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Abstract: The building sector has traditionally accounted for about 40% of global energy-related
carbon dioxide (CO2) emissions, as compared to other end-use sectors. Due to this fact, as part of the
global effort towards decarbonization, significant resources have been placed on the development
of technologies, such as active buildings, in an attempt to achieve reductions in the respective CO2

emissions. Given the uncertainty around the future level of the corresponding CO2 emissions, this
work presents an approach based on machine learning to generate forecasts until the year 2050.
Several algorithms, such as linear regression, ARIMA, and shallow and deep neural networks, can be
used with this approach. In this context, forecasts are produced for different regions across the world,
including Brazil, India, China, South Africa, the United States, Great Britain, the world average, and
the European Union. Finally, an extensive sensitivity analysis on hyperparameter values as well as
the application of a wide variety of metrics are used for evaluating the algorithmic performance.

Keywords: ARIMA; deep learning; linear regression; machine learning; neural networks; uncertainty

1. Introduction

The world is undergoing a period of critical change in terms of its climate, as wit-
nessed by the increasing prevalence of extreme weather events, which have a strong
correlation with the dramatic increase in greenhouse gas emissions [1,2]. At the same time,
there have been ongoing efforts by various countries worldwide toward decarbonization.
One prominent example is COP26, in which the participating countries signed the Glasgow
Climate Pack, which aims to push governments to “accelerate the development, deploy-
ment, and dissemination of technologies and the adoption of policies to transition towards
a low-emission energy system” [3]. In addition, the Paris Agreement [4] outlined several
measures to limit the increase of global temperature to two degrees Celsius, including
encouraging investment in renewables, speeding up the transition to electric vehicles, and
adopting energy-efficient active buildings. Therefore, various countries around the world
initiated collaborative work to achieve these objectives, with a special focus on the building
sector since it accounts for about 40% of the energy-related CO2 emissions on a global
scale [5].

The emissions related to the building sector—industrial, commercial, and residential—occur
due to the burning of fossil fuels for the generation of heat and electricity, as well as the han-
dling of waste. Within this sector, two processes involve the burning of fossil fuels: first,
the construction of the building’s infrastructure, and second, the energy consumption of
buildings, such as for heating and electricity. Therefore, alongside the heavy use of fossil
fuels to power the construction of buildings, once built, buildings themselves require heat
and electricity—two forms of energy that are currently produced through the combustion
of fossil fuels.

Hence, it is obvious that the building sector can make a significant contribution to the
global effort toward decarbonization if the energy consumption of buildings is properly
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planned and managed. In this context, the emissions can be reduced by implementing
measures and policies such as the adoption of zero-carbon heating, the use of renewable
sources of energy to cover the buildings’ electricity needs, and the deployment of smart
technologies in buildings such as energy storage [6–9], vehicle-to-buildings concepts [10,11],
and demand-side response schemes [12].

The building sector contributes to emissions directly and indirectly. Direct emissions
primarily originate from burning fossil fuels for space heating, water heating, and cooking.
On the other hand, indirect emissions stem from electricity generation units that burn fossil
fuels to generate electricity. In this context, emissions from buildings can be reduced in two
fundamental ways. The first is to improve energy efficiency to decrease the energy required
for heating/cooling or cooking, whereas the second is to electrify building equipment
based on renewables, which would involve replacing appliances that use fossil fuels with
sustainable energy technologies.

In this context, various countries around the world legally require the building sector
to adopt measures for the reduction of CO2 emissions.

Brazil, one of the five major emerging economies (BRICS), has enacted such mea-
sures. Examples include the Mitigation and Adaptation to Climate Change for a Low-
Carbon Emission Agriculture Plan, the Steel Industry Plan, the Low Carbon Emission Econ-
omy in the Manufacturing Industry Plan, and the Sectoral Transport and Urban Mobility
Plan [13–15].

In India, whose building sector is responsible for 20% of its total CO2 emissions, a goal
has been set for generating 50% of the national energy consumption through renewable
energy by 2030. In addition, there is an objective to realize the transition to energy-efficient
active buildings [16].

China accounts for approximately 30% of the world’s CO2 emissions and is the world’s
largest emitter of greenhouse gases, with the building sector representing around a fifth
of the country’s total CO2 emissions. To address this issue, the Chinese government has
enacted various policies toward energy efficiency in buildings as well as upgrading its
electricity grid to accommodate a larger share of renewables [17].

In South Africa, the Climate Change Bill has been enacted to reduce the vulnerability to
climate change. Other important actions include the formation of the Presidential Climate
Change Commission as well as the National Climate Change Adaptation Strategy, which
also addresses the transition to energy-efficient buildings [18].

In the United States, emissions from buildings account for about 15% of total U.S.
greenhouse gas emissions [19]. In this context, the United States has adopted policy tools
such as the American Renewable Energy Act of 2021 [20], encouraging the transition to
more energy-efficient active buildings.

The United Kingdom has adopted the Carbon Plan [21], which outlines various energy
efficiency methods used to reduce emissions from the building sector, given that this sector
accounts for about 15% of the country’s greenhouse gas emissions.

Finally, the European Union has also set ambitious targets for the reduction of green-
house gas emissions by approximately 55% by 2030 through the adoption of novel green
technologies to be deployed in the building sector. In this context, the European Green
Deal [22] was enacted to ensure such commitments became legal obligations.

In this context, the work is structured as follows: Section 2 presents the ten-step
machine learning methodology, while Section 3 presents relevant literature on machine
learning algorithms with a focus on linear regression, ARIMA, and neural networks and
describes the novelty of the study. Section 4 presents the case study, the results, and
sensitivity analyses on key hyperparameters to evaluate model performance. Section 5
discusses the results in detail and mentions the last step of the methodology. Section 6
presents key points of the entire methodology, while Section 7 concludes and mentions
future work pathways.
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2. The Ten-Step Machine Learning Methodology

Given the uncertainty surrounding the future levels of CO2 emissions from buildings,
novel methods based on machine learning can be used as forecasting tools. These methods
provide fundamental insights into the future evolution of CO2 emissions while taking into
account the efforts made so far. This work aims to provide insights into the future level
of CO2 emissions from buildings in different countries. This section presents the ten-step
machine learning methodology, which is illustrated in Figure 1 below.
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Figure 1. Diagram of the ten-step machine learning approach for generating forecasts.

This methodology can use any machine learning methodology. In this paper, we
have chosen to use linear regression, ARIMA, shallow neural networks, and deep neural
networks (also known as “deep learning”) as these fundamental algorithms have not
been used before in the context of CO2 emissions from buildings. However, note that the
methodology is expandable to any number and type of algorithms.

In a linear regression model, the relationship between the target variable and the
independent variable x is expressed in the form y = α +∑i bixi + ε, where α is the intercept
that expresses the predicted value for the target variable when all the predictor variables xi
are equal to zero. Additionally, xi are the features (or predictors), and y is the target, which,
in this case, is linearly related to the features. Finally, bi are the regression coefficients,
which multiply the predictor variables, and each of them can be interpreted as the change
in the predicted value for the target variable for each unit change in the specific regression
coefficient, provided that all other regression coefficients remain constant. To fit the linear
regression model to the training set, the ordinary least squares (OLS) methodology is used
to obtain the optimal value for the parameters (intercept and coefficients). Specifically, the
OLS is an optimization method that minimizes the standard loss function, which for the
case of linear regression is equal to the sum of the squared residuals, as in ∑N

i (yi − ŷi)
2,

where yi is the actual value for observation i and ŷi is the predicted value, while N is the
total number of observations in the estimation sample.

