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A Machine Learning Approach for Detection and

Quantification of QRS Fragmentation

Griet Goovaerts†, Sibasankar Padhy†, Bert Vandenberk, Carolina Varon, Rik Willems and Sabine Van Huffel

Abstract— Objective: Fragmented QRS (fQRS) is an acces-
sible biomarker and indication of myocardial scarring that can
be detected from the electrocardiogram (ECG). Nowadays,
fQRS scoring is done on a visual basis, which is time-
consuming and leads to subjective results. This study proposes
an automated method to detect and quantify fQRS in a con-
tinuous way using features extracted from Variational Mode
Decomposition (VMD) and Phase-Rectified Signal Averaging
(PRSA). Methods: In the proposed framework, QRS com-
plexes in the ECG signals were first segmented using VMD.
Then, 10 VMD- and PRSA-based features were computed and
fed into well-known classifiers such as Support Vector Machine
(SVM), K-nearest neighbors (KNN), Naive Bayesian (NB),
and TreeBagger (TB) in order to compare their performance.
The proposed method was evaluated with 12-lead ECG data
of 616 patients from the University Hospitals Leuven. The
presence of fQRS in each ECG lead was scored by five raters.
Both detection and quantification of fQRS could be achieved
in this way. Results: The experimental results indicated that
the proposed method achieved AUC values of 0.95, 0.94,
0.90, and 0.89 using SVM, KNN, NB and TB classifiers
respectively for detecting QRS fragmentation. Assessment of
quantification performance was done by comparing the fQRS
score with the total score, obtained by summing the scores
from the individual raters. Results showed that the fQRS
score clearly correlated with this estimate of fQRS certainty.
Conclusion: The proposed method obtained good results in
both fQRS detection and quantification, and is a novel way
of assessing the certainty of QRS fragmentation in the ECG
signal.

Index Terms— ECG signal processing, Phase rectified signal
averaging, QRS fragmentation, variational mode decomposi-
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I. INTRODUCTION

The electrocardiogram (ECG) is a non-invasive diagnostic
tool that is used for diagnosis of various heart conditions.
While ECG signals can be single-lead or multilead, in
clinical practice 12-lead ECGs are commonly used in order
to assess the spatio-temporal dynamics of the heart. There
are a number of biological markers that have been used for
diagnosis of different cardiac diseases that can be derived
from the ECG signal. One of the promising markers in
the 12-lead ECG is QRS fragmentation (fQRS). It is
defined by Das et al. [1] as the presence of an additional
R wave (R’) or a notch in the nadir of the S wave in
at least two contiguous leads on the 12-lead ECG. Das
et al. showed that fQRS can be a convenient marker
of myocardial scar, which may lead to high-risk cardiac
events like heart failure, need for revascularization, or
sudden cardiac death [1], [2]. Other studies have linked
the presence of QRS fragmentation to adverse outcome
in patients with Brugada syndrome [3] and defibrillator
shocks [4].

While the presence of fQRS was first noticed in 1969
by Flowers et al. [5], to the best of our knowledge, there
have been few studies that focus on automated fQRS
detection [6]–[8]. Until now, visual assessment of each
lead individually is considered to be the gold standard
in clinical practice. Interpreting ECG signals is however
labor-intensive, time-consuming, expensive, and most im-
portantly requires adequate training of clinicians in order
to get reliable results. Recently, we have shown that
visual fQRS assessment is not ideal as the inter-observer
variability differs significantly depending on the expertise
level of the observers [9]. Therefore, automated methods
for fQRS detection should be considered and can serve as
a complementary tool for the clinician.

Currently, fQRS detection is done where each lead is
given a score of 0 or 1 depending on the absence or
presence of fragmentation. Fragmentation can however
take many forms as the number and location of deflections
varies. Binary scoring might therefore not be optimal since
it fails to capture differences between fQRS subtypes. It is
furthermore expected that the spatial and temporal char-
acteristics of the deflections can be important prognostic
factors in determining patient outcome [10]. This paper
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therefore proposes an automatic and objective method to
determine a fQRS score that quantifies the certainty of the
presence of QRS fragmentation in each lead.

