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Abstract: This paper describes a machine learning system that discovered a "neg- 

ative motif", in tracnsniembrane domain identification from amino acid sequences, 

and reports its experiments on protein data using PIR database. We introduce a 

decision tree whose node are labeled with regular patterns. As a hypothesis, the 

system produces such decision tree for a small number of ranclomly chosen positive 

and negative examples from PIR. Experiments show that our system finds reason- 

able hypotheses very successfully. As a theoretical foundation, we show that the 

class of languages defined by decision trees of depth at  most d over k-variable reg- 

ular patterns is polynomial time learnable in the sense of probably approximately 

correct (PAC) learning for any fixed d ,  k 2 0. 

Introduction 

Hydrophobic transmembrane domains can he identified with 90% accuracy for all data in PIR 

database by two consecutive polar amino acids (Arg, Lys, His, Asp, Glu, Gln, Asn) that 

are not included in the trabnsmembrabne domains. This result was discovered by the machine 

learning system that we developed using a decision procedure called a decision tree over regular 

*The work is partly supported by Grant-in-Aid for Scientific Research on Priority Areas, "Genome Infor- 

ma.ticsV from the h/Iii~istry of Education, Science and Cult l~re ,  Japan. 



patterns. 011 each trial, the systeln randoinly chooses, from PIR database [ll], a small number 

of training sequences; transmembrane d ~ i n a ~ i n  sequences and sequences cut out from the parts 

other than transmembrane domains. The sys tern has found very simple decision trees over 

regular patterns which indicate that significant motifs aare not inside but out side the sequences 

of the transmembrane domains. We call such motifs "negakive motifs". 

This paper describes a machine learning system that discovered negative motifs and reports 

its experimeiits on ltnowledge acquisition from amino acid sequences that reveal the importance 

of negative data. Former researches for finding motifs have focused only on positive examples 

and ignored mostly negative esa.mples. The approach by decision tree over regular patterns 

provides new direction and method for discovering motifs. 

A regular pattern [15, 161 is an expression woxlwlx~ -x,w, that defines the sequences 

containing wo, wl, ..., w, in this order, where each w; is a sequence of symbols and xj  varies 

over arbitrary sequences. Regular patterns have been used to describe some features of amino 

acid sequences and DNA sequences [l, 51. A decision tree over regu1a.r patterns is a tree which 

describes a decision procedure for determining the class of a, given sequence. Each node is 

labeled with either a class name (1 or 0) or a regular pattern. At a node with a regular 

pattern, the decision tree tests if the sequence inabtches the pattern or not. Starting from the 

root toward a leaf, the decision procedure malies a test at each node and goes down by choosing 

the left or right branch according to the result of the test. The reached leaf answers the class 

name of the sequence. 

We employ the idea of ID3 algoritliin [12] for constructing a decisioii tree since it is suf- 

ficiently fast and experiments show that small enough trees are usually obtained. We also 

devise a new method for constructing a decision tree over regular patterns using a score func- 

tion different from that in [12]. Given two sets of positive and negative examples, our machine 

learning system finds appropriake regular patterns as node attributes during the construction 

of the decision tree. Hence, unlike ID3, we need not struggle for defining the attributes of a 

decision tree beforehand. Our system maltes a decision tree just from a small number of train- 

ing sequences, which we also guarantee in the PAC learning theory [18] in Section 5. Therefore 

it may cope with a diversity of classification problems for proteins and DNA sequences. 

A hydropathy plot [4, 7, 141 has been used generally to predict transmembrane domains 

from primary sequences. With this ltnowledge, me first transform twenty amino acids to three 

categories (*, +, -) according to the hydropathy index of I<yte and Doolittle [7]. From randomly 

chosen 10 positive and 10 negative training examples, our system has successfully produced 

some small size decision trees over regular patterns which are shown to achieve very high 

accuracy. The regular patterns appearing in these decision trees indicates that two consecutive 

polar amino acid residues a,re important negative motifs for transmembrane domains. 



We have also made an experiment on raw sequences without transformation. Our system 

discovered a small size decision tree just from 20 raw sequences with more than 85% accuracy 

that show if a sequence contains neither E nor D (both are polar amino acids) then it is very 

likely to be a transmembrane domain. From the view point of Artificial Intelligence, it is 

quite interesting that these residues were found by our machine learning system without any 

knowledge on the hydropathy index. 

