus on two large classes of phenotypes:
neurodegenerative diseases (ND; 27 traits, including Autism,
Alzheimer’s, Parkinson’s, etc.) and autoimmune disorders (AI; 23
traits, including Diabetes, Arthritis, Lupus, etc.); for the analyses
below, we consider the subset of variants that are not in LD with
any variant in the GWAS Catalog or GWAS Central (283 ND
SNPs and 155 AI SNPs).

We also collected two sets of genes that were found to be highly
expressed in brain cells as well as in blood cells; specifically, we
reasoned that SNPs associated to neuropsychiatric and auto-
immune diseases should be more highly enriched near genes
expressed in brain and immune cells, respectively. Indeed, we
found that variants associated with ND diseases (32 ND SNPs in
total) occurred significantly more often within 200 kbp of genes
with preferential brain expression, while variants associated with
AU traits (15 variants in total) were found more frequently near
genes with preferential blood expression (χ2 test: p < 0.05; see
Supplementary Note 2).

We should note, however, that the vast majority of ND and AU
variants were found far from coding regions. To test whether this
set of SNPs also make biological sense, we used GREAT13, a tool
which annotates the function of variants in intergenic areas of the
genome. In particular, GREAT links intergenic regions with
Disease Ontology (DO) terms, and outputs terms that are
significantly enriched for a particular set of variants. When we
applied GREAT to ND SNPs, we found a strong enrichment in
regions known to play a role in ND-related phenotypes, such as
cognitive disease (p < 10−32), dementia (p < 10−23), and neuro-
degenerative disease (p < 10−23). Similarly, AI variants were
significantly associated with AI-related terms, the most significant
of which were disease by infectious agent (p < 10−27), viral
infectious disease (p < 10−19), and autoimmune disease

(p < 10−17). In fact, the top 20 DO terms for either set of
variants were all exclusively associated with the correct family of
phenotypes (Supplementary Tables 1 and 2). Hence, our
predicted variants were consistent with external annotations.

Examining the effect sizes of novel GWASkb variants. Finally,
we analyzed the magnitude with which novel variants affect their
predicted phenotypes and other, related traits. Specifically, we
used freely available GWAS summary statistics from the LD Hub
project14 to assess the distribution of SNP effect sizes across novel
variants and compared them to those of random SNPs. We
focused on the 11 most frequent traits in our dataset for which
summary statistics were available; for each trait, we identified an
LD Hub study that provides effect sizes (in the form of beta
coefficients or log odds ratios) for that trait. Figure 4 compares
the distribution of effect sizes of the novel variants identified in
GWASkb to the distribution of effects sizes for all SNPs, again
restricting to variants that show no LD with other variants in
GWAS databases. Whereas the distribution of random SNPs is
centered around zero, as one would expect, novel SNP effect sizes
appear to follow a different distribution (Kolmogorov–Smirnov
test; see Fig. 4 and Supplementary Figs. 1 and 2) and tend to have
significantly higher magnitudes than expected.

Discussion
Curation of the literature is critical because if GWAS associations
are not recorded in a database, they are effectively missing for
many practical purposes, such as for training machine learning
systems to predict SNP function. GWAS studies are also costly
(often involving genotyping tens of thousands of subjects), and it
thus a waste of research funding to not fully record their results.
Systems like the one used to create GWASkb can assist the
curation process by providing useful candidates to human
curators.

Most existing GWAS databases are constructed by human
curators, who are expert scientists with advanced training that
enables them to understand and parse complex study designs.
Manual curation yields accurate and trusted results, albeit at a
high labor cost (e.g., GWAS Catalog associations are verified by a
second curator for maximum accuracy). An alternative to cura-
tion is to ask authors to directly report their findings online. This
is already possible within GWAS Central, although in practice
few authors choose to do this. In addition, past studies still need
to be curated. An ideal solution appears to involve a combination
of authors, machines, and curators.

