
Boise State University

ScholarWorks

Electrical and Computer Engineering Faculty
Publications and Presentations

Department of Electrical and Computer
Engineering

1-1-2018

A Machine Learning Approach for Power
Allocation in HetNets Considering QoS
Roohollah Amiri
Boise State University

Hani Mehrpouyan
Boise State University

Lex Fridman
Massachusetts Institute of Technology

Ranjan K. Mallik
Indian Institute of Technology

Arumugam Nallanathan
Kings College London

See next page for additional authors

© 2018, IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,

including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to

servers or lists, or reuse of any copyrighted component of this work in other works. doi: 10.1109/ICC.2018.8422864

https://scholarworks.boisestate.edu
https://scholarworks.boisestate.edu/electrical_facpubs
https://scholarworks.boisestate.edu/electrical_facpubs
https://scholarworks.boisestate.edu/electrical
https://scholarworks.boisestate.edu/electrical
http://dx.doi.org/10.1109/ICC.2018.8422864


Authors

Roohollah Amiri, Hani Mehrpouyan, Lex Fridman, Ranjan K. Mallik, Arumugam Nallanathan, and David
Matolak

This conference proceeding is available at ScholarWorks: https://scholarworks.boisestate.edu/electrical_facpubs/401

https://scholarworks.boisestate.edu/electrical_facpubs/401


A Machine Learning Approach for Power

Allocation in HetNets Considering QoS

Roohollah Amiri∗, Hani Mehrpouyan∗, Lex Fridman ¶,Ranjan K. Mallik†, Arumugam Nallanathan‡, David Matolak§

∗Department of Electrical and Computer Engineering, Boise State University - Idaho, USA, {roohollahamiri,hanimehrpouyan}@boisestate.edu
¶Massachusetts Institute of Technology, Cambridge, MA, USA, fridman@mit.edu

†Department of Electrical Engineering, Indian Institute of Technology - Delhi, India, rkmallik@ee.iitd.ernet.in
‡Division of Engineering, Kings College London - London, United Kingdom, nallanathan@ieee.org

§Department of Electrical Engineering, University of South Carolina, Columbia, USA, matolak@cec.sc.edu

Abstract—There is an increase in usage of smaller cells
or femtocells to improve performance and coverage of next-
generation heterogeneous wireless networks (HetNets). How-
ever, the interference caused by femtocells to neighboring cells
is a limiting performance factor in dense HetNets. This inter-
ference is being managed via distributed resource allocation
methods. However, as the density of the network increases so
does the complexity of such resource allocation methods. Yet,
unplanned deployment of femtocells requires an adaptable and
self-organizing algorithm to make HetNets viable. As such,
we propose to use a machine learning approach based on
Q-learning to solve the resource allocation problem in such
complex networks. By defining each base station as an agent,
a cellular network is modeled as a multi-agent network. Sub-
sequently, cooperative Q-learning can be applied as an efficient
approach to manage the resources of a multi-agent network.
Furthermore, the proposed approach considers the quality of
service (QoS) for each user and fairness in the network. In
comparison with prior work, the proposed approach can bring
more than a four-fold increase in the number of supported
femtocells while using cooperative Q-learning to reduce resource
allocation overhead.

I. INTRODUCTION

With an ever increasing density of mobile broadband users,

next generation wireless networks (5G) need to support a

higher density of users compared to today’s networks. One

approach for meeting this need is to more effectively share

network resources through femtocells [1]. However, lack of

guidelines for providing fairness to users and significant

interference caused by unplanned deployment of femtocells

are important issues that have to be resolved to make

heterogeneous networks (HetNets) viable [2]. In this paper

reinforcement-learning (more specifically Q-learning) as a

machine learning method is used in power allocation of a

dense femtocell network to maximize the sum capacity of

the network while providing quality of service (QoS) and

fairness to users.

A. Motivation

Ultra densification is one of the technologies to support

the expected huge data traffic required of wireless networks.

The idea is to use nested cells comprising small-range

low-power access points called femtocells. Femtocells are

This research is in part supported by National Science Foundation (NSF)
grant on Enhancing Access to Radio Spectrum #1642865 and NASA ULI
grant #NNX17AJ94A.

connected to service providers via a broadband connection

(the backhaul connection is supported via DSL or cable). As

such, femtocells can be deployed by users anywhere in the

cell and the overall cellular network must adapt accordingly.