For this, a necessary step is an accurate segmentation
of the QRS complex. QRS segmentation is a mature tech-
nology and nowadays a number of methods have been de-
veloped, including time-domain, frequency-domain, time-
frequency analysis or transform-domain methods. A broad
methodological review on QRS segmentation can be found
in [11]. In the past two decades, wavelet transform based
methods (such as [12]) have been widely adopted. Re-
cently, empirical mode decomposition (EMD) has also
been used to segment the QRS complex [13], [14]. The
EMD is an empirical algorithm with lack of a theoretical
basis and is sensitive to noise. Additionally, it has been
shown that EMD introduces distortions in the begin-
ning and end of the QRS complex, which may cause
erroneous results in this specific application [15]. The
majority of methods including the wavelet- and EMD-
based approaches are non-adaptive and hence cannot be
used when signal characteristics change extensively. To
overcome these limitations, Dragomiretskiy and Zosso
proposed variational mode decomposition (VMD) [16].
VMD is based on the framework of variational theory and
adaptively determines the relevant frequency band. In the
last four years, it has been successfully used in different
fields including ECG applications like arrhythmia charac-
terization [17], [18] or detection of shockable ventricular
arrhythmia [19]. In this work, we apply VMD to segment
the QRS complex and extract features that help quantify
the certainty of the fQRS.

In this paper, machine learning is used to detect and
quantify fQRS. In our previous study [20], phase-rectified
signal averaging (PRSA) was used to extract features that
characterize QRS fragmentation. Here, additional features
are computed from the results of VMD and combined
in a classifier. The main goal of this paper is to assess
whether the combination of this novel feature set with
different machine learning approaches succeeds in both
detecting and quantifying fQRS in a continuous way. The
comprehensive approach conducted in this study has the
following main contributions:

• Accurate segmentation of the QRS complex using
VMD

• Extracting VMD- and PRSA-based features that
characterize the certainty of fragmentation in a lead

• Comparison of different machine learning methods for
fQRS detection and quantification

• The assessment of the certainty of the presence of
QRS fragmentation as opposed to a binary classifi-
cation, by assigning a score between 0 and 1.

The remainder of the article is organized as follows. The
database used in this work is described in Section II. The
different steps required for calculating the fQRS score are
described in Section III. Results of the proposed method
(including accuracy of the QRS segmentation) with com-
parison of evaluation performance among different classi-

fiers are presented in Section IV. The experimental results
are discussed in V. Finally, conclusions of the proposed
work are given in Section VI.

II. DATABASE

For this study, a dataset of 12-lead ECG signals recorded
in 723 patients before the implantation of an cardiac
defibrillator (ICD) in the prevention of sudden cardiac
death due to cardiac arrhythmia was used. All signals were
recorded in the University Hospitals Leuven, Belgium.
The ECG signals are digitized with a sampling frequency
of 250 Hz and have a duration of 10 seconds. ECGs from
patients with ventricular pacing or cardiac arrhythmia like
atrial fibrillation were excluded since they have altered
ECG morphologies. While these patients might exhibit
QRS fragmentation, they were insufficiently represented
in the dataset in order for the machine learning algorithms
to learn their specific ECG characteristics. We therefore
decided to remove them. A total of 616 records were
included in the final dataset. Clinically, lead aVR is not
used for fQRS analysis [4], [9]. This lead was therefore
excluded from all records in this analysis. The study
was approved by the ethical committee of the University
Hospitals Leuven (S56074/ML9965).

The database was fully annotated by five readers on the
presence of fQRS in each lead: they individually gave a
score of 1 if fQRS was present and 0 otherwise. The persons
who scored the signals were all clinicians: four cardiologists
in training and one cardiology laboratory technician. Two
of the readers were considered experienced observers in
fQRS analysis, due to their involvement in previous studies
and the three remaining ones were novice in fQRS analysis
prior to this project but received training prior to scoring
the signals. All five readers are experienced in research.
The scores of all raters can be combined by summing them,
resulting in a total score. If all readers agree that a lead
does not show fQRS, the total score is 0; similarly, the total
score is 5 if all readers agree on the presence of fQRS in a
lead. Leads where some raters disagree have intermediate
values. The total score given by all raters is thus related to
the uncertainty of the raters about the presence of fQRS.
In other words, a higher score means more raters have
scored the signal as fragmented and the fragmentation is
assumed to be more prominent in that lead. Signals with
certain absence of fragmentation will have lower scores.
The frequency of occurrence of the scores (0 to 5) in
the dataset is shown in Table I. A full description of the
scoring process, including results on inter- and intra-rater
variability can be found in [9].

III. METHODS

The block diagram of the proposed method for fQRS
quantification in ECG signals is depicted in Figure 1. It
consists of 4 main steps: preprocessing, QRS segmentation
using VMD, feature extraction and classification. Each
step is described in detail in the following subsections.
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Fig. 1: Block diagram of the proposed method for fQRS detection and quantification. After preprocessing and QRS segmentation
using VMD, features were extracted using PRSA and VMD after which a classifier was trained and evaluated. The final fQRS
score represents the certainty of QRS fragmentation in an ECG lead.

TABLE I: Frequency of occurrence of different scores, obtained
by summing the annotations from all five readers, in the
database.

