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ABSTRACT

While spin qubits based on gate-defined quantum dots have demonstrated very favorable properties for quantum computing, one remaining
hurdle is the need to tune each of them into a good operating regime by adjusting the voltages applied to electrostatic gates. The automation
of these tuning procedures is a necessary requirement for the operation of a quantum processor based on gate-defined quantum dots, which
is yet to be fully addressed. We present an algorithm for the automated fine-tuning of quantum dots and demonstrate its performance on a
semiconductor singlet-triplet qubit in GaAs. The algorithm employs a Kalman filter based on Bayesian statistics to estimate the gradients of
the target parameters as a function of gate voltages, thus learning the system response. The algorithm’s design is focused on the reduction of
the number of required measurements. We experimentally demonstrate the ability to change the operation regime of the qubit within 3–5
iterations, corresponding to 10–15min of lab-time.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5088412

The realization of qubits based on semiconductor quantum dots
has reached a point where concrete architectures for large scale quan-
tum processors are being considered.1 Recent achievements represen-
tative of the state of the art include demonstrations of two-qubit
gates,2–4 single qubit fidelities meeting the requirements for error cor-
rection,5 and first steps in operating arrays of quantum dots.6–8

Another important ingredient for scaleup is inter-qubit coupling over
extended distances,8,9 e.g., via electron shuttling or cavities.10

A central starting point for the operation of qubits based on gate-
defined quantum dots is the so-called tuning of the system, i.e., the
procedure of identifying the voltages that need to be applied to the
electrostatic gates to capture and to tunnel-couple individual electrons.
Tuning by a human operator is very time consuming and will be
impractical for multi-qubit systems with more than a handful of
qubits. Efficient tuning is particularly pertinent for gate-defined quan-
tum dots because of the large number of tunable dot parameters and
gate voltages to control them, but is also relevant for other systems.
For qubits based on quantum dots, tuning is a two-step procedure,
which comprises both the formation of quantum dots and their deple-
tion into the few electron regime—which we refer to as coarse-
tuning—and, subsequently, the adjustment of parameters which define

the operation conditions of the qubit such as the tunnel coupling to
leads and between dots. This procedure is referred to as fine-tuning of
the qubit.

The initial coarse-tuning of gate-defined quantum dots relies
mainly on the recognition of certain features in charge stability dia-
grams (CSDs), which reflects the dot occupancy as a function of gate
voltages or transports through the dots.11,12 The most common prac-
tice is that a human operator interprets these measurements and
decides based on experience and intuition of how to adjust gate vol-
tages. Such manual tuning schemes have been extended to arrays of
quantum dots7,8 using virtual gates that compensate for capacitive
crosstalk between physical gates. Automated coarse tuning using
image processing tools like the Gabor filter and template matching to
identify quantum dot signatures has been demonstrated.13 Machine
learning techniques like convolutional neural networks to quantify
characteristics of CSDs by their similarity to simulated or measured
reference CSDs were also explored.14

To guide the subsequent fine-tuning, one can use either transport
measurements as well (e.g., supplementary material of Ref. 15) or a set
of pulsed-gate experiments that extract the parameters of interest.16,17

Adjusting gate voltages based on this information is complicated by
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the nonlinear dependence of the tunnel couplings on the gate voltages.
Furthermore, gate-defined quantum dots exhibit a strongly coupled
response, meaning that the voltage applied to each electrode has a con-
siderable influence on several chemical potentials and tunnel cou-
plings. “Virtual gates,” i.e., fixed linear combinations of gate voltages
each of which predominantly affects a single qubit parameter, are well
suited to decouple the control of chemical potentials. However, their
use is less straightforward for the control of several tunnel couplings,
which in addition to crosstalk typically exhibit a strongly nonlinear
dependence on gate voltages. To tune a single coupling parameter at a
time, van Diepen et al. presented a gradient descent procedure that
incremented the virtual gate associated with the target parameter until
the desired value was reached.17

Here, we propose and experimentally demonstrate an algorithm
for the fine-tuning of qubits based on gate-defined quantum dots,
which exploits machine learning for improving the efficiency of the
tuning procedure. Our algorithm combines a gradient-based optimiza-
tion with an adapted implementation of a Kalman filter. The latter
allows efficient tracking of the gradients of the parameters in the mul-
tidimensional voltage space. Each measurement of the parameters at a
new point in the voltage space is compared with the previous measure-
ment and used to update the gradient. This approach results in a full
automation of the simultaneous tuning of several coupled parameters.
When applied to two tunnel couplings while keeping two chemical
potentials fixed, it requires only 3–5 iterations to change a tunnel cou-
pling by a factor 2, corresponding to 10–15min of lab-time for the
parameter extraction procedures currently used.