In the last few years, there has been concerted effort by

researchers to design different algorithms to optimize the

performance of femtocells within next generation wireless

network, i.e., 5G. To carry the desired traffic in 5G, most

of these methods have aimed for features such as reliability,

fairness, and the ability to be distributive, while attempting to

maintain a low complexity [3], [4]. However, one important

feature that most of these works miss is self-organization and

ability to adapt to new conditions of the network.

Reinforcement learning (RL) as a machine learning

method, has been developed to optimize an unknown system

by interacting with it. The nature of the RL method makes

it a perfect solution for scenarios in which statistics of the

system continuously change. Further, RL methods can be

employed in a distributed manner to achieve even better

results in many scenarios [5]. Although RL has been used

in many fields, it has been just recently applied in the

field of communications with specific applications in areas

such as allocation problems [6]–[11], energy harvesting [12],

opportunistic spectrum access [13] and other scenarios with

distributed nature. With this in mind, this paper tries to apply

the RL method to develop a self-organizing dense femtocell

network.

B. Prior Work

The selection of a proper reward function in Q-learning is

essential because an appropriate reward function results in the

desired solution to the optimization problem. In this regard,

the works in [6]–[9] have proposed different reward functions

to optimize power allocation between femto base stations.

The works in [6], [7] have used independent learning while

the works in [8], [9] have improved the prior art by using

cooperative learning. The method in [6] satisfies the QoS

of macro users while trying to maximize the sum capacity

of the network. However, the QoS and the fairness between

femto users (users served by femto base stations) are not

considered. In [7], the authors try to improve the throughput

of cell-edge users while keeping the fairness between the

macro and femto users through a round robin approach. The

work in [8] has used cooperative Q-learning to maximize the

keikoknudson
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at 2018 IEEE International Conference on Communications (ICC): Proceedings, published by IEEE. Copyright restrictions may apply. doi: 10.1109/ICC.2018.8422864



sum capacity of the femto users while keeping the capacity

of macro users near a certain threshold. Nevertheless, in

both [7] and [8] the QoS of femto users are not taken

into consideration. Further, the reward functions in [6]–[8]

are not designed for a dense network. The authors in [9]

have used the proximity of femto base stations to a macro

user as a factor in the reward function, which causes the

Q-learning method to provide a fair allocation of power

between femto base stations. Their proposed reward function

keeps the capacity of a macro user above a certain threshold

while maximizing the sum capacity of femto users in a dense

network. However, by not considering a minimum threshold

for the femto users’ capacity, the approaches in [6]–[9] fail

to support femto users as the density of the network (and

consequently interference) increases. Finally, the details of

cooperation between femto base stations are not described in

[9] and the complexity of their algorithm is not specified.

C. Contribution

In the present work, we propose a new Q-learning ap-

proach that provides better fairness throughout the whole

network. Our contributions can be categorized as follows:

• A new reward function is developed which satisfies the

required QoS for each macro and femto user as the

density of the network increases.

• New details are provided of how to achieve coopera-

tive Q-learning through sharing specific rows of learn-

ing tables assigned to femto base stations to carryout

power allocation between them. The proposed details

clearly indicate that by using cooperative Q-learning the

complexity of the machine learning approach can be

significantly reduced.

• We carry out a complexity analysis and investigation to

indicate the advantage of the proposed Q-learning ap-

proach in solving resource allocation in dense HetNets.

D. Organization

The paper is organized as follows. In Section II the system

model is presented. Section III introduces the optimization

problem and its resulting solution. Section IV presents sim-

ulation results. Finally, Section V concludes the paper.

II. SYSTEM MODEL

In this paper we consider a single cell of a HetNet that

consists of a single macro base station (MBS) and M femto

base stations (FBSs). Each FBS serves one user, i.e., a femto

user equipment (FUE) and the MBS is assumed to serve

a macro user equipment (MUE). We focus on the power

allocation in the downlink of a dense HetNet, in which the

density results in significant interference. All users transmit

in the same spectrum, and narrowband signaling is assumed,

or equivalently, results pertain to a single subcarrier of a

wideband multicarrier signal. The overall network configu-

ration is presented in Fig. 1. Note that although we consider

that both the MBS and FBS server a single user, the proposed

approach can easily be adapted to scenarios when more users

are served.