A well-ltnown structure around the membrane integrated domain is the signal-anchor struc- 

ture that consists of two parts, the hydrophobic part of a membrane-spanning sequence and 

the charged residues around the hyclropl~obic part 18, 191. The negative motif of consecu- 

tive polar amino acid residues may be closely related to the signal-anchor structure. After 

knowing the importance of negative motifs, we have found a parttern x1 -x2-x3-x4-x5-x6 that 

gives the sequences containing att least five polar amino acids. The result on the pattern 

xl-x2-33-x4-x5-x6 shows that the accuracy is 95.4% for positive and 95.1% for negative ex- 

amples although it has been believed to be difficult to define transmembrane domains as a 

simple expression when the view point was focussed on positive examples. 

2 Decision Trees over Regular Patterns 

Let C be a finite alphabet and X = {x, y, 2, z l ,  2 2 ,  . . .) be a set of variables. We assume that 

C and X are disjoint. A pat tern  is an element of (C U X)+, the set of all nonempty words over 

C u X. For a pattern T, the language L(T) is the set of words obtained by substituting each 

variable in T for a word in C*. We sa.37 that a pattern T is regzllar if each variable occurs at  most 

once in T .  For exa,mple, x a y b z a  is a regular paktern, but xx is not. Obviously, regular patterns 

define regular languages, but not vice versa. In this paper we consider only regular patterns. 

A regular pattern containing at inost k variables is called a k-variable regular pat tern.  

A decis ion tree  o v e r  regular pa t terns  is a binary tree such that the leaves are labeled with 

0 or 1 and each internal node is labeled with a regular pattern (see Figure 1). For an internal 

node v, we denote the left and right children of v by left(v) and right(v), respectively. We 

denote by ~ ( v )  the regular pattern assigned to the internal node v. For a leaf u, value(u) 

denotes the value 0 or 1 assigned to u. The cle12th of a tree T, denoted by depth(T), is the 

length of the longest path from the root to a leaf. 

For a decision tree T over regular patterns, we define a function fT : C* -+ {O, 1) as follows. 

For a word w in C*, we determine a pakh from the root to a, leaf and define the value fT(w) 

by the following algorithm: 



begin /*  Input: w E C* */ 
v t- root; 

while v is not a leaf do 

if w E L(?r(v)) then v t-right(v) else v t-left(v); 

fT(w) t value(v) 

end 

For a decision tree T over regular patterns, \Ire define L(T) = {w E C* I fT (w)  = 1). 

It is easy to see that L(T) is also a regular language. But the converse is not true. Let 

L = {a2" I n 2 1). It is straightforward to s l ~ o ~ v  that there is no decision tree T over regular 

patterns with L = L(T). The same holds for the language {a2"b I n 2 1). 

Figure 1: Decision tree over regular pactterns defining a language {ambna' I rn, n, I 2 1) over 

E = { a ,  b )  

3 Constructing Decision Trees 

This section gives two kinds of algorithms for constructing decision trees over regular patterns 

that are used in our machine learning system. 

The first a.lgorithm employs the idea, of Quinl an's ID3 algorithm [I 21 for constructing deci- 

sion trees. The ID3 algorithm assuines the attributes of a decision tree in advance. Therefore, 

we have to determine which regular patterns can be used for attributes of a decision tree. 

Our algorithm finds appropriate regular patterns for the attributes dynamically during the 

construction of the decisioil tree. This is the point where our algorithin differs from ID3. The 

following recursive algorithm DT1 (P, N) sltetches our decision tree algorithm: 



funct ion DT1 ( P, N : sets of strings ): node; 

begin 

if AT = 0 t h e n  

r e t u r n (  CREATE("ln, null, null) ) 

else if P = 0 t l ~ e n  

r e t u r n (  CREATE("O", null, null) ) 

else begin 

let ?r be a shortest regular pattern such that E(T, P, N) is minimum; 

PI+-PnL(n); Po+-P-PI; 

Nl + i \ i n L ( ~ ) ;  ATo+-AT-ATl; 

r e t u r n (  CREATE(n,DT(Po, ATo),DT(Pl, Nl)) ) 

end  

e n d  

CREATE(x,To, TI) returns a new tree with a, root labeled with x whose left and right 

subtrees are To and TI, respectively. The cost E ( T ,  P, N) is the one defined in [12] by 

-- 
where PI = IP n L(n)l, nl = InT n L(n)l, p~ = IP n L(x)l, no = IN n L ( T ) ~ ,  L(a)  = C* - L ( T )  

and 

Now we introduce the second algorithm for constructing decision trees. Let nodes(?') be 

the number of nodes in T, and I ( T )  be the set of trees constructed by replacing a leaf v of T 

by a su,~tree E$ or 8 for son,.. paIttern r. 

