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Abstract

In proposing a machine learning approach for a flow shop scheduling problem with

alternative resources, sequence-dependent setup times, and blocking, this paper seeks

to generate a tree-based priority rule in terms of a well-performing decision tree

(DT) for dispatching jobs. Furthermore, generating a generic DT and RF that yields

competitive results for instance scenarios that structurally differ from the training

instances was another goal of our research. The proposed DT relies on high quality

solutions, obtained using a constraint programming (CP) formulation. Novel aspects

include a unified representation of job sequencing and machine assignment decisions,

as well as the generation of random forests (RF) to counteract overfitting behaviour.

To show the performance of the proposed approaches, different instance scenarios for

two objectives (makespan and total tardiness minimisation) were implemented, based

on randomised problem data. The background of this approach is a real-world physical

system of an industrial partner that represents a typical shop floor for many production

processes, such as furniture and window construction. The results of a comparison of

the DT and RF approach with two priority dispatching rules, the original CP solutions

and tight lower bounds retrieved from a strengthened mixed-integer programming

(MIP) formulation show that the proposed machine learning approach performs well

in most instance sets for the makespan objective and in all sets for the total tardiness

objective.

Keywords Machine learning · Flow shop scheduling · Decision trees · Random

forests · Constraint programming
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1 Introduction

With the emergence of topics related with smart manufacturing and data analytics,

established machine learning approaches may gain new life to achieve deeper insights

into production processes (Wuest et al. 2016). Machine learning approaches can be

used to capture complex processing environments in a way such that scheduling poli-

cies, in particular dispatching rules, can be derived.

In this context, we propose a machine learning approach that is used to generate a

tree-based priority dispatching rule for material movement decisions. The subject of

this paper is a problem setting based on a real-world physical system of our industrial

partner—a business consultancy located in Vienna. In essence, it can be classified as a

hybrid flow shop scheduling problem with alternative resources, sequence-dependent

setup times, limited intermediate buffers, and blocking. A transport resource with

limited capacity is also part of the model configuration.

We intend to show that our machine learning approach performs well in such

scheduling problems, with makespan and total tardiness minimisation as objectives,

using solution information obtained from optimisation runs of a constraint program-

ming (CP) solver that can provide high quality, feasible solutions. These solutions

are then read-in with the help of a deterministic shop floor simulator and transformed

into training examples. Finally, the training examples are used to build a decision tree

(DT). The training examples consist of pairwise comparisons of all possible material

movements, attributes, and the corresponding classification. To calculate the classifi-

cation error, we build the tree on a training set and test it on both the training and a

test set. We use a cross-validation procedure to estimate the off-training-set error rate

of the tree. The DT acts as a classifier, indicating whether a possible job movement

should be conducted or not.

Prior literature offers different approaches to exploit the training examples for

building a DT. Shahzad and Mebarki (2012) generate the training examples using

an optimisation module that solves instances based on tabu search. Olafsson and Li

(2010) transform dispatching lists, created by a simulated scheduler in combination

with a weighted earliest due date rule (EDD), into a training set.

To the best of our knowledge, the combination of our flow shop scheduling problem

characteristics has not yet been discussed in the literature. Flow shops with limited

intermediate buffer in general are considered by Brucker et al. (2003) and Leisten

(1990). Hall and Sriskandarajah (1996) describe blocking as a lack of storage, noting

that the flow shop problem with a finite buffer is a common scheduling problem.

Mascis and Pacciarelli (2002) introduce blocking caused by a processed job waiting

to be moved to the next machine. In our case, we consider limited buffer both before

and after the processing slot of a machine. The limited storage space in front of (and

behind) the machines prohibits accumulating arbitrary amounts of material between

processing stages and can thus lead to blocking behaviour if all the available buffer

on a stage has been depleted. Ruiz et al. (2005) describe sequence-dependent setup

times caused by switching between two different job types on a processing slot. In

comparison with these approaches, we deal with greater complexity regarding the

shop floor and order configuration.
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For machine learning in similar environments, Doh et al. (2014) suggest a decision

tree-based approach to select a priority rule combination, depending on the current

status quo on the shop floor. For our configuration, such an approach is not suitable

because the goal is to develop a priority rule instead of choosing one.

The contribution of this paper is threefold. First, we extract information from solu-

tions provided by a CP solver, based on an appropriate formulation of the problem, to

generate the training data. Second, the generated dispatching rule directly combines

the job sequencing with the machine assignment in one step. The decision involves

not only the next job to be moved but also onto which machine the job should be

transported to. This approach allows for more complex decision making. Third, we

embed our DT in a random forest (RF) approach to counteract overfitting.

The content of the paper is organised as follows: Section 2 contains the problem

statement in detail. In Sect. 3, we describe how DTs and RFs are actually built and

applied to the problem at hand. The configuration and generation of test instances

finally used in the computational experiments are presented in Sect. 4. The computa-

tional results for the DT and RF approach are summarised and discussed in Sect. 5.

Finally, the discussion in Sect. 6 briefly reviews the contributions and offers sugges-

tions for future research.

2 Problem statement

We implemented an abstract model based on the basic shop floor configuration of the

industrial partner, which is depicted exemplarily in Fig. 1 for an exemplary config-

uration of the shop floor. Three different type of jobs have to be processed on every

processing stage starting at the raw material stage. The processing stages consist of one

or more parallel identical or unrelated machines (depending on the scenario). After

having passed the last processing stage, all the jobs are collected in a box. As soon

as all the jobs of an order are finished, this order is marked as executed. The order

constraint is important for the total tardiness objective function.