Macro Base Station

Macro User Equipment

Femto User Equipment

Femto Base Station
Interference caused by BS

Interference caused by FBS

Signal

Interference by MBS
Interference by FBS

Signal

Fig. 1: Femtocell network

The received signal in the downlink at the MUE receiver

includes interference from the FBSs and also thermal noise.

Hence, the signal-to-interference-noise-ratio (SINR) at the

MUE is calculated as follows

SINRMUE =
PBShBS,MUE

M

∑
i=1

PihFBSi,MUE +σ2

, (1)

where PBS is the power transmitted by MBS, hBS,MUE is the

channel gain from the MBS to the MUE, Pi is the power

transmitted by the ith FBS, hFBSi,MUE is the channel gain

from the ith FBS to the MUE, and σ2 denotes the variance

of the additive white Gaussian noise.

Similarly, the SINR at the ith FUE is calculated as follows:

SINRFUEi
=

PihFBSi,FUEi

PBShBS,FUEi
+

M

∑
j=1, j 6=i

PjhFBS j ,FUEi
+σ2

, (2)

where hFBSi,FUEi
is the channel gain between the ith FBS

and the ith FUE, hBS,FUEi
is the channel gain between the

MBS and the ith FUE, Pj is the power transmitted by the

jth FBS and hFBS j ,FUEi
is the channel gain between the jth

FBS and the ith FUE. All channel parameters are assumed to

be known by the FBS, which is consistent with prior works

such as [9], [11]. This is also practically justifiable since the

channel information can be fedback to the femtocells through

the bakchaul network. Finally, the normalized capacity at any

user equipment is calculated as follows

CMUE = log2(1+SINRMUE). (3)

CFUEi
= log2(1+SINRFUEi

), i = 1, . . . ,M. (4)

III. PROBLEM FORMULATION AND PROPOSED SOLUTION

In this section, the optimization problem is defined and

the Q-learning approach to solve this problem is provided.

Subsequently, the convergence of the proposed approach and

cooperation between femtocells are presented.

A. Optimization Problem

The goal of the optimization problem is to allocate power

to the FBSs to maximize the sum capacity of the FUEs, while

supporting all users (MUE and FUEs) with their required

QoS. By defining p̄= {P1,P2, ...,PM} as the vector containing
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the transmit powers at the FBSs, the optimization problem

can be formulated as

maximize
p̄

M

∑
k=1

CFUEk
(5a)

subject to Pi ≤ Pmax, i = 1, . . . ,M (5b)

CFUEi
≥ q̃i, i = 1, ...,M (5c)

CMUE ≥ q̃MUE. (5d)

Here, the objective (5a) is to maximize the sum capacity

of the FUEs while providing the MUE with its required

QoS in (5d). The first constraint, (5b), refers to the power

limitation of every FBS. The terms q̃i in (5c) and q̃MUE

in (5d) refer to the minimum required capacity for the

FUEs and the MUE, respectively. Constraints (5c) and (5d)

ensure that the QoS is satisfied for all users. Considering

(2), (4), and (5), it can be concluded that the optimization

in (5) is a non-convex problem for dense HetNets. This

follows from the SINR expression in (2) and the objective

function (5). More specifically, the interference term due to

the neighboring femtocells in the denominator of (2), ensures

that the optimization problem in (5a) is not convex. This

interference term may be ignored in low density networks

but cannot be ignored in dense HetNets consisting of a large

number of femtocells.

In the next section, a Q-learning based approach to solve

this problem is proposed.

B. Reinforcement Learning

The RL problem consists of an environment and a single or

multiple agents which based on a chosen policy take actions

to interact with the environment. After each interaction, the

agent receives a feedback (reward) from the environment and

updates its state. An agent can be any intelligent member of

the problem, for example in a cellular network it could be an

FBS. The goal of this approach is to maximize the cumulative

received rewards during an infinite number of interactions.

Fig. 2 shows the RL procedure. Most of the RL problems

can be considered as Markov Decision Processes (MDPs).

Environment

Agent

action

at

Reward

Rt

State

st

Fig. 2: Reinforcement Learning, Agent and Environment.