Total score Counts Percent

0 2775 40.95
1 894 13.19
2 490 7.23
3 390 5.76
4 553 8.16
5 1674 24.7

A. Preprocessing

In the preprocessing step, baseline wander and high-
frequency noise were removed from ECG signals. Baseline
wander was removed by passing each lead through a
digital fourth-order Butterworth high-pass filter with cut-
off frequency of 0.5 Hz and high-frequency noise com-
ponents using a fourth-order Butterworth low-pass filter
with cut-off frequency of 70 Hz. The filters were applied
both in forward and backward direction to get zero-phase
distortion. Then, the signal was normalized by calculating
the z-score of each lead in order to remove the amplitude
differences between different recordings.

B. VMD-based QRS segmentation

1) Variational Mode Decomposition: In this study, varia-
tional mode decomposition was applied to segment the
QRS complexes. VMD adaptively decomposes a real-
valued multi-component signal x(t) into K discrete num-
ber of modes or components uk(t) with k = 1, ..., K.
All components have certain sparsity properties, and the
bandwidth in spectral domain is considered as the sparsity
prior of each mode. All modes are mostly compact around
their center frequencies ωk.

The bandwidth of a mode is evaluated in three steps:
(i) the analytic signal of the real-valued signal is computed
using the Hilbert transform such that the frequency spec-
trum becomes unilateral, (ii) the frequency spectrum of
the analytic signal corresponding to each mode is shifted to
baseband regions by multiplying it with the factor e−iωkt,
(iii) then, the bandwidth is estimated through the squared
L2-norm of the gradient of the demodulated signal. Math-
ematically, this constrained variational problem can be

expressed as follows

min
{uk},{ωk}

{

∑

k

∥

∥∂t

[(

δ(t)+ j

πt

)

∗ uk(t)
]

e−jωkt
∥

∥

2

2

}

s.t.
∑

k

uk(t) = x(t)
(1)

where δ is the Dirac-Delta function, ∗ is the convolution
operator, and {uk} and {ωk} represent the set of modes
and center frequencies, respectively.

The constrained problem in Eq. (1) can be solved by
converting it into an unconstrained problem using the
balancing parameter α and the Lagrangian multiplication
parameter λ(t). The modified equation with the aug-
mented Lagrangian multiplier is expressed as

L({uk},{ωk}, λ) := α
∑

k

∥

∥∂t

[(

δ(t)+ j

πt

)

∗ uk(t)
]

e−jωkt
∥

∥

2

2

+

∥

∥

∥

∥

∥

x(t) −
∑

k

uk(t)

∥

∥

∥

∥

∥

2

2

+

〈

λ(t), x(t) −
∑

k

uk(t)

〉

.

(2)
The above Eq. (2) is solved using the alternate direction

method of multipliers [21]. We have skipped the interme-
diate steps to solve this equation and some other related
algorithms as these are beyond the scope of this paper.
The readers are encouraged to refer to the original article
for the full implementation of the VMD method [16]. The
solutions to Eq. (2) in the Fourier domain represent all
modes and their central frequencies where each mode and
its center frequency are updated iteratively as

Ûn+1
k (ω) =

X̂(ω) −
∑

i,k Ûi(ω) + λ̂(ω)
2

1 + 2α(ω − ωk)2
(3)

ωn+1
k =

∫ ∞

0
ω

∣

∣

∣
Ûk(ω)

∣

∣

∣

2

dω

∫ ∞

0

∣

∣

∣
Ûk(ω)

∣

∣

∣

2

dω

(4)

where X̂(ω), Ûi(ω), λ̂(ω), and Ûn+1
k (ω) are the Fourier

transforms of the respective time domain representations.
The Wiener filter structure in Eq. (3) makes the VMD
method more robust to noise and sampling [22]. Finally,
the real part of the inverse Fourier transform of Ûn+1

k (ω)
gives the time domain representation of the modes. The
center frequency in each iteration in Eq. (4) is the center of
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Fig. 2: Example of ECG signal with the corresponding modes
of the output of Variational Mode Decomposition with k = 5
and α = 100.

gravity of the corresponding positive part of mode’s power
spectrum.

2) QRS segmentation: From the VMD algorithm dis-
cussed above, it is clear that the VMD is a parame-
terized signal decomposition method. VMD requires two
parameters to be fixed: the number of modes K and the
bandwidth control parameter α. Initialization of these pa-
rameters is a non-trivial problem, since wrong parameter
choices may create problems like mode splitting (where
one component is shared by several modes) or mode
mixing (where multiple components are decomposed into
one mode) [22]. To avoid this problem, we adopted the
optimization technique developed by Guo et al. [22] to
fix the number of decomposition modes K and balancing
parameter α prior to applying VMD. After optimization,
these values were fixed to K = 5 and α = 100. The
other input VMD parameters, namely the time step of the
dual ascent and the tolerance of the convergence criterion
were set to standard values 0 and 1e−6 [16]. All central
frequencies ωk were uniformly distributed at initialization.