The machines are equipped with buffer slots, a processing slot, and a transport

slot. For every processed job that is situated on a transport slot of a machine, a crane

movement has to be initiated. The crane as a limited transport resource is able to

move one job at a time from a transport slot or raw material stage to a buffer slot

of a subsequent stage. A job transport between two machines can only be conducted

by picking up the job at a transport slot and moving it to the first buffer slot of the

subsequent machine. Overtaking other jobs on slots of that machine is not allowed.

Blocking might occur if all buffer slots of each machine within a stage are fully

occupied, which also would create blocking on machines in preceding stages.

Finally, job processing is subject to sequence-dependent setup times. Depending

on the type of the preceding job, additional work might be necessary to set up the

machine for the next job. It is assumed here that the setup activity can already start

before the next job has arrived at the machine.

123



874 F. Benda et al.

Fig. 1 Exemplary configuration of the shop floor

Table 1 List of attributes

Abbreviation Description Category

NP Next processing time Job

ST Setup time on next machine

Ba Does job block buffer in front of processing slot?

S Number of occupied processing and buffer slots on next machine Machine

MR Machine workload on current machine

MN Machine workload on next machine

C Crane position in relation to job position Transport

T Transport time current machine to next machine

NTa Is there a job on next machine on transport slot available?

RDD Time left until due date is reached Tardiness

ADD Absolute due date

CDDR Critical ratio: (due date - current time) / total shop time left

aBinary attribute values

3 Solution approach

For the problem at hand, we propose a machine learning approach for building a

DT that can be applied as a dispatching rule for the flow shop problem, described in

Sect. 2. A DT is a classifier for solving classification problems and is built using train-

ing examples. Those training examples consist of pairwise comparisons of available

material movements, capturing the status quo situation of the shop floor at the moment

of decision. The status quo situation is used to describe the training examples with

the help of attributes. Those attributes, in turn, are an important part for training and

applying the DT. The process of attribute selection, DT generation, and application
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is described in this section. Furthermore, a method—critical path approach—to filter

the training examples used to build the DT is demonstrated.

3.1 Attribute selection

Several test runs were conducted to determine a comprehensive list of attributes related

to the current state of jobs, machines, transport resource, and the prospective due date

adherence. After these test runs, 12 of them have finally been chosen, as listed in

Table 1. Those tests served to analyse factors, such as the crane transport behaviour,

the job assignment to the parallel machines, comparing the workload ratios of all

machines for each instance within every status quo of the production process, and

blocking behaviour with its effect on preceding stages.

3.2 Building the decision tree using the C4.5 algorithm

Preliminary experiments revealed that the CP formulation (Appendix B) delivers good

upper bounds, much faster than the MIP described in Appendix A, distributed as

online supplementary material. The schedules created by the CP solver are read-in

by a deterministic shop floor simulator, as described in Sect. 3.3. The training data

are then handed over to the C4.5 DT builder algorithm (Accord.NET Machine

Learning Framework Version 3.8.0).

The C4.5 algorithm (DT builder algorithm) is an advancement of the original Itera-

tive Dichotomiser 3 (ID3) developed by Quinlan (1986). The DT consists of decision

nodes, branches, and leaves. Each node represents a true/false decision, leading to

exactly two branches. To start, the root node of the DT is determined by selecting the

attribute that separates the training examples as good as possible into two groups. The

criteria for comparing the goodness of such a split is the resulting information gain. A

branch gets created for each part of the training examples, and the algorithm proceeds

recursively. As soon as no further information gain results from any of the attributes,

a leaf is created with the corresponding classification (Quinlan 1993).

In Fig. 2, an exemplary DT is shown. The goal is to determine whether material

movement option 1 is preferred over option 2. The classification is formulated as

“Prefer option 1?” within a pairwise comparison (“Yes” or “No”) (Olafsson and Li

2010). We start at the root of the tree. The first comparison between the two options is

their transport time to the next machine and whether the difference is greater than 0.5. If

not, we already receive the classification “No”, and otherwise, we follow the branch to

the next attribute—the difference in processing times on the next machines. For every

decision node, the attribute value that defines the split for this node determines the

next branch to follow. The leaf finally contains the classification for the test example.

3.3 Training the DT from CP solution information using a shop floor simulator

The solution of every problem instance is read-in by a simulator which is, in essence,

a customised list scheduling algorithm. The entire production sequence is simulated
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Fig. 2 Decision tree example

according to information from the CP schedule. Whenever there is more than one job

available, or one job can be put onto more than one machine, the solution of the CP

result for this decision is read-in. At each of the decision points, we collect the attribute

values for building the training examples. The format of the information consists of

three different parts: pairwise comparisons of possible material movements, attributes,

and class labels.

Li and Olafsson (2005) propose pairwise comparisons that are the first component

of the training data. The basic idea is to map sequencing decisions to precedence

information between any two jobs that are currently schedulable. Assume that three

jobs can be scheduled on a machine at the same time and a (precomputed) schedule

gives (3,1,2) as the best sequence to resolve this resource contention situation. Then

the resulting precedences that fully describe this sequence are 3 → 1, 3 → 2, and 1

→ 2. Hence, the DT approach attempts to derive this kind of precedence information

for any two jobs that are ready to be scheduled.

The novelty that we introduce is to combine the decision about which job to choose

with the decision onto which machine it should go next. For example, the possibility

J2M3 is shorthand for “put job 2 onto machine 3”. For every decision within the

instances solved by CP, the selected possibility out of all other possibilities is marked

as “chosen”, and all the others are marked “not chosen”. Every possibility then becomes

an option, ranked by job number and machine number in numerical order. Whether

the “chosen” option is option 1 or 2 (within a pair of jobs) depends on its rank within

the numerical order. In the next step, every possibility marked as “not chosen” gets

compared with the one marked “chosen”, with the help of attributes, so it results in

pairs of options.