C. Proposed Q-learning Approach

Q-learning is a model-free RL method that attacks MDP

problems with dynamic programming [14]. Q-learning can

be considered as a function approximator in which the values

of the approximator, Q, depend on the state (xt ) and action

(at ) at time step t. The dynamic programming equation

for computing a function approximator Q (also known as

Bellman equation) is as follows

Q(xt ,at) = max
a

(E[Rt + γQ(xt+1,a)]), (6)

where E denotes the expectation operator and Rt is the

received reward at time step t and 0≤ γ ≤ 1 is the discount

factor. Eq. (6) has a unique strictly concave solution and the

solution is approached by limit as t→ ∞ by iterations [15].

The novelty of Q-learning is attributed to the use of

temporal-difference (TD) to approximate a Q-function [16],

[17]. The simplest form of one-step Q-learning approach, is

defined by

Q(xt ,at)← (1−α)Q(xt ,at)+α max
a

(Rt + γQ(xt+1,a)), (7)

where α is the learning rate. Algorithm 1 specifies the Q-

learning in procedural form [16].

Algorithm 1 Q-Learning algorithm

1: Initialize Q(xt ,at) arbitrarily

2: for all episodes do

3: Initialize xt

4: for all steps of episode do

5: Choose at from set of actions

6: Take action at , observe Rt , xt+1

7: Q(xt ,at)← (1−α)Q(xt ,at)+α maxa(Rt + γQ(xt+1,a))

8: xt ← xt+1;

9: end for

10: end for

In the context of a femtocell network, FBS acts as an agent

in the Q-learning algorithm, which means each FBS runs

Algorithm 1, separately. The Q-learning approach consists

of three main parts as follows

1) Actions: Each FBS chooses its transmit power from a

set A =
{

a1,a2, ...,aNpower

}
, which covers the space between

Pmin and Pmax. In general, there is no particular information

from environment, so the FBS chooses actions with the same

probability. Therefore, equal step sizes are chosen between

Pmin and Pmax.

2) States: States are chosen based on the vicinity of the

FBS to the MBS and the MUE. In order to specify the state

of an FBS, we define two parameters for each FBS:

• DMBS ∈ {0,1,2, ...,N1}: The value of DMBS defines the

location of an FBS compared to N1 rings centered on

the MBS. The radius of layers are dBS1, dBS2, ... , dBSN1
.

• DMUE ∈ {0,1,2, ...,N2}: The value of DMUE defines the

location of an FBS compared to N2 rings centered on

the MUE. The radius of layers are dFBS1, dFBS2, ... ,

dFBSN2
.

By considering the above definitions, the state of the FBS i

at time step t is defined as si
t ∈ {DMBS,DMUE}. Each FBS,

constructs a table for itself, which comprises all possible

states as its rows and actions as its columns called a Q-table.

By the state definition, in the proposed model, the FBS state
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remains constant as long as its location is fixed. This feature

brings an advantage in sharing Q-tables between the FBSs

with the same state, where only a single row of each FBS’s

Q-table needs to be shared.

3) Reward: The definition of the reward function is essen-

tial because it targets the objective of the Q-learning method.

According to the optimization problem in (5), the goal of

the optimization process is to maximize the sum capacity of

femto users in the network while maintaining QoS for each

one of them. In order to translate this objective to a reward

function, the following points are taken into account:

• The objective of the optimization problem is to maxi-

mize the capacity of the network, so a higher capacity

for FUE or MUE should result in a higher reward.

• To satisfy the QoS requirements of users, capacity

deviation of users from their required QoS (q̃i or q̃MUE)

should decrease the reward.
By considering the above points, the proposed reward func-
tion (RF) for the ith FBS at time step t is defined as

Ri
t = βi

︸︷︷︸

(d)

CFUEi,t C
2
MUEt

︸ ︷︷ ︸

(a)

−
1

βi
︸︷︷︸

(e)

(CMUEt − q̃MUE)
2

︸ ︷︷ ︸

(b)

−
(

CFUEi,t − q̃i

)2

︸ ︷︷ ︸

(c)