VMD was applied to each ECG lead x(t) resulting in a
decomposition into 5 modes:

x(t) =

5
∑

k=1

uk(t) (5)

where uk(t) is the kth mode. Figure 2 shows an example of
an ECG segment after preprocessing with the correspond-
ing modes u1–u5 in different rows. The modes are sorted
by their central frequency in ascending order. It can be
observed that different components (characteristic waves)
of the ECG signal are decomposed into different modes.

Fig. 3: Illustration of the three main steps for QRS segmenta-
tion, applied to the signal shown in Figure 2. First the R peaks
are detected in u2

3,norm. Then the QRS complex is segmented
in u3,norm. Finally the QRS locations are optimized in the
original ECG signal. The R peaks are depicted in blue, the
beginning and end of the QRS complex in respectively red and
green.

The low-frequency components appear in lower modes and
vice versa. The QRS complex is a high frequency wave
with sharp amplitude and thus appears in higher modes
(u2-u4). Based on the fact that the modes are mostly
compact around their center frequencies, the QRS complex
and hence the Q and S points can best be detected using
u3, which is amplitude-normalized to obtain u3,norm. The
complete QRS segmentation algorithm consists of three
main steps, which are illustrated in the different rows of
Figure 3:

1) R peak detection

Square u3,norm in order to obtain u2
3,norm to enhance

the main peaks in u3,norm (corresponding to QRS
complexes) and minimize noise peaks. Detect the R
peaks in u2

3,norm by finding local maxima with an
amplitude higher than 0.075. The minimal distance
between two consecutive peaks must be larger than
0.5 seconds. This corresponds to a maximal heart rate
of 120 beats per minute which is realistic for ECG
signals measured in rest. For signals with potentially
increased heart rates, this parameter can easily be
changed to accomodate them.

2) QRS segmentation

Transfer the R peaks to u3,norm. The beginning of the
QRS complex corresponds to the first zero-crossing
before the first local minimum preceding the R-peak
in u3,norm. Similarly, the end of the QRS complex can
be found by detecting the first zero-crossing after the
first local minimum after the R peak.

3) QRS optimization

Optimize the locations of the Q and S points by
finding a local minimum in the ECG signal in the
neighbourhood (± 5 samples) of the points detected
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in u3,norm.

QRS segmentation was done in each lead separately. In a
final stage, segmentations in all leads were combined in an
automated way to remove false detections. False positive
detections can occur when the ECG signal contains noise
with characteristics similar to QRS complexes. They were
removed by first calculating in how many leads a QRS
complex was detected at a certain time instance and
subsequently removing QRS complexes that were detected
in less than half of the ECG leads. False negative detec-
tions were solved similarly by automatically adding QRS
complexes in leads where a complex was missed by the
algorithm. The start- and end points for these additional
complexes were selected as the mean start- and end points
of the complexes detected by the algorithm in the other
leads of the signal.

Finally all points between the end of the QRS complex
and the beginning of the next complex are set to zero since
they will not be analyzed further.

C. Feature extraction

In this subsection, feature extraction using PRSA and
VMD is discussed. PRSA feature extraction was used in
our earlier study [20], and the same approach has been
adopted in this work. All features were extracted from the
QRS complexes segmented using the method described in
the previous subsection.

1) PRSA-based features: Phase-rectified signal averaging
aims to detect and quantify quasi-periodic oscillations
masked by multi-component non-stationary signals. The
method consists of three steps:

(i) Selection of anchor points

First, two sets of anchor points qi were selected
according to certain properties in the QRS complex.
The anchor points can be selected in different ways
[23]; here, a first set of anchor points consists of all
points located on the increasing part of the QRS
complex (q+

i ), a second set contains all points on
decreasing parts of the QRS complex(q−

i ).
(ii) Window selection

Then, temporal windows of length 2L were selected
around each anchor point. The anchor points which
were too close (< L ms) to the beginning or end of the
complex were discarded since for these points no such
window can be selected. The choice of L is dependent
on the characteristics of the signal: it must be larger
than the period of the slowest oscillation that should
be detected. Here L is fixed to 20 ms, similar to [20].

(iii) Averaging

In the final step, the PRSA curve q̃ was obtained
by aligning all windows and averaging them. The
windows corresponding to decreasing anchor points
q−

i were inverted before calculating the average, e.g.
window(q−

i ) = −window(q−
i ). Inverting the windows

is necessary to ensure that all windows have similar
slopes.