Because the description of the classification is “Choose option 1?” the target classes

of the DT are binary and labelled “No” (0) or “Yes” (1). Every pairwise comparison

trains the decision tree. Every comparison contains two options, and the classification

of either option 1 (“Choose option 1?” Classification: “Yes”) or option 2 (“Choose
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Fig. 3 Example: status quo on shop floor with possible job movements

Table 2 Example: pairwise comparisons for CP result “Choose J1M3”

Pairwise comparisons Attributes (∆) Classification

Option 1 Option 2 NP C MR MN T ST S B NT Choose option 1?

J1M2 J1M3 3 0 0 56 0 0 3 0 −1 No

J1M3 J2M4 −1 −1 0 −6 −2 12 −1 0 1 Yes

option 1?” Classification: “No”) is the one preferred by the result of the CP. Comparing

two options that are not chosen does not lead to a definite classification for “Choose

option 1?”. So we skip those pairwise comparisons. The last step combines the pairwise

comparisons and their classification with status quo information about the shop floor

at the moment of the decision.

This status quo is captured by the attributes, as described above. As the goal is to

compare two options, each with its own attribute values, we calculate the difference

for each kind of attribute and use this quantity as a branching criterion in a DT, instead

of absolute values.

To demonstrate how we capture the status quo of the shop floor, we offer an example,

as summarised in Fig. 3. There are three possible material movements: 1© Put job 1

onto machine 2 (J1M2), 2© Put job 1 onto machine 3 (J1M3), 3©, Put job 2 onto

machine 4 (J2M4). Assume that the CP result is to choose J1M3, such that J1M3 is

marked as “chosen”. This leads to two different pairwise comparisons: J1M2 with

J1M3 and J1M3 with J2M4, as listed in Table reftab:ClassificationCPExample. The

options are ranked as first or second, according to the numerical order. In the next

step, for each attribute, we compare the values of option 1 and option 2 by calculating

the difference, that is, value option 1 minus value option 2. If, for the next processing

time of job 1 on machine 2 (J1M2) is 26 time units, whereas the processing time

of job 1 on machine 3 (J1M3) is 23 time units, the outcome is 3 (see NP-column,

Table 2). The classification results in a “No” for the first row and a “Yes” for the

second row, referring to whether option 1 is the “chosen” option: “Choose option 1?”

In the next step, the training examples enter the DT builder algorithm, as described in

Sect. refsec2:BuildDecisionTree.
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Table 3 Example: pairwise comparisons for applying a DT

Pairwise comparisons Attributes (∆) Classification

Option 1 Option 2 NP C MR MN T ST S B NT Choose option 1?

J1M2 J1M3 3 0 0 56 0 0 3 0 −1 No

J1M2 J2M4 2 −1 0 50 −2 12 2 0 0 No

J1M3 J2M4 −1 −1 0 −6 −2 12 −1 0 1 Yes

Finally, the classes determined by the DT must be transformed into a precise deci-

sion, about where to move the crane to transport the corresponding job to the next

machine. Therefore, a yes–no voting was implemented, as described next.

3.4 Applying the trained DT: the yes–no voting procedure

The output of a DT is classes, in terms of whether an option should be preferred or

not. But the classifications of the pairwise comparisons still do not provide enough

information to decide which job-machine possibility should be selected. Therefore,

the classifications have to be transformed into a precise material movement decision.

The example in Sect. 3.3 illustrates the transformation.

The status quo on the shop floor is the same as in Fig. 3. However, the next material

movement is not yet known. The DT is used to decide which of the possible material

movements should be carried out next. Therefore, the output of the DT is the classi-

fication of each pairwise comparison of all possible material movements, as listed in

Table 3.

After finishing the classification process for each pairwise comparison, it is still

unknown which possibility to select. This is accomplished by a yes–no voting scheme

(Li and Olafsson 2005). It counts the amount of “Yes” and “No” responses for each

possibility by transforming the classes in Table 3 into votes. For example, a “No” is

added for option 1 (J1M2), and a “Yes” is added for option 2 (J1M3). We proceed

analogously with all the pairwise comparisons and get the yes–no voting results in

Table 4. With the help of a majority voting, the option with the highest amount of

“Yes” is chosen as the next material movement. In this example, possibility J1M3

receives the most “Yes” votes, so job 1 gets moved to machine 3. If the score is even,

a possibility that outranks another in the numerical order will be chosen. Note that it

is sufficient to make a sequencing decision with regard to the next job to be scheduled

only. Therefore, it is not necessary to establish a complete sequence of all available

jobs.

3.5 Counteracting overfitting using a RF approach

To prevent the DT from overfitting the data, one effective technique is pruning (Quin-

lan 1993). However, preliminary tests with pruning indicated only limited success,

without achieving the expected effect of more accurate trees or a decrease in the

overall makespan. Therefore, we decided to employ RFs as a more advanced but still
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Table 4 Example: yes–no voting for the possible material movements

Option 1 Option 2 Choose option 1? J1M2 J1M3 J2M4

Yes No Yes No Yes No

J1M2 J1M3 No 1 1

J1M2 J2M4 No 1 1

J1M3 J2M4 Yes 1 1

Sum 2 2 1 1

easy-to-use approach for this purpose. Ho (1995) introduced the use of multiple trees

as classifiers. A forest is generated randomly with the objective of differentiating the

DTs. Generating a RF involves four main steps with two random features (Breiman

2001):

1. Set the number n of trees to be generated.

2. Set the sample ratio s of how many training examples out of the training data

will be selected at most to train each tree, which represents the first source of

randomness.

3. Set the maximum number of attributes a out of all attributes A that can be used to

generate each tree, which is the second source of randomness. For every node of

a tree, a number of a ≪ A attributes are taken into consideration for the split.