However, manual-curation is a difficult task, and can miss
certain associations. Curating papers is often a tedious task
involving browsing through highly technical material in search of
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short snippets of text. Humans are generally not well-suited to
this kind of work: they may accidentally skip table rows, or
become tired and skip a paragraph. Curation also requires
understanding advanced technical concepts such as LD or mul-
tiple hypothesis testing. This makes the task unsuitable for
crowdsourcing approaches.

Computers, on the other hand, do not suffer from the afore-
mentioned limitations: they excel at repetitive work and only need to
be programmed by experts once. Crucially, even though machines
make errors, these errors are systematic, not random: one may
follow an iterative process of fixing these errors and redeploying the
system, until a sufficient level of accuracy is reached. Redeploying
our system takes on the order of hours, while asking humans to
return and correct their errors would take at least months.

Of course, humans also have many advantages over machines.
Indeed, the sets of GWASkb and human-curated associations
were quite distinct. The most accurate and complete GWAS
database is in fact a combination of both sources. In the future,
we see curation as a collaboration between humans and machines.

Extracting structured relations from unstructured text is sub-
ject of the field of IE15. IE is widely used in diverse domains such
as news16, finance17, geology18, and in the biomedical domain. In
the biomedical setting, IE systems have been used to parse elec-
tronic medical records19, identify drug–drug interactions20, and
associate genotypes with drug response21. A considerable amount
of effort has gone into uncovering gene/disease associations from
biomedical literature22. Our approach, however, takes a different
approach, as it attempts to identify the effects of individual

variants. Recently, Jain et al.23 applied IE to the GWAS domain;
their work focused on creating extractors for two specific rela-
tions: paper phenotypes and subject ethnicities; these extractors
achieved an 87% precision-at-2 and an 83% F1-score on the two
tasks, respectively. In contrast, our works introduces an end-to-
end system that extracts full (phenotype, rsid, p value) relations
comparable to ones found in hand-curated databases.

Beyond GWAS studies, literature curation efforts are currently
underway in cancer genomics, pharmacogenomics, and many
other fields. Our findings hint at the possibility of using machine
curation there as well.

The GWAS domain is in many ways easier than others since
variants have standardized identifiers and a lot of information is
structured in tables. Nonetheless, it allows us to demonstrate the
importance of machine curation and to develop a core system
that can be generalized to other domains. Within the GWAS
setting, our system can be further improved by extracting addi-
tional information about variants (e.g., risk alleles and odds
ratios). In addition, the current version of our database does not
contain crucial study metadata such as study design, study stage,
ancestry information, statistical methodology, etc. These are
typically curated by human experts.

In summary, we have introduced a machine reading system for
extracting structured databases from publications describing
genome-wide association studies. Our results represent a step
towards using machine reading algorithms to help human cura-
tors synthesize knowledge in the biomedical literature, helping
make GWAS research faster and more accurate.
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away from zero and follow a different distribution (Kolmogorov–Smirnov test). In the boxplots, center lines represent medians, the box boundaries span the

interquartile range, and the whiskers extend to the minimum and maximum observations excluding statistical outliers. Bottom: We subsample 1000

random sets of variants with the same number of elements as the set of GWASkb SNPs for a given disease; the average effect size of GWASkb variants

(red) is higher than that of the random subsets (blue). In all settings, we only look at novel GWASkb variants not present in existing human-curated

repositories
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Methods
Detailed description of the GWASkb system. The system used to create
GWASkb is implemented in Python on top of the Snorkel IE framework.10 Snorkel
provides utilities for parsing XML documents and training machine learning
classifiers. The GWASkb system extends the parsers/classifiers in Snorkel and
applies them to the GWAS extraction task. Below, we provide additional details on
the various components of the system.

To identify simple phenotypes, we start by parsing paper titles and abstracts and
generate candidates from the EFO, Snomed, and Mesh ontologies. We use 11
labeling functions (LFs), which include the following: is the mention in the title; is
the mention less than five characters; does the mention contain nouns; is the
mention in the first half of the sentence, etc. We include the full list of LFs in
Supplementary Note 6. The high-level phenotype is the set of three highest scoring
mentions exceeding a user-specified score threshold or the single highest mention
if none exceeds the threshold; this enables us to handle multiple valid phenotypes.