For the experimental realization, we use a double quantum dot in
an AlGaAs/GaAs heterostructure in the same experimental setup as
Botzem et al.16 and build on the parameter-extraction procedures
developed there. The gate layout is shown in Fig. 1. The double quan-
tum dot is designed to be used as a singlet-triplet qubit and features a
neighboring sensing-dot for qubit readout based on spin-to-charge
conversion. All measurements are based on RF-reflectometry and per-
formed in a dilution refrigerator.

Although there are 9 DC-gates defining the quantum dots, only 4
of them are used to fine-tune the parameters, namely, the gates N, T,
SA, and SB. The voltages on SD1, SP, and SD2 are used to control the
sensing dot, and the chemical potentials are controlled with PA and
PB. The scans used to extract the parameters of interest are performed
with the RF-gates RFA and RFB, which are DC-coupled to an arbitrary
waveform generator. The qubit parameters that we want to tune are
the strength of the inter-dot tunneling, characterized by the width of
the inter-dot transition in gate voltage space, w,16,18 and the time
required to reload a singlet tsr. The latter characterizes the tunnel cou-
pling between one of the dots and its neighboring electron reservoir
and is measured via the dependence of the load efficiency on the corre-
sponding waiting time in the reload operation. Tuning these two
parameters is sufficient to obtain a fully operational singlet-triplet
qubit.16 The tunnel coupling to the other lead is almost closed to allow
for latching readout.19–21

Fine-tuning w and tsr to some target values w� and t�sr is compli-
cated by the fact that w and tsr are non-linear functions of four differ-
ent voltages. To optimize their values, we employ Newton’s method
with an approximated Jacobian, making our algorithm a quasi-
Newton method. In the kth iteration of the algorithm, the gate voltages
are updated according to the following formula:

v
ðkþ1Þ ¼ v

ðkÞ � JðkÞ
� ��1

D
ðkÞ; (1)

where vðkÞ ¼ ðvN ; vSA; vSB; vTÞ
T is a vector containing the voltage con-

figuration at step k, DðkÞ ¼ ðt
ðkÞ
sr � t�sr ;w

ðkÞ � w�ÞT contains the dis-

tance of the measured parameter values at step k from the target ones,

and JðkÞ is the Jacobian, with J
ðkÞ
ij ¼ @p

ðkÞ
i =@v

ðkÞ
j for j 2 ðN; SA; SB;

TÞ and pi 2 ðw; tsrÞ. ðJ
ðkÞÞ�1

D
ðkÞ is to be understood as the solution of

the corresponding, possibly underdetermined system of linear equa-
tions with minimal Euclidean norm.

Our tuning procedure combines the Newton step with the
Kalman filter as shown in the Unified Modeling Language (UML) dia-
gram in Fig. 2. Each iteration begins with a new measurement of the
parameters. If the measured values are already in the desired

FIG. 1. Gate Layout of the sample used for the experimental demonstration. The
dashed circles mark the approximate positions of quantum dots. Ohmic contacts are
marked by crossed squares. The left dot is used as the sensing dot controlled by
SD1, SD2, and SP. The RF-gates RFA and RFB, marked in blue, are utilized for rapid
control of the chemical potential in the double quantum dot, which is statically set with
the plunger gates PA and PB. The gates marked in red are used for tuning the tunnel
couplings. Gates T and N are designed to control the inter-dot tunnel coupling,
whereas SA and SB are meant to control the tunnel coupling to the electron reservoir.