4. Fully build the trees without pruning them.

Figure 4 presents a simplified version of a RF. In accordance with a single DT, test

examples are handed over to the RF. Each tree within the RF determines a classifi-

cation for this example by following the branches until a leaf is reached. In contrast

with the DT approach though, the process involves all of the generated trees. This

results in n potentially different classifications. The most voted class is the final clas-

sification. However, finding a good setting of randomisation parameters so that the

RF achieves an improvement over a single DT remains difficult. Therefore, we con-

ducted a series of tests to test and tune the RF parameters, as described in detail in

Sect. 4.

3.6 Example selection based on critical paths

In the basic setting, both the DT and the RF are fitted, based on available examples

from the respective training set. The RFs inherently rely on drawing sub-samples of

the training set and thus already perform a special kind of example selection, namely,

a strictly randomised one. The principle of bootstrap aggregation, also referred to

as bagging, should mitigate the well-known variance issues with standard decision

trees, which emerge in the form of high sensitivity even to very slight changes in the

training data and a proneness to overfitting behaviour. Bagging represents a so-called

meta-algorithm or ensemble method in machine learning because it combines two

techniques: bootstrapping (referring to the random sub-sampling part) and aggregation

by averaging the output of multiple individual classifiers (DTs in our case). However,
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Fig. 4 Simplified RF example

a systematic and goal-oriented selection of examples cannot be achieved this way,

since such an approach would have to be problem dependent. In the context of the

scheduling problem, we study that not every decision made during the chronological

scheduling has a direct impact on schedule performance. Consequently, it would be

desirable to identify only relevant decisions and training examples before fitting a DT

or a RF.

With a graph representation of a schedule (Balas 1969), we can use critical paths for

this purpose. It identifies jobs or operations that cannot be delayed without immediately

deteriorating the objective function value. This principle is most easily applied in the

makespan context but also can be extended to sum-based objectives like total tardiness

(Braune et al. 2013). We use this concept to filter training examples as follows: add

only those pairwise comparisons that involve at least one job that is critical in the

CP schedule. The criterion should omit decisions that do not have a direct impact

on the objective value before they enter the tree fitting stage. In this way, we seek to

prevent potentially irrelevant information from “disturbing” and misleading the tree

generation process.

4 Experiments

In this section, we introduce the variety of shop floor configurations and the differ-

ent instance scenarios used in the experimental study regarding the two objectives,

makespan and tardiness.

4.1 Configuration of the instance scenarios in themakespan experiments

In the first step, the objective was to minimise the overall makespan. For this purpose, a

set of three instance scenarios was defined to determine the effect of machine blocking

and a high degree of capacity utilisation on the transport resource (crane blocking), as

well as a mixture of both aspects, as indicated in Table 5. The machine blocking (MB)
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Table 5 Configuration of the instance scenarios used in the makespan experiments

MB scenario CB scenario Mixed scenario

Products 3 3 3

Processing stages 3–5 3–5 3–5

Parallel machines 1–3 2–3 1–3

Buffer slots 1–3 1–3 1–3

Processing time 20–34 20-34 20–34

Setup time 8–13 8–13 8–13

Bold values indicate best values or hint the differences between the approaches for better readability and

interpretability

Table 6 Job load sets for the

instance scenarios used in the

makespan experiments

Low load Medium load High load

Jobs per order 2–3 4–11 7–12

Orders 3–5 3–4 3–6

Jobs in total 6–15 12–44 21–72

Instances 80 80 80

was enforced by a bottleneck stage with at most one machine. For the crane blocking

(CB) instances, each processing stage contains at least two parallel machines. On these

parallel machines, the processing times for the same job type might differ (unrelated

parallel machines). Each instance scenario is split according to the three different

levels of job loads, as listed in Table 6. Note that the given number ranges in Tables 5

and 6 for jobs, orders, machines, processing times, etc., are just the quantities used

for the experiments in this paper. Our proposed approach is of course able to handle

arbitrary configurations, as long as they are structurally equivalent to the described

shop floor setting.

For every instance scenario of the makespan objective function, 80 instances were

randomly generated—according to the configurations in Tables 5 and 6. After training

the tree, it gets evaluated with a cross-validation procedure. To perform a cross-

validation, the 80 instances of a job load set form the basic data set. In each iteration

of the procedure, this set is split into a training set of 70 training instances to build the

DT and 10 test instances. Therefore, with eight runs, every subset becomes the test set

exactly once—an eightfold cross-validation (Blockeel and Struyf 2003). The DT is

built from the training set, and then the test set is used to evaluate the deviation of the

calculated results from the CP results that serve as the baseline for all comparisons.

In addition to comparing the DT and RF approach to the CP formulation, we

assessed their performance in relation to simple priority dispatching rules, for which

the basic principle is to choose the job with the shortest processing time (Panwalkar

and Iskander 1977). Priority rule 1 (PR1), extended to take setup time into considera-

tion, selects the job with the shortest processing time on the next machine, combined

with the inevitable setup time on that machine. Priority rule 2 (PR 2) adds the machine

workload to PR1. Although PR2 includes PR1, we still consider PR1 in the results, so
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Table 7 Configuration of the instance scenarios used in the total tardiness experiments

Scenario: Bottleneck stages Restricted buffer slots Fully equipped shop floor

Products 3 3 3

Processing stages 4–7 4–7 4–7

Parallel machines 1–4 3–5 4–6

Buffer slots 2–4 1 5–8

Processing time 10–50 10-20 10–50

Setup time 3–10 3–10 3–10

Jobs per order 10 10 10

Orders 7 7 7

Instances 80 80 80

that we could analyse the effect of the overall makespan improvement adding machine

workload to the priority rule. The comprehensive comparison of all approaches there-

fore includes the CP results compared with the DT approach, RF approach, PR1

without machine workloads, and PR2 including machine workloads.