, (8)

which is derived based on the above points. In (8), CFUEi,t and

CMUEt are the capacities of the ith FUE and the MUE at time

step t, respectively. According to (8), the reward function

comprises three main terms (a), (b), and (c). The first term

(a) implies that a higher capacity for the ith FUE or the MUE

results in a higher reward. In the same term, the capacity of

the MUE is squared. The power assigned to CMUEt in (a),

is supported by our simulation in Section IV and to also

give a higher priority to MUE with respect to the FUE by

allocating a higher reward to its capacity value. The terms

(b) and (c) are deviations of the ith FUE and the MUE from

their required threshold. Hence, terms (b) and (c) are reduced

from term a to decrease the reward. Terms (d) and (e) provide

fairness to the algorithm. βi (term d) is defined as the distance

of the ith FBS to the MUE normalized by dth. dth is a constant

distance, which indicates whether the FBS is in the vicinity

of the MUE or not. For example, if the distance of the ith

FBS and the MUE is less than dth, the interference of the ith

FBS affects the MUE more than any other FBS with distance

more than dth. Then the ith FBS should be given less reward,

which means reducing term (a) by multiplying it by βi (or

(d)) and increasing term b by multiplying it by the inverse

of βi (or (e)).

D. Convergence

According to [14], in Algorithm 1, if all actions are

repeatedly sampled in all states, (7) will be updated until

the value of Q converges to the optimal value (Q∗) with

probability 1. In practice, the number of updates is limited.

Hence, the final value of Q may be suboptimal. Q-learning

itself is a greedy policy since it finds the action which derives

the maximum Q-value on each iteration. Greedy policies

have the disadvantage of being vulnerable to environmental

changes, and they can be trapped or biased in a limited

search area which causes the algorithm to converge slower.

One reasonable solution is to act greedy with probability

1− ε (exploiting) and act randomly with probability ε (ex-

ploring). Different values for ε provide a trade-off between

exploitation and exploration. Algorithms that try to explore

and exploit fairly are called SARSA or ε-greedy [16]. In [16]

it is shown that in a limited number of iterations, the ε-

greedy policy has a faster convergence rate and closer final

value to the optimal one, compared to the greedy policy. As

such, the ε-greedy policy has been used in the rest of this

paper. Further, our investigations show that ε values of 0.1

or 0.01 provide a reasonable trade off between exploitation

and exploration.

E. Cooperative Q-Learning

The time complexity of an RL algorithm depends on three

main factors: the state space size, the structure of states,

and the primary knowledge of the agents [5], [18]. If priori

knowledge is not available to an agent or if environment

changes and the agent has to adapt, the search time can be

excessive [5]. Considering the above, decreasing the effect

of state space size on learning rate and providing agents

with priori knowledge has been a subject of significant

research [5], [18]–[20].

One approach to deal with this problem is by transferring

information from one agent to another instead of expecting

agents to discover all the necessary information. In fact,

by using a multi agent RL network (MARL), agents can

communicate and share their experiences with each other, and

learn from one another [5]. The reason that cooperation can

reduce the search time for RL algorithms can be attributed to

the different information that the agents can gather regarding

their experiences in the network. By sharing information

between experienced and new agents, a priori knowledge is

provided for new agents to reduce their search time. It is

worth mentioning that even in a MARL network that consists

of a large number of new agents, cooperation and information

sharing among these agents can reduce search time for the

optimum power allocation solution [5]. Another reason why

cooperation enhances search speed is the inherent parallelism

in cooperation between agents [5], [20]. In other words, by

sharing their information, the agents search different choices

in parallel which decreases the search time greatly. In [5] it

is shown that by intelligent sharing of information between

agents, search time can be executed as a linear function of

the state-space size.

Sharing Q-values in MARL networks for resource allo-

cation and management is still an open research problem.

The main challenge lies in the fact that the agents must be

able to acquire the required information from the shared

Q-values [18]. As a result, in a large MARL network it

is not yet clear what Q-values must be shared among the

agents to reduce search time and reach the optimum power

allocation solution. Moreover, cooperation comes at the cost

of communication. Agents can share their information to help

each other to learn faster while adding more overhead to the

network by passing on their Q-values through the backhaul

network. Nevertheless, it is important to note that these Q-

values can be significantly quantized to reduce this overhead.
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In a femtocell network, each FBS gathers information

regarding the network. The nature of this information for

each FBS may be different and directly related to its active

time in the network. Accordingly, we propose a cooperative

Q-learning approach where the Q-tables of FBSs that are

in the same state, i.e., the FBSs that are located in the

same vicinity (rings) relative to the MBS and the MUE, are

shared with one another. The latter is proposed since our

results show that only the FBSs with the same state have

useful information for one another. Moreover, the proposed

approach reduces the communication overhead among the

FBSs.