FIG. 2. UML activity diagram of the tuning algorithm. The solver can be any gradi-
ent based optimization algorithm. The Kalman update consists of Eqs. (2) and (3).
Setting new voltages comprises a compensation of the shift in chemical potential by
plunger gates.
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parameter range, the voltages are accepted as the final state and the
algorithm terminates. Otherwise, gradient updates are performed by a
Kalman filter. The new gradients are then used in Eq. (1) to calculate
the new voltages to be applied to the gates. The algorithm mimics the
learning process of a human operator, who changes the voltages
according to a certain expectation of how this will affect the qubit
parameters, performs measurements to verify the result, and uses the
information gained from these measurements to refine the under-
standing of the behavior of the system.

Since Eq. (1) is based on a linearization of the dependence of
w and tsr on the applied voltages, we restrict the maximal voltage
change to 10mV because the linear approximation by the gradient
becomes less accurate when the steps are larger. On the other hand,
the restriction should be chosen as large as possible because the ratio
of the physical changes to the fluctuations of the parameters due to
noise and disorder grows with the step size. In addition, smaller steps
will lead to a larger number of steps for substantial changes. After the
new voltages are set, the contrast in the sensing dot is optimized with
the gates SD1 and SD2 and the chemical potential is corrected with
the plunger gates PA and PB (see supplementary material).

Since the parameters are in general strongly nonlinear functions
of the gate voltages, a naive implementation of a gradient-based opti-
mization algorithm would require the Jacobian JðkÞ to be remeasured
by finite differences in every iteration. This is a time-consuming opera-
tion because it requires many measurements at different voltages. To
avoid this issue, our algorithm takes a machine-learning approach and
uses a Kalman filter22,23 to estimate the Jacobian at step k using the
knowledge of Jðk�1Þ and the information drawn from a single set of
measurements.

The Kalman filter is an algorithm designed to estimate a system
of normally distributed random variables obtained from noisy mea-
surements at discrete steps k and knowledge of their dynamics. We
use an adapted version of the Kalman filter specific to our needs,
which are the estimation of the gradient g

ðkÞ
j ¼ h@pðkÞ=@vji and the

corresponding covariance matrix C
ðkÞ
i;j ¼ hð@pðkÞ=@vi � g

ðkÞ
i Þ ð@pðkÞ=

@vj � g
ðkÞ
j Þi of a parameter p in iteration k as a function of the control

voltages vi=j for i; j 2 ðN; SA; SB; TÞ. Expectation values h�i refer to
the distribution of the uncertain parameters being tracked. For each
p 2 fw; tsrg, we use a Kalman filter to track the estimation of its gradi-
ent described by g and C. Each instance of the Kalman filter approxi-
mates a row in the Jacobian J by means of its distribution. The initial
values gð0Þ and Cð0Þ are measured by finite differences as discussed in
the supplementary material.

In each iteration, the Kalman filter uses the information gained
from a new measurement of the parameters pðkÞ to update the values
of g and C according to the following formulas:23

gðkÞ ¼ gðk�1Þ þ K ðkÞðzðkÞ �HðkÞgðk�1ÞÞ; (2)

CðkÞ ¼ ðI � K ðkÞHðkÞÞCðk�1Þ þ Q: (3)

Here, HðkÞ is an observation model (consisting in our application of
1� 4 matrices) that maps the “state space” of the Kalman filter (i.e.,
the space of gðkÞ) onto the measurement space (i.e., the space of pðkÞ),
with elements H

ðkÞ
1;j ¼ v

ðkÞ
j � v

ðk�1Þ
j . The product HðkÞgðk�1Þ then rep-

resents the predicted change in the parameter p due to the change in v

at step k, which is compared in Eq. (2) with the measured change
zðkÞ ¼ pðkÞ � pðk�1Þ. The matrix K ðkÞ is the so-called Kalman gain

K ðkÞ ¼
Cðk�1ÞHðkÞ;T

HðkÞCðk�1ÞHðkÞ;T þ DzðkÞ
2 ; (4)

which depends on both the uncertainty of our knowledge of the gra-
dients represented by the covariance matrix CðkÞ and the measurement
uncertainty DzðkÞ

2
¼ dpðkÞ

2
þ dpðk�1Þ2, with dpðkÞ being the error on

the measurement of pðkÞ (see supplementary material). An inaccurate
measurement has a very large DzðkÞ

2
and therefore a small gain. The

information gained with the measurement not only contributes to
updating the value of the gradient [see Eq. (2)] but also reduces the
covariance matrix CðkÞ by a factor determined by the Kalman gain
[first term in Eq. (3)]. The algorithm becomes Broyden’s method in
the limit Dz ! 0. In addition, we include a fixed increase by the term
Q, which accounts for the additional uncertainty related to our lack of
knowledge of how the gradient changes while changing voltages, i.e.,
of how gðkÞ deviates from gðk�1Þ.