The score function Score(T, P, N) is defilied by 

Then the second algorithm is sltet ched a.s follows: 



funct ion DT2( P, N: sets of strings, MaxNode: int ) : tree; 

begin  

if AT = 0 tlieil 

r e t u r n (  CREATE("lV, null, null) ) 

else if P = 0 t h e n  

r e t u r n (  CREATE("OV, null, null) ) 

else b egiii 

T tCREATE(" l " ,  null, null); 

while ( nodes(T) < A/lamNocle a n d  Score(T, P, AT) < 1 ) d o  

begin 

find Tmaz E I ( T )  that niaxiinizes Score(T,,,, P, N); 

T + Tmaz 

eiid 

e n d  

r e t u r n  ( T ) 

e n d  

Algorithm 2 

Algorithm 2 is slower than Algorithm 1 since all leaves are checked at each phase of a node 

generation. However, Algorithm 2 constructs decision trees which are finely tuned when the 

size of decision trees is large. Rqoreover, it is noise-tolerant, i.e., it allows conflicts between 

positive and negative training examples. 

4 Transmembrane Domain Identification 

The problem of transmembrane domatin identification is one of the most important protein 

classification problems and some methods and experiments have been reported. For example, 

Hartman et al. [GI proposed a method using the hydropathy index for amifio acid residues in 

[7]. The reported success rate is about 75%. Most approaches deal with positive examples, 

i.e., sequences correspondii~g to tra.nsmembra,ne cloi~ia~ins, and try to find properties common 

to them. 

The sequence in Fig~lre 2 is a*n amino acid sequence of a membrane protein. There is a 

tendency to assume that a n~ernbra~ne protein contaSins several transmembrane domains each 

of which co~isists of 20 - 30 amino acid residues. Therefore, if a sequence corresponding to a 

transmembrane domain is found in a.n a,mino acid sequence, it is very likely that the protein 

is a membrane protein. 



MDVVNQLVAGGQFRVVKE(PLGFVKVLQ~~FAIFAFATCG~Y~TGELRL~~E~ANKTE~ALNIE~EF 

EYPFRLHQVYFDAPSCVKGGTTKIFLVGDYSSSAE(FFVTVAVFAFLYSMGALATYIFL)QNKYREN 

NK(GPMMDFLATAVFAFMWLVSSSAWA)KGLSDVKMATDPENIIKEMPMCRQTGNTCKELRDPVTS( 

GLNTSVVFGFLNLVLWVGNLWFVF)KETGWAAPFMRAPPGAPEKQPAPGDAYGDAGYGQGPGGYGPQ 

DSYGPQGGYQPDYGQPASGGGGYGPQGDYGQQGYGQQGAPTSFSNQM 

Figure 2: An amino acid secluence which contains four transmembrane domains shown by the 

pasenthesized parts. 

Our idea, for tra,nsrnembrane doina.in idcnt6ifca.tCion is to use decision trees over regular 

patterns for classification. Algorithm 1 and 2 introducecl in Section 3 are used to find good 

decision trees from positive and negative training exa.mples. 

A positive example  is a sequence which is a.lready known to be a transmembrane domain. 

A negat ive  example  is a sequence of length a.rounc1 30 cut out from the parts other than 

tra3nsmembrane domains. From PIR data hase [ll], our machiile learning system chooses 

randomly a small amount of positive and nega,tive training examples. Then, by using Algorithm 

1 or Algorithm 2, the system constructs a decision tree over regular patterns at each trial and 

produces decision trees with good accuracy. 

We have evaluated the perfor~na~nce ratio of a decision tree in the following way. As the total 

space of positive examples, we use tlie set POS of all transmembrane domain sequence (689 

sequences) from PIR databa>se. The total space NEG of negative examples consists of 19256 

negative examples randomly chosen from all proteins from PIR. The success rate of a decision 

tree for positive e~a~mples  is the percentage of the positive examples from POS recognized as 

positive (class 1). The success rake for l~egat~ive exa~nples is counted as the percentage of the 

negative exa.mples from NEG recognized as nega.tive (class 0). 

In order to avoid combinatorial explosion, we restrict regular patterns to the regular pat- 

terns of the form zay. I11 this form, z and !/ are variables and cu is a subword taken from 

given examples. Given a set P of positive tra4ining exa.mples and a set N of negative training 

examples, we woulcl like to construct a small clecisioii tree over regular patterns which classifies 

P and hr exactly. 