ARIMA (autoregressive integrated moving average) is a machine learning algorithm
for making forecasts. One of the hyperparameters includes the autoregressive (AR) term,
also known as the “lag order”, which represents the number of lag observations. Another
hyperparameter is the differencing order I, known also as the degree of differencing, and
represents the number of times that the raw observations have differed. Finally, the moving
average (MA) term represents the size of the moving average windows. Note that a
hyperparameter, as opposed to a parameter, attains its value as set by the user and is not the
result of an optimization algorithm. Note that the model equation is determined by the auto-
regressive (AR) order. In this case, the model equation for a k-order ARIMA model takes the
following form: y = α + b1x1(t) + ∑i bixi(t) + ∑k θky(t − k) + ε(t), where ε(t) ∼ N

(
0, σ2)

and α is the constant or intercept. θk is the k-order autoregressive coefficient, and σ2 is the
variance of the error term, where xi are the independent variables.

Note that there are three steps for model building in ARIMA [23]. The first step
is the identification step. This includes checking for stationarity with tests such as the
KPSS test (Kwiatkowski-Phillips-Schmidt-Shin), which states that a time series is stationary
when the corresponding p-value is greater than the selected significance level. In this step,
methods such as auto ARIMA or the ACF/PACF plots are utilized to determine the optimal
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ARIMA order. The second step includes the model estimation or fitting, where the model is
trained on the training set. Finally, the last step includes conducting diagnostic tests. Such
tests make sure that the three key assumptions of ARIMA are satisfied, namely that the
residuals are serially uncorrelated (via the Ljung-Box test), have constant variance (i.e., no
heteroskedasticity), and are normally distributed (via the Jarque-Bera test).

Neural networks constitute a forecasting modeling approach with two main types:
shallow and deep, as shown in Figure 2. The former is a type of neural network with a
single hidden layer, while the latter is a neural network with multiple hidden layers. Once
a neural network model is fitted to the training set, an optimization method is applied,
typically gradient descent, to yield the optimal values of the parameters, which are weights
and biases. Key hyperparameters typically include the number of layers, the number of
neurons per hidden layer, the activation function, the number of epochs, the learning rate,
and the batch size. Linear activation functions typically characterize output layers, while
nonlinear ones (such as the rectified linear unit) characterize hidden layers. The learning
rate determines the update of the parameter values at every gradient descent step, where
“gradient” is the first derivative of the loss function with respect to the parameters. That is,
the learning rate determines by how much the parameters should change at each gradient
descent step and takes values in (0,1). The batch size is the size of the subset of the training
set that is used for each iteration (or step) of gradient descent for each parameter update.
Finally, the number of dense layers represents the depth of the network; the greater the
number of dense layers, the deeper the network, while the number of hidden units (or
neurons) in each (dense) layer represents the width of the network; the more neurons,
the wider the network. In general, deeper (rather than wider) networks perform better;
however, having too many layers or too many neurons can potentially lead to overfitting.
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Regarding the methodology, as mentioned, it consists of ten steps, all of which col-
lectively lead to the generation of forecasts from models with acceptable accuracy and no
overfitting. The steps are as follows:

The first step is called “Data Preprocessing”, and it involves the selection and process-
ing of data. In this case, the World Bank is the source of the data selected for this work, and
the data consist of annual CO2 emissions from buildings, expressed as a percentage of total
fuel combustion. Note that the focus is not on CO2 emissions in general but specifically on
CO2 emissions related to the building sector. It was particularly challenging to obtain such
data, with the World Bank being the only available source. Specifically, the data cover the
period from 1971 to 2014, and there is a single value for every year, which is the annual-
average level of CO2 emissions. As such, the dataset consists of 44 observations, which may
make it challenging to produce high-accuracy forecasts given that the larger a dataset is,
the more likely it is to obtain significant forecasting errors. Still, we have chosen to conduct
the analysis because the size of the dataset does not guarantee low accuracy in the results.
In addition, the methodology presented remains valid and unchanged irrespective of the
size of the dataset. Therefore, there is merit in presenting it, particularly given that it is the
first time that it finds application to such a dataset.

The second step involves the definition of the feature, the feature matrix, the target
variables, and their components. These components include the training, testing, and
validation components. However, when the datasets are small (e.g., with fewer than
100 observations), there is no room for creating a validation component. For this reason,
we have split the original dataset into a training subset and a test subset without defining
a validation subset. This is because there are only 44 values in the original dataset, so
the training subset would only have about 20 values, which could affect the efficiency
of model fitting. On the other hand, when a validation subset is not included, the
training subset comprises 36 values, making it a superior alternative. Note that the
use of a validation set in the analysis is aimed at fine-tuning the hyperparameters, but
this fine-tuning can also be approximated through the sensitivity analysis performed in
Step 7 of this method.

The third step applies to shallow and deep neural networks and involves scaling the
feature matrix and the target variables, as well as their component/subset matrices (training
and test set components). Note that this step is not necessary, and therefore omitted, for
linear regression or ARIMA. The resulting scaled matrices are used to produce scaled
predictions and scaled forecasts, as described in subsequent steps of the methodology, as
this is a necessary part of the function of neural networks. Later, the scaled values will be
unscaled again to obtain the actual results (predictions and forecasts).

The fourth step involves model fitting, also known as a model estimation. Specifically,
the models are fitted to the training set, so that they can learn the patterns held in the
training dataset and then be able to use this learning for generating predictions and
forecasts. This is a case of univariate model fitting, meaning that the models for each of
the regions are fitted to the datasets of the corresponding regions and not to datasets from
other regions. Therefore, for the eight regions/datasets considered in the model, eight
models are fitted, per algorithm (linear regression, ARIMA, shallow neural networks, and
deep neural networks), resulting in 32 fitted models in total.

The fifth step involves calculating the training and test set predictions. The former are
the outputs of the model corresponding to the training dataset, i.e., the period 1971–2005,
while the latter are the outputs of the model corresponding to the test dataset i.e., the
period 2006–2014. Then, by comparing these predictions with the original training and test
subsets (i.e., the actual values belonging to the datasets obtained from the World Bank),
it is possible to evaluate the corresponding errors known as “mean absolute percentage
errors”, or MAPE. These errors express the distance between the outputs of the models
(i.e., the predictions) and the actual values, thereby reflecting the model accuracy in seen
(i.e., the training set) and unseen datasets (i.e., the test set).
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The sixth step involves the overfitting analysis. Specifically, the training and the
test errors are compared with each other and if their difference is greater than 10%, the
corresponding model is considered to be overfitting. Overfitting can happen when the
training set errors are small, which indicates very good fitting, while the test set errors are
very large, indicating very high test errors, i.e., poor model performance on unseen data.
In other words, when a model overfits, it has learned from the training set data so well
(i.e., has very small training set errors) that it cannot generalize to new, unseen data,
resulting in significant test-set errors. For this reason, such a model cannot be utilized to
determine forecasts; it is disqualified from further analysis.

The seventh step constitutes the sensitivity analysis of the test set errors. Specifically,
for different combinations of hyperparameters, the test errors are evaluated. This analysis
is conducted because it can offer significant insights into the model’s performance on the
forecasts. Particularly, the test set errors are considered proxies for the forecasting errors
because both are errors on unseen datasets and reflect the model’s performance on new
data. Therefore, the sensitivity analysis can provide significant insights into the behavior of
the forecasting errors themselves.