Several test runs determine the parameters for the DTs and RF. Test runs for the

DT approach were mainly concerned with varying the height of the tree. Heights of

at least 3 to at most 50 were tested to determine their impact on the overall makespan.

4.2 Configuration of the instance scenarios in the total tardiness experiments

In the second step, a new objective function was introduced: minimising the overall

tardiness of all orders. The goal was to generate new instance scenarios with only

slight blocking behaviour and a fixed number of jobs per order. The configuration is

listed in Table 7.

The first instance scenario—bottleneck stages (BS)—simulates moderate machine

blocking behaviour without influencing the production process too much. In the second

scenario—restricted buffer slots (RB)—blocking does not only occur due to only one

machine in a processing stage but rather due to only one buffer slot on every single

machine on all the stages. The slightly reduced processing times increase this effect.

Finally, the third scenario—fully equipped shop floor (FE)—exemplifies a shop floor

with nearly no buffer constraints.

Again, 80 instances were generated randomly for each scenario. The main differ-

ence between the makespan and the tardiness instances is how we set the processing

times of same job types on parallel machines. To calculate due dates, the processing

times of a job type on parallel machines were set to the same values (identical parallel

machines), whereas in the makespan instances these processing times might differ

(unrelated parallel machines).

The due date for an order was set deterministically by adding up the processing times

on each processing stage for each job, plus its transport time. The resulting value was

then multiplied by a factor of 1.3, which is a common procedure for tardiness job shop

scheduling problems (Braune et al. 2013). Furthermore, jobs of the same order are not
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necessarily processed in a row but probably simultaneously on parallel machines. To

take this effect into account, the processing time of that job on each stage is divided by

the total number of machines on that stage for the due date calculation. Reflecting the

new total tardiness objective, PR1 was replaced by a due date specific dispatching rule,

earliest due date (EDD). Instead of the makespan-related PR2, we also chose the well-

established apparent tardiness cost (ATC) dispatching rule (Vepsalainen and Morton

1987). For both rules, the workload of possible next machines is also considered.

5 Computational results

Several test runs were conducted to determine a well-performing setup of parameters

for both the instance generation and the DT and RF approach for both objectives.

Those tests were implemented in C# on a workstation with Windows 10, 64 bit, an

i7-4790 CPU core with 3.6 GHz, and 8 GB of RAM. Building the tree on this setup

took less than a second. The IBM ILOG CPLEX and the IBM ILOG CP Optimizer

were used to solve the MIP and CP formulation. The CP solution quality rating for

the instance scenarios by running the MIP formulation (“Appendix A”) is discussed

in “Appendix C”, distributed as online supplementary material. In this section, we

present the best performing DT and RF configurations and discuss their results.

5.1 Results for themakespan objective with unrelated parallel machines

The results for the makespan objective are listed in Table 8. In interpreting these

findings, we caution that in the low job load set, the number of pairwise comparisons

is much lower than for the medium and high job load sets. For example, there are

about 6800 training examples in the mixed scenario with a low job load for the cross-

validation. In the medium job load set, there are about 212,000 training examples,

whereas in the high job load set, about 557,000 training examples are generated. The

limited training data result in better results for the PR2 than the DT and the RF approach

in all low job load sets.

For every instance of the ten test instances, we calculate the deviation and consider

it as a factor by which the CP makespan would have to be multiplied to match the

objective function value of the DT schedule. The overall deviation then is determined

using the arithmetic mean of all the results for that eightfold cross-validation for

each approach. For example, a value of 1.151 would imply that the deviation of the

corresponding approach from the CP result is 15.1% on average for all instances of that

job load set. Furthermore, we compare the DT and RF results against those obtained

with straightforward priority dispatching rules.

The configurations in these tables indicate the height of a DT for the DT approach

and the number of trees/sample ratio/attribute ratio for the RF approach. The height

of the trees was set at eight for the RF approach, because DTs with that configuration

performed well in several test runs. To configure the other three parameters, number

of trees, sample ratio, and setting of the maximum number of attributes, as listed in

Sect. 3.5, we started with randomly chosen parameters of 50 trees, 0.5 sample ratio,
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Table 8 Cross-validation results for the instance scenarios with makespan objective and unrelated parallel

machines

Approach Configuration Instance scenario

Machine bottleneck Crane bottleneck Mixed

Job load set

Low Med High Low Med High Low Med High

CP 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

PR1 1.192 1.177 1.203 1.294 1.337 1.325 1.231 1.276 1.271

PR2 1.151 1.164 1.185 1.233 1.308 1.295 1.181 1.247 1.254

DT 4 1.387 1.163 1.110 1.299 1.378 1.158 1.350 1.336 1.230

5 1.387 1.158 1.110 1.297 1.377 1.160 1.354 1.300 1.163

8 1.182 1.134 1.127 1.280 1.264 1.184 1.257 1.252 1.173

20 1.187 1.170 1.139 1.271 1.257 1.161 1.256 1.250 1.164

RF 50/0.75/0.5 1.176 1.146 1.156 1.238 1.215 1.132 1.224 1.194 1.130

50/0.5/0.5 1.182 1.147 1.155 1.242 1.213 1.134 1.226 1.189 1.142

Bold values indicate best values or hint the differences between the approaches for better readability and

interpretability

and 0.5 for the attributes ratio. The test runs showed that increasing or decreasing the

amount of trees did not have a significantly positive effect on reducing the overall

makespan. Therefore, only the sample and attribute ratio were varied, using step sizes

of 0.1. The best performing configurations are presented in Table 8.

The results differ for the medium and high job load sets versus the low job load sets.

In the latter case, the PR2 cannot keep up with the DT approach and RF approach:

both perform better in every job load set. Furthermore, for most of the job load sets,

the RF performs better than a single DT and succeeds in “generalising” the learned

target concept better.