Accordingly, the proposed method for the femtocell net-

work consists of two modes: individual learning and coopera-

tive learning. The individual learning starts by initializing the

Q-values of a small subset of FBSs, e.g., four, to zero. These

FBSs execute the proposed RL algorithm independently.

After convergence, new agents are added to the problem one

by one and cooperative Q-learning takes place. In this mode,

the MARL network consists of experienced FBSs and one

new FBS. The new FBS takes its priori knowledge from

the FBSs with the same state and all FBSs execute the RL

algorithm. The FBSs with the same state share their Q-tables

(just one row) after each iteration. To form a new Q-table

from the shared Q-tables, we have used the method in [19],

where the shared Q-tables are averaged over. Although this

method is suboptimal [18] and to perform accurate sharing,

a weighted averaging between Q-tables should be used, we

have chosen to select the simple averaging method to achieve

a lower overall complexity.

IV. SIMULATION RESULTS

In this section the simulation setup is detailed and then the

results of the simulations are presented.

A. Simulation Setup

A femtocell network is simulated with a single MBS, one

MUE, and M number of FBSs, where each FBS supports one

FUE, see Fig. 3.
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Fig. 3: Locations of MBS, FBSs, MUE and FUEs.

To simulate a residential neighborhood, the FBSs are

located 35 m apart from each other. Each FUE is located

in a 10 m radius from its serving FBS. To simulate a high

interference scenario in a dense network, the MUE is located

among 15 number of FBSs. The locations of the MBS,

FBSs, and MUE are shown in Fig. 3. In these simulations

the number of layers around the MBS and the MUE are

assumed to be three (N1 = N2 = 3). Although, as the density

increases, more rings with smaller diameters can be used to

more clearly distinguish between the FBSs. The blue and red

rings indicate the states of the FBSs with respect to the MBS

and the MUE, respectively.

It is assumed that the FBS and the MBS are both operating

over the same channel bandwidth at f = 2.4 GHz. The path

loss model of the link between the MBS and the MUE, and

the one between the FBS and its serving FUE is given by

PL = PL0 +10n log10(d/d0), (9)

where PL0 is the constant path loss value, and n is the path

loss exponent. The parameters of the model are set to: d0 = 5

m, PL0 = 62.3 dB and n = 4 [21], as an example of a model

for a residential area. The path loss of the link between each

FBS and the MUE, and the link between each FBS and the

FUE of other FBSs are modeled using an empirical indoor-

to-outdoor model suitable for femtocells from [22]. Using

(6), (7), and Table I from [22], the path loss can be written

as

PL = PLi +PL0, (10)

PLi =−1.8 f 2 +10.6 f +6.1, (11)

PL0 = 62.3+32log10(d/5), (12)

where f denotes the operating frequency in GHz. The

remaining parameters are given in Table I.

TABLE I: Simulation Parameters

Parameter Value Parameter Value

Pmin -20 dBm Pmax 25 dBm

Npower 31 Step Size 1.5 dBm

dbs1
50 m d f bs1

15 m

dbs2
150 m d f bs2

50 m

dbs3
400 m d f bs3

125 m

dth 25 m

The QoS requirements for the MUE and FUEs are defined

as the capacity needed for each to support their user’s appli-

cation. For simulation the values of q̃MUE = 1 (b/s/Hz) and

q̃i = 1 (b/s/Hz), i = 1, ..,15 are considered for the MUE and

FUEs, respectively. By knowing the MAC layer parameters,

the values of the required QoS can be calculated using [23,

Eqs. (20) and (21)]. To perform Q-learning the following

values are used: learning rate α = 0.5, discount factor

γ = 0.9. The ε-greedy algorithm is used for the first 80% of

iteration with random ε = 0.1 and the maximum number of

iterations is set to 50,000. The agents are randomly added

to the network. For each number of agents, the algorithm

goes through all iterations and the agents share their Q-tables

according to the proposed algorithm in Section III-E.
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Fig. 4: Performance of the proposed reward function.