The eighth step involves conducting the naïve benchmark test. While the overfit-
ting analysis focused on the comparison between the training and test errors, the naïve
benchmark test focuses solely on the test error. It involves comparing the test error of the
model used in the analysis against the test error of a “naïve” or simple model. The idea is
that if the naïve model can yield a smaller test error, then the test error of the model used
in the analysis is considered unacceptably high. This test allows characterizing whether
a test error is high or not, as the naïve model serves the purpose of the benchmark for
this comparison.

The ninth step involves the generation of the forecasts and the corresponding graphs.
Note that forecasts are the outputs of the models corresponding to the forecasting pe-
riod, i.e., the years until 2050. Note that at this point the forecasts are produced only by
those models that have successfully passed both the overfitting test and the naïve-model
benchmark test. As a result, the models that will be used for the generation of the fore-
casts are guaranteed not to overfit (since they have successfully passed the overfitting
test) and to have a relatively low forecasting error since they have successfully passed the
naïve-benchmark test.

Finally, the last step incorporates the analysis of the results obtained in the previous
steps. Specifically, this step includes the comparison of the model performance in terms of
overfitting as well as test-set errors (test-set MAPE) and a description of the final selection
of the models whose forecasts will be accepted based on the results of the naïve—model
tests and of the overfitting tests.

3. Literature Review on Machine Learning Algorithms

A machine learning model is an algorithm that learns, by itself, the pattern in the
data and develops the relationship between the dependent variable, or target, y, and the
independent variables, or features, x, as in y = f(x) + ε, where ε is the error term. Machine
learning models have constituted fundamental algorithms for making forecasts, such as
linear regression, ARIMA, and neural networks, as discussed in the previous section.

To the best of our knowledge, these algorithms have not yet been applied in the context
of producing forecasts on the dataset for CO2 emissions from the building sector. This fact
alone renders this work novel since it demonstrates for the first time such an application.

Linear regression has found application in other areas, such as electricity revenue
forecasting [24], data-driven power flow modeling [25], and the prediction of electricity
consumption [26,27].

Regarding ARIMA, it has found application in other cases such as the prediction
of next-day electricity prices [28], the development of stochastic wind power model-
ing [29], the solar PV forecast for the optimal charging of electric vehicles (EV) at the work-
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place [30], as well as the prediction of road gradient and vehicle velocity for hybrid electric
vehicles [31].

Regarding neural networks, they have found applications in cases such as solar power
forecasting [32] and electricity price short-term forecasting [33,34]. They have also been
used to generate forecasts of CO2 emissions in Bangladesh until 2019 [35], in China until
2030 [36], and globally until 2019 [37].

As can be seen, none of the above works includes the application of machine learning to
data on the CO2 emissions from buildings, nor does it present a step-by-step methodology
as it is conducted in the current work. In this context, the novelty of the presented work is
as follows:

• For the first time in the literature, a ten-step methodology based on machine learning
algorithms for the generation of accurate forecasts is described. This methodology is
constructed in such a way that it is dataset-independent (i.e., it is not restricted only to
data for CO2 emissions) and it is expandable (i.e., new algorithms can be included,
and it is not restricted only to the algorithms presented here, i.e., linear regression,
ARIMA, and neural networks).

• Application: for the first time in the literature, the ten-step methodology is applied
to a dataset on CO2 emissions specifically related to the building sector and across
multiple regions across the world.

• Presentation of a comprehensive comparison of linear regression, ARIMA, shallow
neural networks, and deep neural networks based on a wide range of metrics and
sensitivity analyses.

4. Case Study

In the previous section, it was stated that the aforementioned machine learning algo-
rithms can be used for conducting forecasts. This section presents the application of these
algorithms to forecasting CO2 emissions from the building sector across different regions of
the world.

4.1. Setting up the Studies

The first step of the analysis includes the data preprocessing stage. This stage consists
of selecting the dataset of interest, as per Table 1, from a reliable source [38], across geo-
graphical locations of interest as well as the timeline. In this case, the dataset includes the
CO2 emissions from the buildings sector across different regions in the world (Brazil, India,
China, South Africa, the United States, Great Britain, the world, and the European Union)
between 1971–2014. The objective of the analysis is to make forecasts for the timeline from
2015–2050.

Table 1. Dataset of CO2 emissions from buildings, expressed as a percentage of total fuel combustion,
in Brazil (BRA), India (IND), China (CHN), South Africa (ZAF), the United States (USA), Great Britain
(GBR), the world (WLD), and EUU (the European Union), covering the period between 1971–2014.

Year BRA IND CHN ZAF USA GBR WLD EUU

1971 7.04 15.08 21.59 7.92 19.06 17.23 18.61 21.95
1972 7.05 14.03 21.32 7.74 18.39 18.14 18.43 22.12
1973 6.56 14.18 20.83 6.94 17.04 17.42 17.56 21.89
. . . . . . . . . . . . . . . . . . . . . . . . . . .

2012 4.75 5.70 5.30 5.55 9.71 20.13 8.64 16.34
2013 4.51 5.70 5.30 5.59 10.68 20.82 8.80 17.06
2014 4.29 5.49 5.35 5.47 11.01 19.06 8.59 15.46

Figures 3 and 4 below show the original data for each of the different regions con-
sidered in this study. By observing these data, we can determine that there are two main
types of regions: those with a relatively small variability (Figure 3) and those with high
variability (Figure 4). The first set includes the regions India (IND), China (CHN), the USA,
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the World (WLD), and the European Union (EUU), as can be seen in Figure 3 below; these
datasets follow straight trends with some fluctuations, with WLD exhibiting the smallest
amount of fluctuation as opposed to that for EUU.
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Bank). 

Figure 3. Original data for India (IND), China (CHN), the USA, the world (WLD), and the European
Union (EUU) covering the period between 1971–2014. The vertical axis shows the level of CO2

emissions from buildings expressed as a percentage of fuel combustion (datasets provided by the
World Bank).

The second set includes the regions of high variability, which are Brazil (BRA), South
Africa (ZAF), and Great Britain (GBR), as can be seen in Figure 4 below. We can observe
that BRA has a peak around 1991 with an overall parabolic trend, while ZAF and GBR have
significant variance.

The next step is to add polynomial features to the model. We consider a third-degree
feature matrix for the existing dataset as well as for the forecasting dataset. Having a
third-degree polynomial allows one to capture non-linearities in the dataset and produce a
more accurate forecast. Furthermore, the original dataset, which consists of 44 observations
(1971–2014) for each region, is split into a training set and a test set. The former is selected
from approximately 80% of the original dataset, i.e., 35 observations, with the remaining
nine forming the test set.