To identify precise phenotypes, we start by only parsing tables and generate
candidates from cells whose header contains the words “phenotype”, “trait”, or
“outcome”. Candidate p values are generated by matching a regular expression;
candidate relations consist of horizontally aligned phenotype and p value
candidates. We use three LFs (provided in Supplementary Note 6): is the candidate
mostly a number; is the header of the cell (indicating it is in a phenotype column)
very long; does the mention contain words referring to an rsid.

Next, we resolve acronyms by looking at the entire paper, including tables and
the main natural language text in the body of the paper. We extract candidates
from aligned pairs table cells, where one row is labeled “phenotype”, “trait”, or
“description”, while the other is labeled “abbreviation”, “acronym”, or “phenotype”.
We generate candidates from the main text using a regular expression. Our LFs,
include the following: is the candidate all in caps; does the candidate match to the
Snomed dictionary; does the acronym candidate consist of the letters of each word
of the phenotype candidate; is one a prefix of the other; etc. The module for
resolving abbreviations is linked in Supplementary Note 7.

Finally, we identify p values by again generating candidates from tables; SNP
candidates are generated using a regular expression; p value candidates are ones
that match one of three regular expressions (see Supplementary Note 8); candidate
relations consist of horizontally aligned SNP and p value candidates (with at most
one rsid per row). These candidates were accurate and we report them all.

Mapping phenotypes across databases. In order to compare against GWAS
Central and GWAS Catalog, we define mappings between GWASkb phenotypes
and ones used in these two repositories. These mappings are tables with about 800
entries each that also indicate whether the mapping is fully or partially correct (e.g.,
“smoking behaviors” is less precise than “packs per day”). We define the latter as
conceptually containing the precise label while also being not so broad as to be
useless. See also our earlier discussion on high- and low-level phenotypes.

Understanding the errors of GWASkb system components. Errors at the simple
phenotype extraction stage mostly occur when the true phenotypes are not found
in our candidate dictionaries (e.g., for the phenotype “genome-wide association
study in bipolar patients,” we can only generate the candidate “bipolar disorder”).
The second major source of error are phenotypes mentioned only in passing (e.g.,
the phenotype “high body fat is a risk for diabetes” when diabetes is not the
phenotype whose association is being reported).

To estimate the precision of this module, we first restrict ourselves to (paper,
rsid, and phenotype) relations produced by GWASkb that are also confirmed by an
existing database, in the sense that the variant specified by the rsid occurs in some
relation associated with the paper (but not necessarily one with the same
phenotype). Then, we look at the fraction of these relations whose phenotype is
also correct (at the approximate level). This gives precisions of 97% in the GWAS
Catalog and 96% in GWAS Central.

Most errors at the precise phenotype extraction stage occur because we do not
correctly resolve acronyms or because low-level phenotypes are not in tables (but
rather only in text). Acronyms are not resolved most often because the shortened
symbol is not clearly related to the full expression (e.g., CYS5 for Cysteine
proteinase inhibitor 5 precursor), and they are presented in tables with confusing
formatting. We estimate precision in the same way as for simple phenotypes, but
this time, we require that phenotype agree fully. Precision was 73% in GWAS
Central, the database with the most precise phenotypes. In GWAS Central, it
was 82%.

To evaluate p value extraction accuracy, we labeled by hand 100 random
relations and found that our rule-based extraction procedure had a precision of
98%. Errors occurred when p values referred to other entities in the row, such as
haplotypes. Note also that oftentimes, variants and their p values are only provided
in text but not in tables. This was the primary reason why we failed to report the
rsid’s of 584 (15%) GWAS Catalog and 432 (14%) GWAS Central associations.

Error analysis over 100 new relations. The 100 variants were not in the GWAS
Catalog for one of the following reasons:

1. [44 variants]: Variants that are significant in one analysis cohort, but not in
the combined meta-analysis. We believe such associations may still be

useful in several applications, such as enrichment analysis. In order to
make it easy to use these variants, we have extracted a set of meta-data for
each variant (and described above); this meta-data can be used by
researchers to determine the associations that are not significant in the
meta-analysis.