B. Results

In this section we show the results of the proposed method

compared to the results of the approach in [9]. The method

in [9] is based on a proximity based reward function, which

we call it proximity RF. To have a fair comparison between

the two algorithms, three measurements are plotted: the MUE

capacity, the capacity of each one of the FUEs for every

number of FBSs operating in the network, and the sum

capacity of the FUEs. As it is shown in Fig. 3, the position

of the MUE is an example of a dense network which results

in a high interference scenario. The results are shown in

Figs. 4a, 4b, and 4c, which indicate that the approach in [9]

is successful in satisfying the required QoS of the MUE for

all number of FBSs (Fig. 4a), while it fails to support the

FUEs as the density of the network increases (Fig. 4b). In

fact, after adding the sixth FBS for the approach in [9], the

FUE capacity decreases to almost zero. Hence, the QoS of the

MUE is satisfied at the expense of no service for some of the

FUEs. However, Fig. 4a shows that the proposed approach

satisfies the QoS for the MUE and the FUEs up to the point

where 8 FBSs are operating simultaneously in close vicinity

of the MUE. Further, after adding more FBSs the capacity

of the MUE does not fall to zero and it is still close to

the required threshold whenever 11 FBSs are operating in

close vicinity. At the same time, the majority of FUEs are

still meeting their required QoS. According to Fig. 4b the

capacity of FUEs are fairly close to each other regardless of

their position, which demonstrates the algorithm’s fairness.

Finally, Fig. 4c shows the sum capacity of the network

which has an increasing trend for all number of FBSs and is

consistently higher than that of the approach in [9].

C. Convergence Analysis

As it is noted in Section IV-A, the maximum number of

iterations to run the algorithm is set to 50,000, although the

algorithm always converges before this number is reached.

Fig. 5 provides the number of iterations that it takes for both

algorithms to converge with respect to the number of active

FBSs in the network. As shown in Fig. 5, the proposed

algorithm requires close to 4× 104 iterations whenever 13

FBSs are active in the network. In contrast, the number of

iterations is always lower than the algorithm in [9]. The order

of required iterations for convergence is 4×104 ≈ 215, which

is an extremely small portion of total number of iterations

required for exhaustive search, i.e, 3215 = 275.

To provide a better understanding of time duration of the

proposed algorithm, Fig. 6 shows the actual run time of the

proposed algorithm on a regular processor.
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Fig. 5: Average number of iterations for the algorithms to

converge.
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Fig. 6: Average run time of the proposed algorithm on

Intel(R) Core(TM) i5-4590 CPU @ 3.30GHz.

D. Fairness

To provide measurement for fairness, Jain’s fairness in-

dex [24] is used. In this method fairness is defined as

f (x1,x2, ...,xn) =
(∑

n
i=1 xi)

2

n∑
n
i=1 x2

i

, in which 0≤ f (x1,x2, ...,xn)≤ 1,

here equality to 1 is achieved when all the FUEs have the
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same capacity. As it is shown in Fig. 7, the fairness index is

close to one whenever 13 FBSs are active in the network.
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Fig. 7: Jain’s fairness index as a function of the number of

FBSs.

E. Complexity Analysis

In Section III-E the parameters that affect the search time

of Q-learning method are discussed. In a single FBS network

(single agent network), with a finite number of iterations,

and using the ε-greedy policy with fixed ε , and |S| as the

size of the state-space, the search time is upper bounded

by O(|S| log(|S|) log(1/ε)/ε2) [25]. The cooperation method

that is proposed in Section III-E for femtocell networks is

a special case of a learning with an external critic (LEC)

method proposed by [5] for MARL networks. According

to [5] the expected time needed for convergence is upper

bounded by O(|S|Npower log(1/ε)/ε2), where Npower is the

number of actions (power levels) in each iteration from which

the FBS can choose. Npower is linear in state-space size. On

the other hand, the optimal exhaustive search has a time

complexity of O(NM
power), where M is the number of FBSs

in the network.

V. CONCLUSION

The results of this paper show the application of machine

learning to address resource allocation in dense HetNets. In a

high interference scenarios, the power optimization in HetNet

is a non-convex problem that cannot be solved with reason-

able complexity. On the other hand, the proposed method as

a distributed approach can solve the optimization problem in

dense HetNets, while significantly reducing complexity. Our

simulations show that while reducing the overall complexity

of resource allocation, the proposed approach serves all users

for up to 8 femtocells whereas the approach in [9] was

unable to satisfy the FUEs at the expense of satisfying only

the MUE. Future work will explore different methods of

sharing information to obtain an optimal information sharing

algorithm between agents.
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