Subsequently, the features matrix as well as the target variables are scaled, which is
necessary for the neural network algorithms, while ARIMA and linear regression do not
require scaling but, rather, continue using the unscaled versions of the matrices.
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period between 1971–2014. The vertical axis shows the CO2 emissions from buildings expressed as a
percentage of fuel combustion (dataset provided by the World Bank).
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Moreover, all models across all regions are fitted to the training sets. Since there are
eight regions in total, there are eight training sets and, as a result, eight fitted models
in total. Specifically, the ARIMA models are of the order (1,0,0). The first order being
equal to one means that y(t) is modeled as a function of y(t − 1). The second order
(known as the integration order) being zero means that the model predicts y(t) directly;
if it was equal to 1, then the model would predict the first difference of y(t), which is
y(t) − y(t − 1) symbolized as ∆y(t). The third order (known as the moving average
order) being 0 means that the model predictions do not take into account the previous
errors; the error is defined as ε(t) = y(t)− ŷ(t), where y(t) is the true value of the time
series and ŷ(t) is the value predicted by the model. If the MA order was set equal to
one, then the model would predict y(t) as a function of y(t − 1) − ŷ(t − 1), which is
symbolized as ε(t − 1) [39,40]. For the ARIMA models, too, the Jarque Bera test is run.
As can be seen in Table 2, it yields p-values greater than 10% (the default significance
level) for ARIMA models applied to every region. This indicates that the model residuals
are normally distributed (i.e., the null hypothesis that the model residuals are normally
distributed is not rejected), which is the desired result and reflects the efficiency of the
fitting process.

Table 2. The p-value of the Jarque Bera Test for the selected regions.

Region p-Value

BRA 35%
IND 84%
CHN 85%
ZAF 18%
USA 70%
GBR 73%
WLD 39%
EURO 43%

In terms of neural networks, we define and fit eight shallow neural network mod-
els and eight deep neural network models, each for each of the eight regions. The
activation function for every hidden layer is the rectified linear unit, which has been
shown to have the best performance on most learning tasks [41]. This is why the activa-
tion function for the output layer is linear. We have also selected as hyperparameters
100 neurons for every hidden layer, 100 epochs for the optimization method, which
is stochastic gradient descent, and a batch size equal to eight. These hyperparame-
ters have been selected following sensitivity analyses to ensure that the model does
not overfit.

At this point, all the models have been defined in terms of their hyperparameters and
have been fitted to the training set. The next subsection explores the predictions obtained.

4.2. Predictions

In the previous subsection, the linear regression, ARIMA, and neural network models
for each region were fitted to the training sets. Since the models have now been trained, the
next step is to proceed with the calculation of the predictions on both the training and test
sets. The training- and test-set predictions are the outputs of the models derived from their
application to the training and test sets.

Figures 5–12 below show the models’ predictions using a third-degree polynomial
(Xdeg = 3). The black straight lines are the original data. These are the counterfactuals
against which the predictions are compared. The straight-colored lines are the training set
predictions (covering the period 1971–2005), while the dotted colored lines are the test-set
predictions (covering the period 2006–2014). Different colors characterize different models
(for example, ARIMA models are shown in blue).
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both the training set (periods 1971–2005) and the test set (periods 2006–2014), using linear regression
(LR), ARIMA, shallow neural networks, and deep neural network models.
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Figure 7. Predictions for the USA, with a third-degree polynomial (Xdeg = 3), are shown for both the
training set (periods 1971–2005) and the test set (periods 2006–2014), using linear regression (LR),
ARIMA, shallow neural networks, and deep neural network models.
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Figure 8. Predictions for the world average (WLD), with a third-degree polynomial (Xdeg = 3), are
shown for both the training set (periods 1971–2005) and the test sets (periods 2006–2014), using linear
regression (LR), ARIMA, shallow neural networks, and deep neural network models.
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Figure 9. Predictions for the European Union (EUU), with a third-degree polynomial (Xdeg = 3), are
shown for both the training set (periods 1971–2005) and the test set (periods 2006–2014), using linear
regression (LR), ARIMA, shallow neural networks, and deep neural network models.
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both the training set (periods 1971–2005) and the test set (periods 2006–2014), using linear regression
(LR), ARIMA, shallow neural networks, and deep neural network models.
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Figure 11. Predictions for South Africa (ZAF), with a third-degree polynomial (Xdeg = 3), are shown 
for both the training set (periods 1971–2005) and the test set (periods 2006–2014), using linear re-
gression (LR), ARIMA, shallow neural networks, and deep neural network models. 

Figure 11. Predictions for South Africa (ZAF), with a third-degree polynomial (Xdeg = 3), are
shown for both the training set (periods 1971–2005) and the test set (periods 2006–2014), using linear
regression (LR), ARIMA, shallow neural networks, and deep neural network models.
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Figure 12. Predictions for Great Britain (GBR), with a third-degree polynomial (Xdeg = 3), are
shown for both the training set (periods 1971–2005) and the test set (periods 2006–2014), using linear
regression (LR), ARIMA, shallow neural networks, and deep neural network models.

From a close observation, we can see that the test-set predictions (i.e., dotted colored
lines) are less aligned with the test-set data (i.e., black straight line covering the period
2006–2014) than the training-set predictions (i.e., straight colored lines) are aligned with
the training-set data (i.e., black straight line covering the period 1971–2014). This happens
because the test set essentially constitutes unseen data for the models as opposed to the
training set data, where the models were trained. As a result, it is expected that the level
of divergence between the straight-colored lines and the black line will be less than that
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between the dotted-colored lines and the black line. The level of divergence is also known
as the “error”: training-set error and test-set error, respectively.

4.3. Prediction Errors and Overfitting Analysis

As mentioned in the previous subsection, the level of divergence between the pre-
dictions and the actual data are known as the “prediction error”. If the models have not
been trained effectively, then the test-set error will also be high, leading to a reduction in
accuracy.

Specifically, to assess the effectiveness of the fitting process, we evaluate the mean
absolute percentage error (MAPE) on both the training set and the test set, as shown in the
following tables. Table 3 shows the MAPE on the training set (also known as the training-set
MAPE), while Table 4 shows the MAPE on the test set (also known as the test-set MAPE).
The former reflects the level of divergence between the training-set predictions and the
actual training data (covering the period 1971–2005), while the latter reflects the level of
divergence between the test-set predictions and the actual test data (covering the period
between 2006–2014). That is, the MAPE is equal to the percentage difference between the
actual values (training or test set, respectively) and the predicted ones.

Table 3. The mean average percentage error (MAPE) on the training set, per region and model, is
under a polynomial degree of three.

Region Linear Regression ARIMA Shallow NN Deep NN

IND 3.45% 3.45% 3.26% 2.82%
CHN 6.30% 6.71% 3.66% 2.13%
USA 2.44% 2.94% 2.50% 2.06%
WLD 2.10% 2.13% 2.06% 1.06%
EUU 3.06% 3.03% 3.16% 1.45%
BRA 5.73% 8.19% 4.10% 2.59%
ZAF 12.99% 13.05% 12.53% 7.44%
GBR 2.74% 2.84% 2.75% 1.15%

Table 4. The mean average percentage error (MAPE) on the test set, per region and model, is under a
polynomial degree of three.

Region Linear Regression ARIMA Shallow NN Deep NN

IND 15.68% 10.07% 13.72% 12.75%
CHN 74.74% 89.69% 44.35% 28.47%
USA 8.52% 8.36% 8.67% 8.32%
WLD 3.79% 4.20% 2.38% 4.33%
EUU 11.02% 4.36% 4.87% 4.45%
BRA 93.01% 2.17% 4.49% 5.59%
ZAF 25.48% 38.84% 24.22% 25.85%
GBR 10.53% 5.73% 5.50% 9.38%

Note that the test-MAPE serves as a proxy for the forecasting error. This means that
a relatively high value for the former is an indication of a high likelihood of a high value
for the latter. The forecasting error reflects the level of divergence between the forecasts
(covering the period 2015–2050) and the actual data for this period. However, given that
the actual data will only become available when they have occurred, the forecasting error
cannot be calculated with precision in advance. Instead, it can be estimated and the test-set
MAPE is one such method.