After the cross-validation, the next step is to choose a training set out of the job

load sets and instance scenarios to build a generic DT. For this purpose, we chose the

best performing DT (machine bottleneck scenario, high job load set, height 5) and RF

(mixed scenario, high job load set, 50 trees, 0.75 sample ratio, 0.5 attribute ratio), then

applied these trees to all the other sets. The trees were trained on a particular training

set, so by testing on different sets, we can analyse their extrapolation capabilities. The

results in Table 9 indicate that the generic DT and RF perform well in a medium and

high job load set but, again, not as well in a low job load set, relative to PR1 and PR2.

5.2 Results for the total tardiness objective with identical parallel machines

The test procedure for the eightfold cross-validation test runs for the tardiness instances

was analogous to that for the makespan instances. The results of the best performing DT

for each scenario are shown in Table 10. Here, the benchmark result is the tardiness for

each order within an instance achieved with the CP formulation. Again, the deviation is

calculated and reported as a factor by which CP tardiness would have to be multiplied to
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Table 9 Results for the generic DT and RF for the instance scenarios with makespan objective and unrelated

parallel machines

Approach Instance

scenario

Job load

set

Instance scenario

Machine bottleneck Crane bottleneck Mixed

Job load set

Low Med High Low Med High Low Med High

CP 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

PR1 1.192 1.177 1.203 1.294 1.337 1.325 1.231 1.276 1.271

PR2 1.151 1.164 1.185 1.233 1.308 1.295 1.181 1.247 1.254

DT MB High 1.212 1.131 – 1.301 1.201 1.176 1.254 1.184 1.144

RF Mixed High 1.171 1.146 1.154 1.240 1.216 1.133 1.225 1.195 –

Bold values indicate best values or hint the differences between the approaches for better readability and

interpretability

Table 10 Cross-validation results for the instance scenarios with total tardiness objective and identical

parallel machines

Instance set DT depth Training examples CP EDD ATC DT

Bottleneck stages 8 All 1.000 1.693 2.066 1.229

Critical 1.191

Restricted buffer slots 8 All 1.000 1.389 1.837 1.096

Critical 1.249

Fully equipped shop floor 8 All 1.000 2.315 1.779 2.264

Critical 1.318

Bold values indicate best values or hint the differences between the approaches for better readability and

interpretability

match the objective function value of the DT or priority rule schedules. Both example

selection approaches are listed in Table 10 (critical path approach and making use of

all training examples—defined as “all”). We do not report lower bound information in

this context, because neither the MIP nor the CP solver can provide sufficiently tight

bounds to be used for a meaningful comparison.

The common priority rule performances can be undercut in these scenarios. The

critical path approach actually leads to a tardiness reduction in two of three instance

scenarios. In scenarios with a huge number of possible material movements, the critical

path approach improves the overall result by skipping possibly irrelevant training

examples. However, this outcome does not hold for the restricted buffer slot scenario,

in which fewer possible material movements occur at the same time, so that more

training examples seem even more in favour of the DT performance. With many more

material movement options at a time compared with the makespan instances, the EDD

rule can handle the total tardiness minimisation quite well, in that the processing times

on parallel machines for the same job types are equal. Surprisingly, the simple concept
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Table 11 Cross-validation results for the makespan instance scenarios with total tardiness objective and

identical parallel machines

Instance set CP EDD ATC DT DT RF

Critical All

MB high 1.000 1.258 1.538 1.109 1.050 1.061

MB med 1.000 2.158 2.428 1.371 1.448 1.434

MB low 1.000 1.446 1.499 1.417 1.570 1.511

CB high 1.000 1.651 1.927 1.532 1.507 1.543

CB med 1.000 1.881 2.148 1.675 1.663 1.577

CB low 1.000 2.165 2.169 2.082 1.773 1.569

Mixed high 1.000 1.430 1.674 1.377 1.399 1.372

Mixed med 1.000 2.306 2.167 1.557 2.514 1.546

Mixed low 1.000 1.805 1.841 1.765 1.884 1.761

Bold values indicate best values or hint the differences between the approaches for better readability and

interpretability

of the EDD rule seems to work better than the more sophisticated ATC dispatching

rule in this particular shop floor setting.

Thus, the CP formulation can be applied as a source for training examples in a total

tardiness objective configuration. The decision trees and random forests built on the

basis of the corresponding CP solutions yield competitive results and outperform the

EDD and ATC dispatching rules.

5.3 Results for applying the total tardiness objective function to themakespan

instance scenarios with identical and unrelated parallel machines

Noting that the DT approach for the total tardiness objective function worked well, we

applied it to modified versions of the instances used for the makespan experiments, as

introduced in Sect. 4.1 (see Tables 5 and 6). These modifications involved applying

the same processing times on parallel machines and the critical path approach.

As shown in Table 11, building the DT using the critical path approach leads to

competitive results in the machine bottleneck scenarios with medium and low job

loads. The DT with all training examples achieves good performances in the high load

instance sets. However, the RF approach can reduce tardiness in nearly all scenarios—

yielding the best performance in 5 of 9 instance scenarios and good results in the

remaining 4. Thus, it seems more advantageous to make use of the RF approach for

instance scenario sets with the total tardiness objective.