In our case, Q is chosen heuristically with the constraint that the
estimated increase in the uncertainty of the parameter evaluation,
HðkÞQHðkÞ;T , must be of the same order of magnitude as the measure-
ment uncertainty DzðkÞ

2
for typical values of HðkÞ. This ensures a rea-

sonable Kalman gain K ðkÞ [compare Eq. (4)] and hence the change in
the prediction gðkÞ. Note that too small values for Q lead to an almost
constant g, which can cause slow convergence or oscillatory behavior
of Eq. (1). Too large values on the other hand lead to abrupt changes
in g, which may be problematic if individual measurements occasion-
ally give wrong results, e.g., because the underlying fit does not con-
verge (see supplementary material).

To test the algorithm, we cyclically changed the target parameters
ðtsr ;wÞ in the sequence (20 ns, 270lV)–(70ns, 270lV)–(70ns,
180lV)–(20ns, 180lV)–(20ns, 270lV). For each pair of set points,
we performed 21 iterations regardless of the convergence. The result-
ing voltage changes are not necessarily cyclical as the system is under-
determined. The choice of the lower set point of tsr is limited by the
bandwidth of the data acquisition hardware, and the lower set point of
w is limited by temperature broadening. We chose the upper limits
such that we restrict the range to values typically used in experiments.
The observed fluctuations around the set points can largely be attrib-
uted to noise in the parameter extraction. They are the main limiting
factor for the achievable accuracy of the tuning result. According to
our experience, this level of accuracy is sufficient for qubit operations,
which can tolerate static variations of the parameters considered here
by at least 50%. The data in Fig. 3(a) demonstrate that the parameters
can be tuned individually within three to five steps with a total dura-
tion of 10–15min. This time includes the compensation of shifts in
the chemical potentials and the adjustment of sensor operating points.
It is determined by the measurement time, while the computational
time is negligible. This performance is comparable to that reported in
Ref. 17 for the tuning of a single tunnel coupling. A speedup of the
tuning routine could be achieved by optimizing the way we extract
w and tsr. The time required by each measurement is discussed in the
supplementary material.

The estimates of the gradients gðkÞ are plotted in Fig. 3(b). We
see that abrupt changes in the gradient estimates mostly occur in the
first steps of each region right after set points are changed. In the
upper graph in Fig. 3(b), the absolute values of the elements
@tsr=@VSB and @tsr=@VT are much larger than those of the other two
elements because they form the tunnel barrier to the lead next to

Applied Physics Letters ARTICLE scitation.org/journal/apl

Appl. Phys. Lett. 114, 133102 (2019); doi: 10.1063/1.5088412 114, 133102-3

Published under license by AIP Publishing

ftp://ftp.aip.org/epaps/appl_phys_lett/E-APPLAB-114-009913
ftp://ftp.aip.org/epaps/appl_phys_lett/E-APPLAB-114-009913
ftp://ftp.aip.org/epaps/appl_phys_lett/E-APPLAB-114-009913
ftp://ftp.aip.org/epaps/appl_phys_lett/E-APPLAB-114-009913
ftp://ftp.aip.org/epaps/appl_phys_lett/E-APPLAB-114-009913
https://scitation.org/journal/apl


RFB (see Fig. 1), which is used for the electron exchange in the sin-
glet reload mechanism. The gradient elements @tsr=@vj for j 2
ðN; SA; SB;TÞ are almost constant, indicating only weak effects due
to non-linearity.