In addition to the calculation of the MAPE, the effectiveness of the fitting process can
be assessed by checking for overfitting. Overfitting refers to the situation where a model
has been fitted to the training set so well (i.e., a very small training-set MAPE) that it cannot
generalize to new, unseen data (such as the test data), thereby yielding high test-set errors.
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The overfitting analysis consists of evaluating the difference between the MAPE on
the test set and the MAPE on the training set. A benchmark of 10% is typically selected,
meaning that a difference of at least 10% between the test MAPE and the train MAPE will
be an indication of overfitting. This would indicate that the corresponding model has
learned very well the patterns in the training set (i.e., it has been fitted very well to the
training set that it has produced a very small training-set MAPE). However, it has exhibited
poor performance in the unseen data of the test set, thereby leading to a high test-set
MAPE. In other words, a model that overfits yields very accurate training-set predictions
while yielding very inaccurate test-set predictions. Models that overfit cannot be used for
producing forecasts because the test-set MAPE is a proxy for the forecasting MAPE. Since
models that overfit tend to produce high test-set MAPE, they are also expected to produce
high forecasting errors, rendering the forecasts meaningless.

Table 5 below shows the difference between the training-set MAPE and the test-set
MAPE. As expected, in the vast majority of the cases, the test-set MAPE is greater than
the training-set MAPE. There is one case where this does not apply (ARIMA for Brazil),
indicating that the training MAPE is higher than the test MAPE, which may happen
sometimes and is an acceptable outcome (i.e., no overfitting). A difference greater than
10% indicates that the corresponding model has overfitted; the models that have overfitted
are shown in Table 6 below.

Table 5. Difference between the mean average percentage error on the test set and on the training set
(MAPE on the test set minus the MAPE on the training set) for different regions and different models,
and under a polynomial degree of three.

Region Linear Regression ARIMA Shallow NN Deep NN

IND 12.24% 6.62% 10.47% 9.94%
CHN 68.44% 82.98% 40.69% 26.35%
USA 6.08% 5.42% 6.17% 6.26%
WLD 1.69% 2.07% 0.32% 3.27%
EUU 7.96% 1.34% 1.71% 3.01%
BRA 87.28% −6.02% 0.39% 3.00%
ZAF 12.49% 25.79% 11.69% 18.40%
GBR 7.79% 2.88% 2.75% 8.23%

Table 6. Models that have exhibited overfitting (i.e., corresponding to a value that is greater than 10%
in Table 5) under a polynomial degree of 3.

Region Model

IND Linear Regression
IND Shallow NN
CHN Linear Regression
CHN ARIMA
CHN Shallow NN
CHN Deep NN
BRA Linear Regression
ZAF Linear Regression
ZAF ARIMA
ZAF Shallow NN
ZAF Deep NN

4.4. Discussion on Predictions and Overfitting

In this subsection, we make observations about the models based on the above tables
and figures.

Starting with India, Figure 3 shows the original data covering the period between
1971–2014. Table 4 shows the test-set MAPE for India across all different models (linear
regression, ARIMA, shallow and deep neural networks). As mentioned, India is in the same
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group as China, the USA, the world, and the EUU (see Figure 3), and among these four
regions, the test MAPE for India is the second highest (after China). This can be attributed
to the relatively more high-frequency noise governing its training set over its test set (see
Figure 3), while for the other models, the differences between the two sets are not that
pronounced.

With regards to China, the original data (see Figure 3) displays a clear change of
trend immediately after 2005, at the end of the training set, thereby resulting in the high-
est test-MAPE (see Table 4) over all other regions of the group (India, the USA, WLD,
and EUU).

With respect to the USA, WLD, and EUU, they correspond to relatively low test-MAPE
because the training and test data (see Figure 3) closely follow a similar trend with a small
level of variance. That is, the models are tested on a set that resembles the one to which
they were fitted. As a result, for the USA, the test-MAPE is among the smallest (see Table 4).
This also applies to WLD, which is the most stable dataset. This is to be expected since it
aggregates the data of all the countries, and the resulting low variability helps the models
fit the data with high accuracy and the lowest errors across all regions, as can be seen in
Table 4. A similar situation applies to EUU, where the data follows a straight line with only
a small variance. For this reason, none of these regions leads to overfitting (see Table 6).

Regarding Brazil (BRA), as can be seen in Table 4, it exhibits the highest test error in
linear regression across all regions, which also causes the model to overfit as observed
in Table 6. However, there is no overfitting under ARIMA and neural networks, as these
models are capable of maintaining the test error close to the training error. This can be
witnessed in Figure 10, where we can observe that linear regression is the only model of all
and across all regions where the test predictions attain negative values of high magnitude
over many years.

In terms of South Africa, it can be seen in Figure 4 that the dataset is irregular, with
the test dataset having a very different pattern from the training set. This renders accuracy
in the test predictions particularly challenging. This is why all models for South Africa
overfit, as can be seen in Table 6. The training set is much smaller than the test set (see
Tables 3 and 4). Figure 11 illustrates the difficult fitting process for both the training and
test sets.

Regarding GBR, despite the high variance (see Figure 4), the test set follows a rather
similar trend as the training set, resulting in low errors across the models (see Figure 12
and Table 4).

Table 5 shows that there is significant variation in overfitting per machine learning
algorithm. Table 7 below includes the standard deviation corresponding to each of the
algorithms for the values in Table 5; the standard deviation is a measure of how dispersed
the data are in relation to the mean. We can observe that the deep neural network models
perform better on average, as they exhibit the smallest deviation between test-MAPE and
training MAPE, which indicates that they are the least sensitive to dataset patterns.

Table 7. Standard deviation of the difference between the mean average percentage error on the test
set and on the training set, under a polynomial degree of three.

Linear Regression ARIMA Shallow NN Deep NN

Standard
Deviation 32.8% 28.8% 13.4% 8.4%

4.5. Sensitivity Analyses on the MAPE of the Test Set

In this subsection, sensitivity analysis is conducted for each model to evaluate the
effect of key hyperparameters on the test-MAPE. This underlines the significance of the
test-MAPE as an error metric since it serves as a proxy for the forecast error, indicating the
performance of the model on the forecasts.
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Table 8 below shows the effect that the degree of the polynomial can have on the MAPE
of the test set when using linear regression. As a reminder, the degree of the polynomial is
a hyperparameter, and its value determines the number of columns in the features matrix.
For instance, when it is equal to one, there is just one column in the feature matrix. This
means that the model can capture only linear patterns from inside the training set. This is
while, with higher degree polynomials, the model can also capture nonlinear patterns. The
higher the polynomial degree, the more complex the patterns the model can capture.

Table 8. Mean absolute percentage error (MAPE) on the test set using linear regression for different
degrees of the polynomial (Deg).

Region Deg MAPE

BRA

1 55.77%
2 3.03%
3 93.01%
4 93.49%

IND

1 9.24%
2 10.05%
3 15.68%
4 15.76%

CHN

1 13.27%
2 96.57%
3 74.74%
4 74.12%

ZAF

1 37.73%
2 39.05%
3 25.48%
4 25.54%

USA

1 22.25%
2 8.64%
3 8.52%
4 8.63%

GBR

1 5.88%
2 5.93%
3 10.53%
4 10.60%

WLD

1 2.18%
2 4.44%
3 3.79%
4 3.80%

EUU

1 7.51%
2 4.38%
3 11.02%
4 11.03%

Table 9 shows the effect of hyperparameters on the test-MAPE using ARIMA. This
sensitivity analysis has been conducted using different combinations of ARIMA orders as
well as the degree of the polynomial. Typical values for the autoregressive (AR) order are
selected, while the difference (I) and moving average (MA) components are kept to zero.