The different steps to calculate the PRSA curve for a
normal and a fragmented beat are shown in Figure 4. Two
positive and two negative anchor points are highlighted
in respectively red, cyan and green, blue to highlight the
changes in the signals. For a normal beat (depicted in the
top row), all increasing anchor points are located in the
first part of the QRS complex and all decreasing points
in the second part due to the very simple morphology of
the wave. Most windows are thus similar in shape and
the PRSA curve can be approximated by a straight line.
When a signal shows fragmentation (shown in the bottom
row), the anchor points are not contained in one part of
the QRS complex. The surrounding windows thus exhibit
more differences which result in a PRSA curve with a
smaller inclination, which can be seen by comparing the
rightmost panels of Figure 4.

To extract features from the PRSA curve, it was approx-
imated with a linear fit. Three parameters were extracted
to quantify the curve:

(i) Mean derivative of the PRSA curve (sl):
1

2L

∑2L
t=0

dq̃(t)
dt

(ii) Slope of the linear fit (m)
(iii) Intercept of the linear fit with the y-axis (c).

2) VMD-based features: Fragmentation introduces addi-
tional high-frequency components in the ECG signal,
which in turn causes extra oscillations in the VMD modes
that contain QRS information. Therefore the central fre-
quencies of these modes also increase. As discussed in
Subsection III-B.1, modes u1 and u2 contain the low-
frequency ECG components such as P- and T-waves, and
other modes mostly carry the high-frequency components
such as the QRS complex. Due to the presence of notches
or additional waves, it is expected that the number of
local optima per QRS complex will increase with respect
to the certainty of fQRS. Hence, two different VMD-
based features were extracted from modes u3, u4 and u5:
the average number of local optima per QRS complex
(pks3, pks4, pks5) and the central frequency of the QRS
complexes in the considered modes (ωQRS

3 , ω
QRS
4 , ω

QRS
5 ),

leading to a total of 6 VMD-based features.

One additional feature was extracted directly from the
QRS complex: the number of local peaks in the ECG signal
per QRS complex, pksECG. This feature was combined
with the three PRSA features and six VMD features to
obtain a total of 10 features for each lead.

D. Classification

The extracted features were used as input to a classifier
in order to detect and quantify QRS fragmentation. It
has been shown that support vector machines (SVMs) are
in many types of problems superior to 16 other popular
classifiers [24]. They are also known to have good gener-
alization properties in supervised classification problems.
The basic idea of an SVM is to find a hyperplane which
separates two classes by maximizing the margin between
the classes. This can be done in a linear or non-linear way,



6 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

0 0.2 0.4 0.6

0

2

4

E
C

G
 (

a
.u

.)
Selection of anchor points

0 0.05 0.1

0

2

4

Window selection

0 0.02 0.04
-4

-2

0

2

4
Averaging

0 0.2 0.4 0.6

Time (s)

0

2

4

E
C

G
 (

a
.u

.)

0 0.05 0.1

Time (s)

0

2

4

0 0.02 0.04

Time (s)

-4

-2

0

2

4

Fig. 4: Illustration of the three steps to create the PRSA curve for a normal heartbeat (top) and a heartbeat with fragmentation
(bottom). In the middle panel, two increasing and two decreasing anchor points are highlighted in respectively red, cyan and
green, blue. Their corresponding windows are also indicated in the right panel.

by introducing kernel functions that transform the fea-
ture space. When perfect separation cannot be achieved,
misclassifications are allowed by introducing a soft margin
constant that penalizes points that lie on the wrong side
of the margin. The performance of SVMs with a linear,
polynomial and radial basis function kernel was compared
to select the kernel which obtains the best performance.
In order to define the optimal SVM parameters, automatic
Bayesian optimization of hyperparameters (both the soft
margin constant and kernel parameters) using 10-fold
cross-validation was performed. Additionally, to illustrate
the effectiveness of the proposed method, the performance
of three different classifiers (K-nearest neighbors (KNN),
Naive Bayesian (NB), and TreeBagger (TB)) was also eval-
uated and compared with the results obtained by SVMs.
The output of the classifiers (e.g. the score belonging to
the positive class) was transformed to a score between 0
and 1 through the use of Platt scaling, which fits a logistic
regression model to the output [25]. The obtained score is
taken as fQRS score and is expected to reflect the certainty
of fQRS.

The dataset used in this study contained 6776 signals
in total (616 records with 11 leads per record). These
signals were divided into one training and two test sets. To
train the classifier, only signals where all experts agreed
on the presence of QRS fragmentation were used. There
were 2775 normal signals and 1674 fragmented signals

without disagreement (see Table I). These were randomly
split in 80% training set and 20% test set. Both sets had
equal ratios of normal and fragmented signals. A second
test set contained all signals that were not used in the
training stage. The first test set was used to evaluate the
performance of the method for fQRS detection: since all
raters agreed on the label for all signals in this set, this
label was considered to be correct and binary classification
could be done. The second test set on the other hand was
used to assess whether the developed score reflected the
certainty of QRS fragmentation in an ECG signal.