The alphabet of amino acid secluences consists of twenty symbols. It has been shown that 

the use of the 11ydropa.thy index for a.mino acids is very successful [I ,  61. According to tlie 

hydropathy index of [7], we traJnsform these twenty symbols to three symbols as shown in Table 

1. This transformation recluces the size of a search space drastically small. 

Then by this transformation table, the sequence in Figure 2 becomes the following sequence 

(Figure 3): 

Our system can, of course, cope with both ra.w sequences from twenty symbols and indexed 



Amino Acids Hydropathy Index New Symbol 

A M C F L V I  1.8 - 4.5 + * 
P Y W S T G  -1.6 -0.4 + + 
R K D E N Q H  -4.5 -3.2 4 - 

Table 1: Tra8nsformation rules 

Figure 3: The sequence obta.inec1 by the transformation 

sequences from three symbols. We made experiments on both raw and indexed sequences. 

Figure 4 (a), (b) show two of the best clecision trees over regular patterns that our machine 

learning system found from 10 positive and 10 liegakive training examples. The decision tree 

(a) recognizes 91.4% of positive examples and 94.8% of negative examples. Even the decision 

tree of (b) can recognize 92.6% of the positive examples and 91.6% of the negative examples. 

The negative motif "- -" which indicates consecutive polar amino acid residues plays a key 

role in classification. This may have a close rela.tion to tlie signal-anclior structure [8, 191 as 

meiitioned in Introduction. 

Figure 4 (c) is one of the smallest clecision trees discovered by our system just from 10 

positive and 10 negative raw sequences thak a.chicxre good accuracy. The decision tree (c) also 

shows the importance of a cluster of polar asmino a.cids in t~a~nsmembrane domain identification 

although our machine learning system has no linowledge about the hydropathy. 

We examined how the perforrr~a~nce of our machine learni~lg system changes with respect 

to the number of training examples. The training exa~nples are chosen randomly ten times in 

each case and a point of the graph of Figure 5 is the average of these ten results for each case. 

Figure 5 shows the results. We may observe the following facts: 

1. The hydropathy index of I<yte and Doolittle [7] is very useful. When indexed sequences 

are used, the system can produce from 40 positive a3nd 40 nega3tive examples a decision 

tree with only several nodes whose accuracy is more tlian 90% for the total space in 

average. On the other hand, for raw sequences the accuracy is not so good but both 

accuracies approach to tlie same line as the number of training examples increases. 

2. The number of nodes of a decision tree is reasonably small. But when the number of 



(a) (91.4%) 94.8%) (b) (92.6%) 91.6%) (c) (84.8%, 89.6%) 

Figure 4: Tlie node label, for example, -- is an a.bbrevia.tion of XI--x2 that tests if a given 

sequence contains the sequence --. The leaf label 1 (resp. 0) is the class name of transmem- 

brane domains (resp. non-trai~smembra~ne dornains). The total space consists of 689 positive 

examples and 19256 negative examples. Each of the decision trees (a)-(c) is constructed from 

10 positive and 10 negative training sequences. The pair [p, n] attached to a leaf shows the 

number p of positive examples and the number n of negative examples that have reached to the 

leaf. Tlie pair (p%, n%) means that p% of 689 positive (resp. 72% of 19256 negative) examples 

are recognized as transmembrane domains (resp. non- transmembrane domains). 

training examples is larger, the number of nodes in a decision tree becomes larger while 

the accuracy is not improved very mucli. There may arise the problem of overfitting. 

A new discovery obtained from tjhese decision trees is that the motif "--" drastically rejects 

positive examples. After linowing the negative motif "--" , we have examined the decision trees 

with a single node with the patterns of the form 

for n 2 3. The best is the pattern containing '(-" five times. The result is quite acceptable as 

shown in Table 2. 

Table 2: Result for xl-x2-x3-x4-x5-x6 

Pattern 

x1-x2-~3-x4-x,i-j-16 

With these decision trees over regu1a.r patterns, me have developed a transmembrane domain 

predictor that reads an amino acid sequence of a protein as an input sand predicts symbol by 

symbol whether each location of a symbol is in a tra.nsmembrane domain or not. Experiments 

on all protein sequences in PIR show tlia,t the success rate is 85% 90%. 
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POS (689) 

657 (95.4 %) 
NEG (19256) 

18304 (95.1%) 



Accuracy (%) 

~ * m e s ~ e e . m  indexed positive 

w e a e n * s m t  indexed negative 

+ raw positive 

--C raw negative 

Number of Nodes 
in Decision n e e  

8 . l ' ~ I I I I I I  raw 
,...A ..... , indexed 

0 20 40 60 80 100 

Number of Training Examples 

Figure 5: Relations between the nuin1)er of training examples, accuracy and the number of 

nodes in a decision tree 

5 PAC-Learnable Class 

Quinlan's ID3 algorithm is not guaranteed to construct a minimum depth or small size decision 

tree and it is not lcnown whether it a,pproximates the optimal decision tree with some error 

ratio. However, it is sufficiently fast a3nd it seems that a small enough decision tree is usually 

obtained and we have no problem in practical use. The ID3 algorithm has received considerable 

attentions [13, 171. 