Table 10 shows the effect of hyperparameters on the test-MAPE using shallow neural
networks. Specifically, the hyperparameters include the polynomial degree (Deg), the
number of neurons per hidden layer (Un), and the number of epochs (No).
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Table 9. Mean absolute percentage error (MAPE) on the test set using ARIMA for different values for
the autoregressive ARIMA order (AR), and of the degree of the polynomial (Deg).

Region MAPE Deg AR

BRA

55.74% 1 0
24.26% 1 1
33.72% 1 2
3.03% 2 0
1.83% 2 1
2.07% 2 2

IND

9.24% 1 0
9.43% 1 1
9.32% 1 2

10.05% 2 0
10.05% 2 1
10.03% 2 2

CHN

13.22% 1 0
13.62% 1 1
16.11% 1 2
96.57% 2 0
88.93% 2 1
84.01% 2 2

ZAF

37.76% 1 0
26.59% 1 1
29.22% 1 2
39.05% 2 0
38.51% 2 1
37.94% 2 2

USA

22.26% 1 0
18.27% 1 1
19.03% 1 2
8.64% 2 0
8.12% 2 1
8.44% 2 2

GBR

5.88% 1 0
4.85% 1 1
4.96% 1 2
5.93% 2 0
5.81% 2 1
5.90% 2 2

WLD

2.18% 1 0
2.19% 1 1
2.20% 1 2
4.44% 2 0
4.16% 2 1
4.25% 2 2

EUU

7.52% 1 0
7.05% 1 1
7.29% 1 2
4.38% 2 0
4.36% 2 1
4.35% 2 2
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Table 10. Mean absolute percentage error (MAPE) on the test set using shallow neural networks for
different values of the degree of the polynomial (Deg), number of neurons per hidden layer (Un), and
number of epochs (No).

Region MAPE Deg Un No

BRA

33.2% 1 50 50
15.1% 1 50 100
25.6% 1 100 50
6.9% 1 100 100
26.9% 2 50 50
13.2% 2 50 100
22.1% 2 100 50
5.1% 2 100 100

IND

17.4% 1 50 50
18.6% 1 50 100
18.3% 1 100 50
17.2% 1 100 100
15.0% 2 50 50
13.3% 2 50 100
17.4% 2 100 50
15.9% 2 100 100

CHN

14.8% 1 50 50
32.7% 1 50 100
33.1% 1 100 50
40.8% 1 100 100
37.5% 2 50 50
38.8% 2 50 100
38.9% 2 100 50
36.1% 2 100 100

ZAF

28.5% 1 50 50
25.1% 1 50 100
26.9% 1 100 50
25.1% 1 100 100
27.2% 2 50 50
24.5% 2 50 100
25.9% 2 100 50
23.3% 2 100 100

USA

7.4% 1 50 50
5.4% 1 50 100
7.6% 1 100 50
6.1% 1 100 100
8.1% 2 50 50
6.7% 2 50 100
7.1% 2 100 50
7.5% 2 100 100

GBR

5.5% 1 50 50
5.5% 1 50 100
5.6% 1 100 50
5.6% 1 100 100
5.6% 2 50 50
5.5% 2 50 100
5.5% 2 100 50
5.5% 2 100 100

WLD

9.0% 1 50 50
5.2% 1 50 100
6.1% 1 100 50
4.0% 1 100 100
3.2% 2 50 50
4.9% 2 50 100
4.7% 2 100 50
3.2% 2 100 100

EUU

5.4% 1 50 50
4.5% 1 50 100
5.3% 1 100 50
4.7% 1 100 100
5.7% 2 50 50
5.4% 2 50 100
5.7% 2 100 50
4.9% 2 100 100

Table 11 shows the effect of hyperparameters on the test-MAPE using deep neural
networks. The hyperparameters selected include the degree of the polynomial (Deg), the
number of neurons per hidden layer (Un), and the number of epochs (No).
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Table 11. Mean absolute percentage error (MAPE) on the test set using deep neural networks for
different values of the degree of the polynomial (Deg), number of neurons per hidden layer (Un), and
number of epochs (No).

Region MAPE Deg Un No

BRA

7.0% 1 50 50
9.0% 1 50 100
5.5% 1 100 50
6.1% 1 100 100
4.2% 2 50 50
4.1% 2 50 100
6.7% 2 100 50
5.5% 2 100 100

IND

13.3% 1 50 50
13.5% 1 50 100
11.2% 1 100 50
13.3% 1 100 100
12.9% 2 50 50
12.4% 2 50 100
10.6% 2 100 50
13.1% 2 100 100

CHN

34.4% 1 50 50
16.0% 1 50 100
29.6% 1 100 50
25.7% 1 100 100
28.7% 2 50 50
28.9% 2 50 100
30.3% 2 100 50
25.2% 2 100 100

ZAF

25.7% 1 50 50
23.3% 1 50 100
26.0% 1 100 50
31.6% 1 100 100
26.7% 2 50 50
24.4% 2 50 100
25.8% 2 100 50
27.4% 2 100 100

USA

8.7% 1 50 50
8.5% 1 50 100
8.5% 1 100 50
8.6% 1 100 100
8.6% 2 50 50
8.2% 2 50 100
9.0% 2 100 50
8.8% 2 100 100

GBR

5.5% 1 50 50
8.4% 1 50 100
6.1% 1 100 50
9.5% 1 100 100
5.5% 2 50 50
7.9% 2 50 100
6.3% 2 100 50
9.3% 2 100 100

WLD

4.2% 1 50 50
4.2% 1 50 100
5.3% 1 100 50
4.3% 1 100 100
3.5% 2 50 50
4.1% 2 50 100
5.5% 2 100 50
4.7% 2 100 100

EUU

5.1% 1 50 50
4.4% 1 50 100
4.8% 1 100 50
4.5% 1 100 100
4.7% 2 50 50
4.4% 2 50 100
4.8% 2 100 50
4.5% 2 100 100

The average value of the test-MAPE across Tables 8–11, along with the standard
deviation, respectively, is shown in Table 12 below.
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Table 12. Average value and standard deviation for the mean average percentage error on the test set
corresponding to the sensitivity analysis.

Test-MAPE Linear Regression
(Table 8)

ARIMA
(Table 9)

Shallow NN
(Table 10)

Deep NN
(Table 11)

Average value 25.36% 18.18% 14.73% 12.16%

Standard
Deviation 29.41% 22.48% 11.28% 9.14%

The following subsection discusses the results of the sensitivity analysis.

4.6. Discussion on the Sensitivity Analysis

The aforementioned sensitivity analysis is conducted with the sole purpose of gaining
more insights into how the test-set MAPE is affected by the values of different hyperpa-
rameters. In addition, we obtain significant insights into the models themselves through
Table 12. This table shows that deep learning is a more stable modeling approach overall,
given the smallest standard deviation across all models. In addition, this approach achieves
the highest accuracy on the test predictions given that the average test error is the smallest.
These observations, coupled with those in Table 7, underline the superior performance of
deep learning in generating forecasts for this case study.