In the next step, we calculated the due dates for the makespan instances with

unrelated machines, as described in Sect. 4.2, to test the DT and RF performance

on an instance scenario set with total tardiness as the objective and unrelated parallel

machines. This machine setting, with differing processing times on parallel machines,

complicated the determination of the due dates, as well as the calculation of the

remaining work for chronological scheduling.
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Table 12 Cross-validation

results for the makespan

instance scenarios with total

tardiness objective and unrelated

parallel machines

Instance set CP EDD ATC DT RF

All, depth 8

MB high 1.000 1.619 1.964 1.351 1.099

CB high 1.000 1.477 1.742 1.255 1.397

Mixed high 1.000 1.373 1.685 1.288 1.134

Bold values indicate best values or hint the differences between the

approaches for better readability and interpretability

Table 13 Results for the generic trees

Objective Machines Training examples EDD/PR1 ATC/PR2 DT RF

All, depth 8

Tardiness Identical All 1.667 1.388 1.385 1.204

Tardiness Unrelated All 1.706 1.984 1.316 1.490

Makespan Unrelated All 1.289 1.268 1.126 1.303

Bold values indicate best values or hint the differences between the approaches for better readability and

interpretability

Due to the amount of jobs on the shop floor and the resulting number of decisions, we

focus only on the high job load scenarios for these calculations. The results in Table 12

show that the RF outperforms the other approaches in 2 of 3 instance scenarios; for the

CB, high scenario does the DT perform better. The performance of both the DT and RF

approaches for this scenario and shop floor configuration thus are quite competitive.

5.4 Applying a generic DT and RF on different instance scenarios

Finally, we compared the varying approaches in terms of their ability to apply a

generic DT and RF as a dispatching rule to other instance scenarios. Three different

configuration–objective combinations were chosen exemplarily: total tardiness objec-

tive with identical parallel machines, total tardiness objective with unrelated parallel

machines, and makespan objective with unrelated parallel machines. To test whether

our machine learning approach can reduce the makespan or total tardiness, we selected

27 instances out of the pertinent MB and CB scenarios with high job load, as well

as 26 instances of the mixed scenario with a high job load. Again, we conducted an

eightfold cross-validation—analogously to the test runs described above.

In these scenario settings, the DT and RF yield better results than the corresponding

dispatching rules, as indicated in Table 13. For the total tardiness objective with identi-

cal machines, the RF performs best. In scenarios with unrelated parallel machines, the

DT outperforms the RF, in accordance with our observation that the DT and RF can

be applied as a generic tree dispatching rule that performs well in instance scenarios,

with various shop floor configurations and objectives.
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Table 14 Binary classification results (before yes–no voting) for the DT with makespan objective and

unrelated parallel machines, and the tardiness objective with identical parallel machines

Instance set CB high MB high Mixed high

Training

examples

Critical All Critical All Critical All

DT depth 8 (%) 50 (%) 8 (%) 50 (%) 8 (%) 50 (%) 8 (%) 50 (%) 8 (%) 50 (%) 8 (%) 50 (%)

Makespan

objective

84 87 88 89 82 81 85 82 85 88 85 88

Tardiness

objective

88 89 81 79 83 84 74 72 87 87 79 78

5.5 Evaluation of the classification accuracy performance

To assess the classification performance of the generated decision trees on a somewhat

lower level, we performed an accuracy analysis, both at the level of binary classifi-

cations and in terms of the proportion of job/machine pairs that have been chosen in

exact correspondence with the CP solution. The goal is to gain deeper insights into the

behaviour of the DT as a pure classifier in this specific problem setting. It also allows

for a direct comparison of the DT with other popular classification approaches known

from machine learning.

The binary classification problem considered in this context boils down to fixing the

relative order between two job/machine pairs, as outlined in Sect. 3. More precisely,

the target value equals 1 if the pair J1M1 is preferable to J2M2, and 0 otherwise. For

the associated analysis, we split the set of 80 problem instances of each scenario (see

Table 5) into a training and a test set, containing 50 and 30 instances, respectively. To

retrieve a sufficiently large amount of pairwise comparisons, we only include the high

load versions of those scenarios.

Table 14 summarises the accuracy results for the makespan and tardiness types of

scenarios. The reported percentage values correspond to the proportion of times the

binary value predicted by the DT coincides with the target values, as provided by the

CP solution. We only used pairwise comparisons if at least one of the two options

(J1M1 or J2M2) actually was chosen by the CP to be scheduled next at each decision

point.

Prediction accuracies of notably above 80% can be achieved in most of the cases.

We particularly note the strong influence of the example selection mechanism on clas-

sifier performance. For makespan instances with unrelated parallel machines (values

“Diff” in column “PT”), it seems preferable to take into account all available training

examples, whereas the results observed for the tardiness instances (identical machines)

highly suggest selecting only those examples that involve at least one critical job (see

Sect. 3.6).

To assess the relative performance of the DT approach, we compared it with various

different alternative classifiers, as provided by the popular, Python-based machine

learning toolkit scikit-learn (Version 0.20.2). For this purpose, we exported all

the pairwise comparison data, including all features and the targets as text files, then re-
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Table 15 scikit-learn binary classification results (makespan, identical parallel machines, all exam-

ples)

CB high MB high Mixed high

Classifier Accuracy (%) Fit time Accuracy (%) Fit time Accuracy (%) Fit time

DT (8) 90.14 00:00.4 84.30 00:00.3 88.87 00:00.3

RF (8) 90.76 00:01.7 85.35 00:00.6 89.10 00:01.1

GNB 86.60 00:00.1 82.76 00:00.1 86.17 00:00.1

KNN 86.05 00:53.4 81.44 00:09.7 86.40 00:50.9

SGD 90.46 00:51.4 86.45 00:30.5 88.56 00:49.3

SVC 90.18 24:45.4 86.09 10:12.5 87.96 33:34.4

Table 16 scikit-learn binary classification results (tardiness, unrelated parallel machines, critical

examples)