The training set and the first test set are fully indepen-
dent: signals from the same patient are only present in one
of both sets. Since the second test set contains all ECG
channels where no perfect agreement was reached, it also
contains channels from patients in the training set, and
both sets are not fully independent.

E. Performance evaluation metrics

Different measures were used to evaluate the performance
of the developed method. Statistical analyses of parame-
ter values were done with one-way Analysis of Variance
(ANOVA) with the F-test [26] followed by a post-hoc
test analysis based on Tukey’s honest significant difference
(hsd) test. These tests were carried out to verify whether
means of different categories are significantly different or
not. ANOVA assesses the relative size of variance among
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category means compared to the average variance within
categories and is an appropriate test for evaluating the
effect of categorical independent variables on a contin-
uous response variable. The F-ratio, the value obtained
from the ratio of the variance between categories and the
variance within categories, was used as the parameter to
decide the statistical significant performance. The F-test
represents the determination of the significance of the F-
ratio by comparing it to a critical value derived from
the probability distribution. The null hypothesis that the
means of all categories are equivalent is rejected if the
F-ratio is greater than the critical value. If the F-test is
statistically significant, then there is, in principle, at least
one significant difference in means. Then, post-hoc test
using Tukey’s hsd test was executed to perform specific
comparisons for the purpose of discovering the origin(s) of
the difference. In all tests, a p-value < 0.01 was considered
statistically significant.

Performance of the different classifiers was evaluated by
constructing Receiver Operator Curves (ROC) and calcu-
lating the corresponding Area Under The Curve (AUC).
The ROC is generated by varying the decision threshold
and calculating the senstivity and specificity results for
each threshold. The results of fQRS detection were further
quantified by calculating the number of True Positive
(TP), True Negative (TN), False Positive (FP) and False
Negative (FN) detections and computing the sensitivity
(sens), specificity (spec) and accuracy (acc) as follows:

sens =
TP

TP + FN

spec =
TN

TN + FP

acc =
TP + TN

TP + FN + TN + FP

IV. RESULTS

The full dataset was analyzed using the proposed method
depicted in Figure 1. In this section, we present the results
of the different analyses. All experiments in this work were
performed using MATLAB R2017b.

A. QRS segmentation

To evaluate the results of the proposed approach to QRS
segmentation, the publicly available QT database was
used, which contains 105 ECG signals of 15 minutes with
manually determined wave boundaries [27]. The database
has been used extensively as benchmark tool for ECG
delineation algorithms. The performance is quantified by
calculating the mean deviation and standard deviation
between the VMD-based segmentation and the manual
annotations.

The proposed R peak detection algorithm detected
98.11% of all R peaks correctly. This is equivalent to the
results found in literature [28]–[30]. The accuracies of the
delineation of the onset and offset of the QRS complex are
summarized in Table II. The results for segmentation of

TABLE II: Accuracy results of QRS segmentation of the pro-
posed method and three state-of-the art alternative approaches
on the QT database. Mean and standard deviation of the differ-
ence between the provided annotations and the segmentation
obtained by the algorithm are given in ms.

QRSon QRSoff

Method mean std mean std

Proposed method -3.6 11.16 6.67 17.28
Martínez et al. [28] 4.6 7.7 0.8 8.7
Madeiro et al. [29] -3.4 11.6 -6.5 12.3
Akhbari et al. [30] -5 10 1.5 11.5

the QRS onset are comparable to the state-of-the art algo-
rithms. The standard deviation of the QRS offset detection
is slightly worse than the results reported by Madeiro et al.
[29] and Akhbari et al. [30], but the difference is limited to
five ms, which is equal to one sample for signals sampled
at 250 Hz.

B. Analysis of feature values

Figure 5 shows box plots for all ten features. Each set
of box plots is calculated by computing the particular
feature value for all leads of all signals and grouping them
per total score (e.g. the sum of the scores by all raters).
As discussed in Section II, the total score is a substitute
for the certainty of fQRS in an ECG lead. We observe
that for all features the feature values gradually change
with changing total score. The average slope of the PRSA
curve and the slope of the linear fit are both inversely
related to fQRS certainty, which is expected based on
the examples in Figure 4. Similarly, the intercept of the
linear fit increases with increasing certainty. The number
of peaks per QRS complex in the VMD modes regularly
increases with the level of fragmentation. The increase in
the median values in modes u4 and u5 is more prominent
compared to the medians in u3. It is interesting to note
that the central frequency of the QRS complexes in these
modes also follows the same trend.

ANOVA is used to statistically compare the means
of the values in different score groups. Here, the null
hypothesis is that the mean of a feature is identical for
all six categories. The F-ratio results reveal that for all

features, there is at least one mean that is significantly
different from one or more categories. As this happens for
all features and due to page limits, we only present the
post-hoc analysis.