Regarding Table 8, which corresponds to linear regression, it can be stated that a
polynomial degree equal to one (i.e., linear fitting) is the best option when the data are a
straight line; this applies to IND, CHN, and WLD, where the data approximates a straight
line as can be seen in Figure 3. Higher degrees trigger an increase in the test errors,
caused by overfitting (for example, see Table 6, which is for a third-degree polynomial);
overfitting is caused because the data are too simple (almost linear) for complicated models
(i.e., models of high polynomial degrees). Regarding GBR, the general trend is flat (a
straight line), as can be seen in Figure 4, which explains why a first-degree polynomial
yields the smallest test error in Table 8. On the other hand, degree = 2 is optimal when
the data have a single peak, such as when it is a parabola (concave shape) as in the case
of Brazil (BRA). For EUU, the case is marginal, and this is why 1st and 2nd degrees yield
relatively small tests—MAPE. With regards to the USA, the general trend of the data
includes parabolic and nonlinear elements, and degrees greater than two yield optimal
values for the MAPE. Furthermore, a degree = 3 is optimal for more complex shapes,
such as ZAF.

Regarding Table 9, which corresponds to ARIMA, it can be observed that for linear
datasets such as WLD, changing the degree does not have a significant effect. This also
applies to IND and GBR, where the data generally follow a straight line, as can be seen
in Figures 3 and 4; note that GBR is quite irregular but still retains a flat trend. ARIMA is
capable of yielding accurate test predictions in these cases, irrespective of the polynomial
degree. On the other hand, for Brazil (BRA), the EUU, and the United States (USA), the
second degree reduces the errors because it is more suitable given the presence of nonlinear
parts in the datasets. As far as CHN is concerned, the data shows a sudden change in trend
immediately after the test set has started. As a result, the error in all the tests is relatively
high, but it is smaller under degree = 1 due to the relatively straight shape of the test
set. Regarding South Africa (ZAF), the data are very irregular, resulting in relatively high
errors regardless of the degree of the polynomial. This indicates that the ARIMA model is
not the optimal option for this dataset. In Table 9, we can see that the AR order does not
meaningfully change the test error produced. For cases of linear trends in the original data,
such as for India (IND), WLD, and EUU, the AR order does not have any effect, while in
other cases the effect is relatively small.

Regarding Table 10, which corresponds to shallow neural networks, we can observe
the effect of three hyperparameters (namely, the degree of the polynomial, the number of
neurons per hidden layer, and the number of epochs) on the test errors. Regarding Brazil
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(BRA), we observe that increasing the degree to two reduces the error in all situations. This
is because the data for Brazil is more complex than a straight line. Therefore, the added
complexity (degree = 2) is required. Additionally, increasing the number of neurons (Un)
to 100 and the number of epochs (No) to 100 reduces the error in all the situations since the
data are more complex than a straight line and the added complexity is required to learn
these patterns. In terms of India (IND), there is not much difference between the cases of
degree = 1 and 2, given that the data have a linear trend. Regarding China, increasing the
degree increases the error because of the sudden change in the trend immediately after
the test set has started, resulting in high test-MAPE in all cases. Similarly, the dataset for
ZAF is very irregular, resulting in relatively high error under all situations. In terms of the
USA, we observe that the errors are relatively small, and this is because the data are slightly
parabolic with flat elements. Regarding GBR, the data are quite irregular, but the general
trend is flat, resulting in the errors being almost equal to each other. In terms of WLD, the
data are close to a straight line, and even with simple models, the resulting errors are small,
minimizing the effect of the number of neurons and epochs. Regarding EUU, the data are
quite straight with little variance. In this case, both degrees yield relatively small errors.

Regarding Table 11, which corresponds to deep neural networks (deep learning), we
can observe the effect of three hyperparameters (namely, the degree of the polynomial, the
number of neurons per hidden layer, and the number of epochs) on the test errors. As
with the case of shallow neural networks, the effect of the latter two hyperparameters is
not significant when keeping the same value for the degree of the polynomial. Regarding
Brazil (BRA), it can be seen that the error reduces as the degree increases, which is due to
the fact that the data are more complex than a straight line, thereby making the complexity
of the second degree necessary for error reduction. Regarding India (IND) and the USA,
there is no significant difference given that the data are quite straight with some noise.
Similarly, for GBR, the data are irregular but the general trend is flat, and therefore the
hyperparameters do not have a notable effect. In terms of China (CHN), since the data
have a sudden change in trend immediately after the start of the test set, the resulting error
is relatively large. Regarding South Africa (ZAF), since the data are irregular, the resulting
errors are relatively high in all cases. Regarding WLD, the data are close to a straight line,
and even with simple models, small errors can be achieved. Finally, in terms of EUU, the
errors are kept relatively small, given that the data are relatively straightforward.

4.7. The Naïve-Model Benchmark Test

In this subsection, we will conduct the naïve—model benchmark test, which involves
comparing the test-MAPE that has been obtained against the test-MAPE of a simplis-
tic/naïve model. This naïve model serves as the benchmark for deciding whether the
test-MAPE results obtained are high and therefore not acceptable. That is, the models that
have a high test-MAPE are disqualified from generating forecasts since, as mentioned, the
test-MAPE is a proxy for the forecasting error, i.e., a model that has a high test-MAPE is
likely to have a high forecasting error as well.

Table 13 shows the predictions obtained with the naïve model. These are produced by
simply shifting the original data one row below. In other words, the model predicts that
the next value of the time series will be the same as the current value, i.e., it carries forward
the previous value. This is the most common benchmark used in time series forecasting.

Table 14 shows the test-MAPE obtained using the naïve model. These values serve the
purpose of the benchmark for the values shown in Table 4, i.e., the test-MAPE obtained
using linear regression, ARIMA, shallow neural networks, and deep neural networks.

Table 15 shows the models that have yielded test-MAPE values (as in Table 4) that are
higher than the ones shown in Table 14 and are therefore considered to have unacceptably
high test errors and, by extension forecasting errors. The idea is that if the test-MAPE
obtained using the simplistic/naïve model is smaller than the test-MAPE obtained using
the complex models (linear regression, ARIMA, and neural networks) then the test-MAPE
of the latter is considered unacceptably high. This means that these models are not to
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be used for producing forecasts. For example, the test-MAPE for the linear regression
model applied to the IND test is 15.68% (see Table 4), i.e., higher than 4.04%, which is the
test-MAPE obtained using the naïve model for India (see Table 14), therefore the former
cannot be used for forecasts. Note that the naïve model cannot be used for forecasts either;
it is only used for this analysis.

Table 13. Predictions of the naïve model. When compared with Table 1, it can be seen that the data
have been shifted one row below, i.e., the values for 1971 in Table 1 are now placed in row 2.

Year BRA IND CHN ZAF USA GBR WLD EUU

1971 NaN NaN NaN NaN NaN NaN NaN NaN
1972 7.04 15.08 21.59 7.92 19.06 17.23 18.61 21.95
1973 7.05 14.03 21.32 7.74 18.39 18.14 18.43 22.12
. . . . . . . . . . . . . . . . . . . . . . . . . . .

2012 5.16 6.17 5.21 4.12 10.23 19.07 8.81 15.68
2013 4.75 5.70 5.30 5.55 9.71 20.13 8.64 16.34
2014 4.51 5.70 5.30 5.59 10.68 20.82 8.80 17.06

Table 14. The mean average percentage error (MAPE) on the test set, per region, using the naïve model.