2. [27 variants]: Variant is in the same locus as a more significant variant that
is in also in the GWAS Catalog. However, the LD between these two
variants is weak. Even though two variants are in same locus (i.e., within the
same genomic region) they may not be in strong LD. We found this
happened quite often; we validated our estimated LD numbers (these were
derived from the 1000 Genomes dataset) with an online tool from the NIH.
In our analysis we used r2 < 0.5 in the most precise population available for
the study (e.g., CEU, EUR, and ALL) as a threshold for what constitutes
weak LD. When the LD is weak according to both our estimates and the
NIH tool, we believe that cataloguing our proposed association would be
useful to researchers.

3. [9 variants]: Variant is in the same locus as a more significant variant that is in
also in the GWAS Catalog. The LD between these two variants is strong.
These variants may not be useful as the variants that are in weak LD.
However, including them may be still useful in some uses cases, because the
LD cutoff for what constitutes a strongly correlated variant may change in the
future. Collecting these variants allows users to later select the subset of the
data that is relevant to their needs.

4. [8 variants]: Variant appears in previous paper, but is also found to be
significant in this paper. The variant was found to be significant in an earlier
study, and in the discovery stage of the current study, but not in its meta-
analysis stage. The GWAS Catalog guidelines indicate that such variants
should be included, but we found cases when they were not.

5. [5 variants]: Variant appears in previous paper, but is not found to be
significant in this paper. The variant was found to be significant in an earlier
study, but not the discovery stage of the current study, hence it was correctly
not included in the GWAS Catalog.

6. [7 variants]: GWASkb extraction error. We extracted an incorrect phenotype
for these variants.

Most of the above variants have been excluded from the GWAS Catalog for
scientific reasons. However, we recommend a large number of these variants for
inclusion in a broader database, because they are still relevant to researchers. These
include, 8 variants that have been replicated from a previous study, 27 variants that
are in the same locus as a GWAS Catalog variant, but whose LD is weak (35
variants in total). In addition, 44 variants that have not been replicated in a meta-
analysis and 9 variants that are in LD with GWAS Catalog variants at r2 ≥ 0.5 (50
variants in total) may also be useful in a limited number of applications, as
described above. The remaining 12 variants are not worth curating, and represent a
GWASkb error. See Supplementary Note 4 for further detail.

Overall, these are the key takeaways of the analysis:

● Our inclusion criterion is less stringent than that of the GWAS Catalog, but
would be comparable to that of some other human-curated databases, such as
GWAS Central.

● Providing an extended set of associations—a large part of which is valid and
can be efficiently verified—has the potential to assist curators. The additional
variants not in the GWAS Catalog can still be useful for certain analysis, but
researchers need to use their judgment before using them.

● Our system also produces a small number of errors. For this reason, we
recommend that all automated extractions be validated, though we expect the
validation process to be much faster than discovery.

Estimating the precision of GWASkb
We estimate our overall precision at 94% relative to the output specifications of

our system. Of the 6422, associations reported by our system, we consider 3463 to
be correct because we could confirm them in an existing database (GWAS Catalog
or GWAS Central). We estimate the error rate on the other 2959 relations to be
between 12% (incorrect and repeat relations; this corresponds to GWASkb
specifications) and 53% (when adding the 44 variants not confirmed in the meta-
analysis; these are the set of associations in which we would have the least
confidence), for an estimated total precision of 78–94% over the 6422 reported
relations.

Data availability
The complete datasets and code used in the current study are available in the gwaskb

repository, accessible at https://github.com/kuleshov/gwaskb. The resulting knowledge

base, GwasKB, is also accessible via a web portal at http://gwaskb.stanford.edu/. All other

data are contained within the article and its supplementary information (the source data

folder contains source code, raw input data including papers and ontologies, extra

figures, extra Jupyter analysis notebooks; see Supplementary Note 5).

Code availability
The complete datasets and code used in the current study are available in the gwaskb

repository, accessible at https://github.com/kuleshov/gwaskb, which includes full

documentation for running the code and reproducing results.
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