Table III shows the post-hoc analysis based on the
Tukey’s hsd test that shows which categories differ from
each other by comparing the means between consecutive
categories. Significant p-values (p <0.01) are indicated
with ‘Y’.

C. Classifier performance

In this subsection, we present the performance of differ-
ent classifiers for fQRS detection and quantification. As
mentioned in Section III-D, the classifiers were trained
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Fig. 5: Box plots showing all feature values grouped by the total score given by 5 experts. The box plots represent the median
value in a group together with the interquartile range. Outliers are shown in red.

TABLE III: Significance results of the post-hoc analysis for
the comparison of the VMD- and PRSA-based features using
Tukey’s hsd test. Results are shown only between the con-
secutive categories. ’Y’ stands for statistically significant with
p <0.01. p-values are mentioned for all non-significant results.

Compared categories: 0-1 1-2 2-3 3-4 4-5

PRSA-based features

Avg. slope (sl) Y Y 0.140 0.070 Y
Slope (m) Y 0.108 0.075 0.236 Y
Intercept (c) Y 0.102 0.069 0.289 Y

VMD-based features

ω
QRS
3 Y Y 0.018 Y Y

ω
QRS
4 Y Y 0.699 0.038 Y

ω
QRS
5 Y Y 0.466 0.062 Y

pks3 Y 0.019 0.639 0.828 Y
pks4 Y 0.050 0.410 Y Y
pks5 Y Y 0.459 Y Y

pksECG Y 0.077 0.865 0.300 Y

on 80% of the signals without disagreement between the
raters. The other signals were used for evaluation during
the testing stage.

Figure 6 shows the ROC curves with corresponding
AUC values for all classifiers. Here, the test set consists
of the 20% remaining signals with perfect agreement. The
true class of these signals is considered to be certain so
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SVM: Polynomial (AUC =0.94894)
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KNN (AUC =0.94185)

Naive Bayes (AUC =0.8969)

TreeBagger (AUC =0.8864)

Fig. 6: ROC curves for fQRS detection with all classifiers
together with the corresponding AUC values.

classification can be performed. The differences between
the SVMs with different kernels are neglegible (AUC =
0.947 (lin), 0.948 (pol) and 0.948 (RBF)). The KNN
classifier (AUC = 0.941) performs slightly worse than the
SVMs while the performance of the NB (AUC = 0.896)
and TB (AUC = 0.886) classifiers are comparatively worse.

Table IV finally summarizes the sensitivity, specificity
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Fig. 7: Illustrating the fQRS quantification score for the second group (Section III-D) using SVM (Linear, Polynomial and RBF
kernels), KNN, NB and TB classifiers.

TABLE IV: Comparison of the fQRS classification results from
the proposed method with methods from literature. The ob-
tained sensitivity, specificity and accuracy on the first test set
are mentioned.

Method Sens (%) Spec (%) Acc (%)

Proposed method 86% 89% 88%
Jin et al. [7] 72% 78% 75%
Maheshwari et al. [6] 84% 87% 85%
Bono et al. [8] 75% 78% 77%

and accuracy results obtained by applying the proposed
method (with RBF kernel) and the three alternative
algorithms [6]–[8] on the first test set. The other
approaches use the wavelet transform [6], [8] or intrinsic
time-scale decomposition [7] to decompose the ECG
signal and detect fQRS from features obtained from the
decomposed signal.

The box plots in Figure 7 show the fQRS quantification
results. Here, the test dataset contains all instances that
are not considered in the training stage. The box plot
for each category is computed by combining the fQRS
scores for all signals with the same total score. The output
scores from most classifiers follow an increasing trend with
respect to the different categories. The results for the NB
and TB classifiers are considerably worse than the other
classifiers. Results for SVM and KNN classifiers are again
comparable, but the interquartile range for the different
SVM box plots is smaller than for KNN. Furthermore
the range of SVM scores spans the full range (0–1) while

the range for the other classifiers is limited to a smaller
interval.

V. DISCUSSION

This study proposes an innovative method to detect and
quantify fQRS. In the first step, the QRS complexes are
segmented using a novel VMD-based algorithm. According
to Table II, the approach gives results that are comparable
to many state-of-the-art algorithms. While the widely-
used wavelet-based method from Martínez et al. [28] ob-
tains superior results, the differences are limited to a few
samples.