The gradient of the transition width in the lower graph in Fig.
3(b) is more complicated, presumably because all gates control the
positions of the quantum dots and hence the inter-dot tunnel coupling
and the transition width. The element @w=@VSB changes by a factor of
3, and the other elements change their sign during the experimental
demonstration. These changes in the gradients confirm that the
dependence of the qubit parameters on the control voltages is strongly

non-linear, which indicates that tuning procedures based on pre-
calibrated gradients would be inefficient and underpins the advantage
of tracking the changes of the gradients during the tuning procedure.

To facilitate the adoption of this approach, we provide an imple-
mentation of the algorithm as a python package named qtune.24 It
contains our implementation of the Kalman filter and more tools that
simplify an automated fine-tuning program. The implementation
complies with good software engineering practices by including a full
documentation and unit tests with high coverage. A general interface
makes the package adaptable to other setups.

In conclusion, we used the Kalman filter to construct a fully auto-
mated fine-tuning procedure. Thereby, we demonstrated the ability of
the Kalman filter to be used in combination with a gradient based
optimization algorithm to efficiently solve a non-linear optimization
problem without re-measuring the gradient. Thus, the algorithm does
not only save time and resources but also provide valuable information
about the qubit in the form of the gradient of its characteristics as a
function of voltages, which can be used for evaluating its tunability.

Improvements of the convergence behavior could likely be
achieved by choosing Q depending on the size of the voltage step in
each iteration. In comparison with other quasi-Newton methods like
Broyden’s methods, our procedure offers the advantage of taking sta-
tistical errors into account. The resulting performance advantage is yet
to be demonstrated by detailed benchmarks. An additional perfor-
mance increase may be achievable by feeding the logarithms of tunnel
couplings into the algorithm, thus linearizing the expected exponential
dependence of the tunnel coupling on gate voltages.25 However, this
would likely not capture all non-linearities, with effects of shifting the
electron locations being one potential counterexample.

The algorithm has been tested on a semiconductor spin qubit in
a AlGaAs/GaAs double quantum dot but could also be applied to
other types of qubits, including any qubit based on gate defined quan-
tum dots. Automated tuning procedures not only will be needed for
operating quantum processors but can also be very valuable for the
systematic characterization and optimization of qubit technology and
reproducibility. In fact, the possibility to tune a qubit is a key criterion
for its functionality and is intimately related to the tuning procedure
employed. Hence, “smart” algorithms can make any given qubit
design more successful.

See supplementary material for an extension of the measurement
data in Fig. 3 and the corresponding voltage values of the full experi-
mental demonstration for completeness. We also elaborate on the con-
trol of the sensing dot and the chemical potentials in order to discuss
the time consumption of our algorithm in detail. We include a descrip-
tion of the initial values, our method to estimate the measurement
uncertainty, and the choice ofQ in Eq. (2) as well.

We thank F. Haupt for helpful input on this article and Robert P.
G. McNeil for the fabrication of the sample. We acknowledge support
from the Impulse and Networking Fund of the Helmholtz association,
the Helmholtz Nano Facility (HNF) at the Forschungszentrum J€ulich,26

the Deutsche Forschungsgesellschaft under grant BL 1197/2-1 and BL
1197/4-1, and the Excellence Initiative of the German federal and state
governments. A. Ludwig and A. D. Wieck gratefully acknowledge
support of DFG-TRR160, BMBF - Q.Link.X 16KIS0867, and DFH/UFA
CDFA-05-06.

FIG. 3. Experimental demonstration of the tuning algorithm. The iteration number k
is given by the number of cycles in the diagram shown in Fig. 2. (a) The parameters
are plotted in red. The horizontal blue lines are the current set points, and vertical
blue lines mark changes in the set point. Different set points are counted by roman
numerals. The parameters are tuned within 3–5 iterations into the desired range
with an accuracy limited by parameter fluctuations due to statistical noise in the
measurement. (b) Gradients of the parameters with respect to the voltages on the
gates N, SA, SB, and T, tracked by the Kalman filter. The error bars are the square
roots of the diagonal elements in the gradient’s covariance matrix, which are larger
in the lower graph because the measurements of the inter-dot transition are gener-
ally less accurate. The gradients in the regions with set point I show some differ-
ences although the parameters are similar. This can be explained by the influence
of the initial gradient estimation and different gate voltages as the system is under-
determined with two parameters controlled by four voltages. (Gate voltages and
extension in the supplementary material.).
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