Region Naïve Model

IND 4.04%
CHN 3.39%
USA 5.22%
WLD 2.90%
EUU 6.77%
BRA 5.40%
ZAF 22.60%
GBR 6.71%

Table 15. Models that have failed the naïve model benchmark test, i.e., models whose test-MAPE is
higher than that shown in Table 14.

Region Model

IND Linear Regression
IND ARIMA
IND Shallow NN
IND Deep NN
CHN Linear Regression
CHN ARIMA
CHN Shallow NN
CHN Deep NN
USA Linear Regression
USA ARIMA
USA Shallow NN
USA Deep NN
WLD Linear Regression
WLD ARIMA
WLD Deep NN
EUU Linear Regression
BRA Linear Regression
BRA Deep NN
ZAF Linear Regression
ZAF ARIMA
ZAF Shallow NN
ZAF Deep NN
GBR Linear Regression
GBR Deep NN
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4.8. Forecasts

Figures 13–20 below show the forecasts obtained per region and model. The hyperpa-
rameters that have been used are the ones used for generating the predictions as described
in Section 4.1, for example, a third-degree polynomial. Then, Section 4 discusses the results.
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5. Analysis of the Results

In the previous section, the models were trained and produced forecasts. However, it
is important to filter the models in terms of which can eventually be deemed the most trust-
worthy in terms of their forecasts. As mentioned, the models that can be used for producing
forecasts are the ones that have passed the overfitting test and the naïve-benchmark test.
Both tests need to have been passed for the models to be considered reliable for forecasts.
Table 16 below shows whether the models have passed these two tests or not; this analysis
is based on Tables 6 and 14.

Table 16. Performance of models per test. F and S stand for failed and succeeded, respectively. The
models that pass both tests are in bold.

Region Model Overfitting Test Naïve-Benchmark Test Result

IND Linear Regression F F F
IND ARIMA S F F
IND Shallow NN F F F
IND Deep NN F F F
CHN Linear Regression F F F
CHN ARIMA F F F
CHN Shallow NN F F F
CHN Deep NN F F F
USA Linear Regression S F F
USA ARIMA S F F
USA Shallow NN S F F
USA Deep NN S F F
WLD Linear Regression S F F
WLD ARIMA S F F
WLD Shallow NN S S S
WLD Deep NN S F F
EUU Linear Regression S F F
EUU ARIMA S S S
EUU Shallow NN S S S
EUU Deep NN S S S
BRA Linear Regression F F F
BRA ARIMA S S S
BRA Shallow NN S S S
BRA Deep NN S F F
ZAF Linear Regression F F F
ZAF ARIMA F F F
ZAF Shallow NN F F F
ZAF Deep NN F F F
GBR Linear Regression S F F
GBR ARIMA S S S
GBR Shallow NN S S S
GBR Deep NN S F F

According to Table 16, the models that pass both tests, which are shown in bold font,
are the following:

- ARIMA applied to EUU, BRA, and GBR.
- Shallow Neural Networks applied to WLD, EUU, BRA, and GBR.
- Deep neural networks applied to EUU.

As a result, all the forecasts shown in Figure 13 (IND) are not accepted. After all, this
is obvious from the fact that the forecasts attain negative values, which is clearly unrealistic
as CO2 emissions can never become negative. Additionally, Figure 14 (CHN) is rejected;
this is again obvious given the negative forecasts. In addition, Figure 15 (USA) is rejected
given that none of the models has passed both tests.
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Regarding Figure 16, corresponding to WLD, only the forecast produced using shallow
neural networks is accepted. This indicates a linear reduction in CO2 emissions from
buildings all the way to 2050.

In terms of Figure 17, for EUU, the forecasts using ARIMA, shallow and deep neural
networks are accepted given that the corresponding models have all passed both tests; the
ARIMA forecasts do not seem realistic, but they are still considered.

With respect to Figure 18, for Brazil (BRA), the forecasts using ARIMA and shallow
neural networks are accepted. However, if we consider the additional constraint that
CO2 emissions cannot be negative, then the ARIMA forecasts are rejected as they yield
negative values.

In terms of Figure 19, for South Africa (ZAF), all forecasts are rejected as the models
have failed to pass both tests. Finally, in Figure 20 (GBR), the acceptable forecasts use
ARIMA and shallow neural networks.

Notice that this forecasting analysis is based on the assumption that no major unex-
pected events will occur until the year 2050 compared to the period 1971–2014 covered by
the original dataset, in which the models were trained. Such events can include major wars,
economic crises, pandemics, etc. If such events occur, then it is advised that new data be
fed to the models and the analysis be repeated.

6. Key Points

This study addresses the need for a clearly defined set of steps that will produce a
more accurate and reliable forecast. The presented ten-step methodology starts with the
selection of the dataset and then, through a series of tests, such as the naïve-benchmark
and overfitting tests, arrives at forecasts that are neither overfit nor have high errors. A
significant advantage of this methodology is that it is data-independent. This means
that it can be applied to any dataset/time series and is not restricted only to CO2-related
time series. In this context, the merits and implications of this study can be summarized
as follows:

• It presents a clearly defined set of steps for obtaining forecasts from machine learning
models that have successfully passed a set of tests, thereby increasing the likelihood
of obtaining forecasts of high accuracy.

• It is dataset-independent, i.e., it can be applied to any time series.
• It is expandable to more algorithms, meaning that it is not only restricted to the

algorithms presented in this paper (linear regression, ARIMA, shallow neural networks
and deep learning) but can also include more algorithms.

7. Conclusions and Future Work

This work presents for the first time in the literature the application of a machine
learning-based methodology for generating forecasts of CO2 emissions that are specifically
related to the buildings sector, across different regions of the world (Brazil, India, China,
South Africa, the United States, Great Britain, the world average, and the European Union).
Note also that the data used originated from the official database of the World Bank and
covered the period 1971–2014.

This methodology consists of ten steps as presented in Figure 1, namely (a) data
preprocessing, (b) dataset Split, (c) data Scaling, (d) model fitting, (e) calculation of training-
set errors and test errors, (f) overfitting analysis, (g) sensitivity analysis, (h) forecasts and
(i) analysis. Note that the selected period for the forecasts stretches up to the year 2050.

The machine learning models that are used include linear regression, ARIMA, shallow
neural networks, and deep neural networks (deep learning). These models are first fitted
to the training set (years 1971–2005), then applied to the test set (years 2006–2014), and
tested for overfitting using a benchmark of 10% for the difference between the test-set
errors and the training-set errors; the error metric used is the mean absolute percentage
error or MAPE. Those models that have passed the overfitting test successfully also have to
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pass the naïve-benchmark test. As a result, only the forecasts corresponding to models that
have passed both tests and that are also not attaining negative values can be accepted.

Finally, deep learning has demonstrated superior performance over the other algo-
rithms since it has shown less sensitivity to the value of hyperparameters, smaller test
errors, and a smaller degree of overfitting on average.

Future work includes the application of additional machine learning methodologies
for forecasting the CO2 emissions from buildings, such as recurrent neural networks. In
addition, it is of interest to the authors to focus on optimizing the value of hyperparam-
eters. Methods that can be used for this purpose include heuristics such as backwards
induction [42] and uncertainty analysis methods based on the combination of machine
learning with reliability theory [43] and artificial neural networks [44]. The authors are
also interested in evaluating the effect of external factors, such as the level of technological
development and GDP, on the forecasts in these regions.
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