Figure 5 and Table III summarize results for the feature
values in different groups. All values change gradually with
increasing raters’ scores, indicating that the reasoning in
Section III-C is correct: fragmentation has a significant
influence on the PRSA curve and introduces extra high
frequency components in the results of VMD, which in
turn give rise to extra peaks. Table III shows that all fea-
tures are significantly different between the most extreme
groups (0-1 and 4-5). The median differences between
other groups are not always statistically significant, but
there is a clear trend which can also be noticed in Figure
5. The feature values for signals with a total score of 2
and 3 are similar, with p-values larger than 0.35. This
is not unexpected since the signals in these groups are
comparable: they represent the signals which are scored
as fragmented by approximately half of the experts and
normal by the other half.

Once the PRSA- and the VMD-based features have been
extracted from the QRS complexes, they were fed into
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different classifiers in order to evaluate and compare their
performance. Experimental results presented in Figure 6
show that all classifiers give good results for detecting
signals with clear QRS fragmentation. SVMs are slightly
superior to other classifier types. The results in Table IV
show that our approach outperforms the other methods,
although the results obtained by [6] are in the same range.
A second test set was used to evaluate the performance for
fQRS quantification. Here the goal was to verify whether
the developed score is representative for the certainty
of the presence of fQRS in an ECG lead. Platt scaling
transforms the classifier output to a score between 0 and
1, which corresponds to the posterior probability. This
results in the box plots shown in Figure 7. For the different
types of SVMs, the fQRS score varies between 0 and 1 and
linearly changes with the total score from all experts. As
explained in Section II, the total score is related to the
certainty of fQRS in a lead. It is therefore expected that
leads with a questionable fQRS presence (represented by
a total score of 1–2, where only one or two raters observe
fQRS in that lead) have lower fQRS scores than leads
with a probable (total score of 3–4) or certain presence
(total score = 5). Figure 7 confirms this hypothesis. If the
boxplots of the different scores are compared, the boxplot
heights of values 0 and 5 are significantly smaller than the
heights of the intermediate values. This confirms that the
classifier output for values 1–4 is indeed more uncertain
than for the extreme values. This is also expected, since the
true label contains more uncertainty (for the intermediate
values, the presence or absence of QRS fragmentation is
after all not certainly known).

While the number of outliers in the boxplot correspond-
ing to a total score of 0 seems large at first sight, they
represent less than 2% of all signals in the second test
set. These outliers can have different explanations: For
some signals, the QRS segmentation is not 100% accurate,
which can have an influence on the feature values. For
other signals, an increased noise level can change the
ECG characteristics and have an influence on the final
classification. The fact that the number of outliers is small
and the good AUC scores obtained on the first test set
however confirms that this is only the case in a small
minority of the data.

KNN also results in a stepwise increasing score, while
the results of NB and TB are considerably worse. The
scores obtained by KNN, however, do not span the full
range between 0 and 1 but are limited from 0.05 to
0.95. It has been shown before that Platt calibration of
KNN classifiers can lead to diminished results while the
results of SVM classifiers are significantly boosted [31],
[32]. Since SVMs also result in superior detection results
(shown on Figure 6), SVM classifiers are preferred over
other classification methods.

The performances of three different SVM kernels (linear,
polynomial and RBF kernels) were compared. They all
have similar results both in fQRS detection and quantifi-
cation. Since the numerical results are almost identical,
the choice of kernel does not appear to have a significant

effect in this application. In general, however, the RBF
kernel is preferred in such cases since it is known to be a
universal approximator.

VI. CONCLUSION

This paper presents a novel and precise way to detect
and quantify QRS fragmentation in ECG signals using
machine learning techniques. The fQRS score represents
the certainty of QRS fragmentation in a continuous way
based on fQRS annotations from 5 experts. The features
extracted using VMD and PRSA show values that change
gradually with increasing fQRS certainty. The fQRS score
obtained using SVM classifiers is closely related to the
total score given by all raters which is representative for
the level of fragmentation in a lead.

The results demonstrate that the proposed fQRS score
is an effective way of detecting and quantifying QRS
fragmentation. Comparison with existing techniques shows
that the proposed method outperforms other methods
found in literature. The extensive scoring done by five
independent raters is a strong indicator that the results
are robust to inter-rater variability and can be generalized
to other datasets. This should, however, be validated with
other datasets scored in a similar way. The availability of
scores by different raters also allows us to evaluate fQRS
quantification, which is a novel approach to examine the
biomarker.

Clinically, QRS fragmentation is scored on a per-lead
basis, after which the detections in separate leads are
combined per cardiac region. We have shown in previous
work that assessing fQRS per region might be of more
clinical value than using an overall fQRS interpretation per
ECG lead [4]. Future work therefore includes combining
the fQRS scores in a similar way to achieve a score per
cardiac region which can be used for clinical validation.
Additionally, the scores from all leads could also be com-
bined in order to obtain a per-patient decision on the
presence of fQRS. The final goal is to verify whether a
continuous way of scoring QRS fragmentation also leads to
superior results in clinical studies that focus on analyzing
patient outcomes.
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