This section provides a theoretical foundation from the point of algorithmic learning by 

showing the following theorem though it is apart from the ID3 algorithm. The proof of the 

theorem shall be given in the full paper. 

For integers k,  d 2 0, we consider a decision tree T over k-~a~riable regular patterns whose 

depth is at most d. We denote lrty D T X P ( d ,  k )  the class of languages defined by decision trees 

over Ic-variable regular patterns with depth s t  most d. 

Theorem 1 DTRP(d,  Ic) is polyi~omia~l-time lea.rna,ble for all d, k 2 0. 

We need some terminology for the above theorem. When we are concerned with learning, 

we call a subset of C* a concept. A concept class C is a nonempty collection of concepts. 

For a concept c E C, a, pair (x,c(x)) is called a3n example of c for x E C*,where c(x) = 1 



(c(x) = 0) if x is in c (is not in c) .  For an alphabet C and an integer n 2 0, CSn denotes the 

set {x E C* 1 1x1 5 n}.  

A concept class C is said to be polynomial-time learnable [2, 10, 181 if there is an algorithm 

A which satisfies (1) and (2). 

(1) A takes a sequence of exa.mples as a,n input and runs in polynomial-time with respect 

to the length of input. 

(2) There exists a polynomial p( . ,  ., .) such thak for any integer n 2 0, any concept c E C ,  

any real number E ,  S (0 < E ,  S < 1)) and any probability distribution P on CSn, 

if A takes p(n, :, $) exa3mples which are gei~era~ted randomly accordiilg to P, then 

A outputs, with probability at  least 1 - 6, a representation of a hypothesis h with 

P ( c  $ h )  < E .  

Theorein 2 [3, 101 A concept class C is polynornia,l- time learnable if and only if the following 

conditions hold. 

(1) C is of polynomial dimensio12, i.e., there is a polynomia.1 d ( n )  such that l{cn CSn I c E 

C} I 5 2d('4 for all n 2 0. 

(2) There is a randomized polynomial-time hypothesis finder for C that is an randomized 

polynomial-time a.lgorit11m which produces from a sequence of examples, with prob- 

ability at least y for some y > 0, a l~ypothesis which is consistent with the given 

examp les . 

Ehrenfeucl~t and I-Iaussler [3] have considered lea'rning of decision trees of a fixed rank. For 

learning decision trees over regular patterns, the restriction by rank can be shown to have 

no sense. Instead, we consider the depth of a decision tree. It is also reasonable to put a 

restriction on regular patterns. It llas been sho~vn that the class of regular pattern languages 

is not polynomial-time learnable unless NP # RP [9]. Therefore, unless restrictions such 

as bound on the number of variables in a regular pattern are given, we may not expect any 

positive results for p~lynomia~l-time learning. By using the equivalence in Theorem 2, we can 

prove Theorem 1. 

Given positive and negative examples, the algorithm in the proof of Theorem 1 finds a 

minimum depth decision tree which classifies ilie given data. It runs in polynomial time with 

respect to the length of input. But it exhausts acn enormous amount of time and is not suited 

for practical use. 



6 Conclusion 

We have shown that tlie idea of combining regular patterns and decision trees works quite well 

for transmembrane domain identificak ion. The experiments a.lso have shown the importance 

of negative 1110 t ifs. 

A union of regular patterns is regarded as a special forin of a decision tree called a decision 

list. We have reported in [I] that the union of small nuinber of regular patterns can also 

recognize transmembrane domains with high accuracy. IIowever, tlie time exhausted in finding 

hypotheses in [I] is much larger than that reported in this paper. 

Our system constructs a, decision tree over regular patterns just from strings called positive 

and nega.tive examples. We need not ta4ke care of which attributes to specify as in ID3. 

Therefore it can be applied to another ~la~ssifica~tion prohleins for proteins and DNA sequences. 

We believe that our approach provides a new a.pplication of algorithmic learning to Molecular 

Biology. 

We are now i11 the process of examining our method for predicting the secondary structure 

of proteins. 
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