CB high MB high Mixed high

Classifier Accuracy (%) Fit time Accuracy (%) Fit time Accuracy (%) Fit time

DT (8) 90.05 00:00.4 84.19 00:00.4 89.34 0:00:01

RF (8) 90.71 00:02.6 85.05 00:00.9 89.44 0:00:02

GNB 86.58 00:00.1 82.82 00:00.3 86.76 0:00:00

KNN 86.68 01:50.7 81.33 00:34.4 85.15 0:00:56

SGD 90.46 01:05.5 86.43 00:50.4 89.25 0:00:57

SVC 90.19 39:24.5 86.06 17:20.6 89.20 0:22:43

imported them inscikit-learn. The same split between training and test examples

served to train and rate a set of classifiers. Tables 15 and 16 show the achieved scores

on the test set. The applied classification approaches include a DT and a RF, each with

a depth limit of 8, a Gaussian naive Bayes (GNB) classifier, a k-nearest-neighbour

(KNN) approach, a purely linear classifier trained using a stochastic gradient descent

(SGD) method, and finally a support vector classifier (SVC). All methods run with

their default settings. In addition to the accuracy results, the table lists the time (in

minutes) required to fit the respective model to the training data. It must be emphasised

that for both types of instances, the DT and/or the RF almost consistently achieve the

highest accuracies. They are tied for the lead in the CB high setting, outperform the

other methods in the mixed high setting, and are only slightly worse than SVC and

SGD in the MB high case. Note that for this kind of comparison, we used the DT

and RF implementations available in scikit-learn. Slight deviations from the

values reported in Table 14 may be traced back to implementation differences between

the two employed machine learning frameworks. The main goal of the comparison,

however, was to provide additional evidence that tree-based classifiers are particularly

well-suited for this kind of classification problem.

The second stage of our analysis centres on the accuracy of the DT after yes–

no voting has occurred. The central question in this context is: Assuming that we

are given decision points during scheduling, such as sets of movable jobs and their
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Table 17 DT Accuracy after yes–no voting (makespan objective, identical parallel machines)

Instance set Examples Depth PR1 (%) PR2 (%) DT (%) DT job only (%) Avg. movable

CB high Critical 8 3 4 32 47 52.3

50 39 60

All 8 2 4 41 62 52.8

50 41 62

MB high Critical 8 8 11 43 59 37.5

50 48 66

All 8 8 11 49 66 37.5

50 50 68

Mixed high Critical 8 4 5 33 49 46.7

50 40 61

All 8 4 5 33 49 46.7

50 40 61

Table 18 Accuracy after yes–no voting (total tardiness objective, identical parallel machines)

Instance set Examples Depth PR1 (%) PR2 (%) DT (%) DT job only (%) Avg. movable

CB high Critical 8 6 4 42 57 52.2

50 43 57

All 8 6 3 38 48 52.2

50 41 52

MB high Critical 8 13 14 57 65 29.7

50 57 65

All 8 13 10 53 59 29.7

50 53 59

Mixed high Critical 8 9 9 48 59 42.4

50 48 59

All 8 9 6 47 55 42.4

50 48 58

potential destination machines, in how many cases can the DT choose exactly the

same job and the same machine as the CP solver? The results in Tables 17 and 18

suggest disappointing percentages at first glance. However, when relating these values

to the average number of movable job/machine pairs (column “Avg. movable”) per

decision point, the numbers support another, more positive view, which is reinforced

by the poor performance of the priority rules that serve as the “baseline” results here.

Accuracy also increases considerably if only the job part of the decision has to be

matched exactly (column “DT job only”). This result offers a further indication of

the relative importance of the machine assignment as an inherent component of every

decision taken during scheduling processes.
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6 Discussion and conclusion

We have introduced a machine learning approach for generating a tree-based dispatch-

ing rule making use of training examples taken from CP solutions. The underlying

abstract model is based on a practical application setting. Our approach can deal with

a greater degree of complexity, such as varying processing times per machine, vary-

ing number of parallel machines per stage, job types per order, number of processing

stages, setup times, and number of jobs. We add further complexity by considering a

transport resource with limited capacity. Existing contributions each cover only sub-

sets of these aspects. We also analysed the DT and RF approaches in relation to two

different objective functions: makespan and total tardiness.

Both the DT and RF, trained and tested on a specific instance scenario, undercut

the makespan results of the priority rules in the medium and high job load scenarios,

as confirmed by the cross-validation procedure. Due to the decreased number of train-

ing examples, this outcome does not appear possible for the low job load scenarios.

However, the gaps relative to the priority rules are very small in these cases. When

applying a generic DT and RF to the low, medium, and high job load scenarios, simi-

lar effects occur. The generic trees yield competitive results in the medium and high

load scenarios. Furthermore, all approaches also perform well for the total tardiness

objective with various instance scenarios and shop floor configurations.

We conclude that the high quality feasible solutions obtained with the help of CP

provide a good basis for generating training examples. Furthermore, using the selected

attributes in combination with the job-machine decision, and the yes–no voting, a well

performing DT and RF can be generated. The computational results provide strong

evidence that for each of the two objectives, the respective DT and RF approach can

be used to generate a dispatching rule for various shop floor settings.

It has to be stated that our proposed approach might not always lead to one single,

generic DT or RF that is able to outperform other approaches in all the instance sce-

narios and objectives. But the main advantage of our machine learning approach is the

combination of an easy-to-implement, easy-to-learn, easy-to-adapt technique, with

an interpretable model. This is especially interesting for decision makers, production

schedulers, or other employees in the manufacturing industry, as the tree can be inter-

preted simply by reviewing its branches and leaves—in contrast to other classifiers

introduced in Sect. 5.5.

Future research may address, for example, the possibility to include machine break-

downs as an extension of our approach to deal with a dynamic environment. Depending

on the nature of such breakdowns, this could be accomplished either by scheduling

preventive maintenance intervals or by a stochastic modelling approach. Another line

of research might seek to develop a genetic programming or hyper-heuristic approach

as even more complex competitors to our DT and RF implementation.
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