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A machine learning approach for 
reliable prediction of amino acid 
interactions and its application 
in the directed evolution of 
enantioselective enzymes
Frédéric Cadet1, Nicolas Fontaine1, Guangyue Li2, Joaquin Sanchis3, Matthieu Ng Fuk Chong1, 

Rudy Pandjaitan1, Iyanar Vetrivel  1, Bernard Offmann4 & Manfred T. Reetz2,5

Directed evolution is an important research activity in synthetic biology and biotechnology. Numerous 

reports describe the application of tedious mutation/screening cycles for the improvement of proteins. 

Recently, knowledge-based approaches have facilitated the prediction of protein properties and the 

identification of improved mutants. However, epistatic phenomena constitute an obstacle which can 
impair the predictions in protein engineering. We present an innovative sequence-activity relationship 

(innov’SAR) methodology based on digital signal processing combining wet-lab experimentation and 

computational protein design. In our machine learning approach, a predictive model is developed 

to find the resulting property of the protein when the n single point mutations are permuted (2n 

combinations). The originality of our approach is that only sequence information and the fitness of 
mutants measured in the wet-lab are needed to build models. We illustrate the application of the 

approach in the case of improving the enantioselectivity of an epoxide hydrolase from Aspergillus niger. 

n = 9 single point mutants of the enzyme were experimentally assessed for their enantioselectivity 
and used as a learning dataset to build a model. Based on combinations of the 9 single point mutations 
(29), the enantioselectivity of these 512 variants were predicted, and candidates were experimentally 
checked: better mutants with higher enantioselectivity were indeed found.

Directed protein evolution is a relatively tedious and time-consuming endeavour. Originally starting from purely 
random mutagenesis approaches1,2, protein engineering has advanced to a more and more information driven 
e�ort (site directed, structure based)3–7. Directed evolution of stereoselectivity continues to be a central issue of 
signi�cant importance in organic and medicinal chemistry as well as biotechnology. Such techniques as rationally 
chosen saturation mutagenesis at sites lining the binding pocket as part of the combinatorial active-site satura-
tion test (CAST)8 and iterative saturation mutagenesis using reduced amino acids for minimizing the screening 
e�ort9–13 constitute important advances. Nevertheless, the screening e�ort remains the bottleneck of directed 
evolution of stereo- and regioselectivity, which calls for support and guidance by in silico techniques.

Machine learning algorithms in protein science were developed as early as 1992, in that case for secondary 
structure prediction14. �erea�er new versions of machine learning for predicting structure, folding, binding, and 
even catalytic activity appeared with the aim of processing the accumulating information about mutants and their 
properties15–21. �e “big data” serves as training set for these algorithms to facilitate the prediction of new and 
improved variants, thereby aiding experimental e�orts in protein engineering based on site-speci�c mutagenesis 
or directed evolution6,22. However, these methods are mainly based on addition of the activities of the character-
ized single mutations. Hence, the non-additivity of functional mutations can lead to inaccurate identi�cation of 
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the best performing engineered protein using in silico approaches. Epistasis phenomena can impair the predic-
tions in protein engineering and screening. In this sense, machine learning has not been applied in order to evolve 
enzyme mutants with enhanced or inverted stereoselectivity.

Digital Signal Processing (DSP) techniques are analytic procedures, which decompose and process signals in 
order to reveal information embedded in them23. �e signals may be continuous (unending) or discrete such as 
the protein residues. In proteins, Fourier transform methods have been used for: biosequence (DNA and protein) 
comparison24, characterization of protein families and pattern recognition25–27; classi�cation and other struc-
ture based studies such as analysis of symmetry and repeating structural units or patterns, prediction of sec-
ondary/tertiary structure, prediction of hydrophobic core motifs, conserved domains, prediction of membrane 
proteins28–31, prediction of conserved regions32, prediction of protein subcellular location33, for the study of the 
secondary structure content in amino acids sequence34 and for the detection of periodicity in protein35. More 
recently new methods for the detection of solenoids domains in protein structures were proposed36,37.

Cosić has developed the most known approach using DSP and called Resonant Recognition Model (RRM). 
Digital Signal Processing techniques have helped analyse protein interactions26,38 and made biological function-
alities calculable. In these approaches, protein residues are �rst converted into numerical sequences using one of 
the available AAindex from this database39,40, representing a biochemical property or physicochemical parameter 
for each amino acid. �ese numerical sequences are then processed by means of Discrete Fourier Transform 
(DFT) to present the biological characteristics of the proteins in the form of Informational Spectrum Method 
(ISM)41. ISM procedure has been used to investigate principal arrangement in Calcium binding protein25 and 
In�uenza viruses42,43. A variant of the ISM, which engages amino acids parameter called Electron-Ion Interaction 
Potential (EIIP) is referred as Resonant Recognition Model (RRM). In this procedure, biological functionalities 
are presented as spectral characteristics. �is physico-mathematical process is based on the fact that biomole-
cules with same biological characteristics recognize and bio-attach to themselves when their valence electrons 
oscillate and then reverberate in an electromagnetic �eld26,44. RRM involves four steps45: (i) the conversion of 
the Protein Residues into Numerical Values of EIIP Parameter; (ii) a zero-padding/up-sampling (iii) the gener-
ation of protein spectrum using Fast Fourier Transform (FFT). FFT processed by means DFT to yield Spectral 
Characteristics (SC) and point-wise multiplied to generate the Cross Spectral (CS) features during the last step. 
(iv) Cross-Spectral (CS) analysis represents the point-wise multiplication of the Spectral Characteristics (SC). In 
this approach, a consensus spectrum (de�ned as a CS of a large group of sequences that share one or more com-
mon biological functions) is the �nal outcome of the method and the starting point for spectral characterization 
of protein families46.

But up to now, the energy spectra obtained a�er FFT has never been used to go through statistical modelling 
and predict the e�ect of mutations on the �tness of an amino acid sequence. �e energy spectra have never been 
used to explore protein sequence-activity or protein sequence/�tness relationship. We propose a new approach 
based only on the amino acids sequence and using digital signal processing (FFT) and protein spectrum to mod-
elling and predict the biological activity/�tness and for identifying combination of single points amino acid sub-
stitutions with improved �tness. �ere is no report of such method to the best of our knowledge.

Recently, the machine-learning innov’SAR (innovative Sequence-Activity Relationship) methodology 
appeared in the patent literature, a structure independent mutant library screening approach developed by 
PEACCEL47. It relies on the representation of proteins as spectra based on the physico-chemical properties of the 
amino acids that constitute the protein. �e protein spectrum that comes out from FFT treatment is the starting 
point.

In the current study, we demonstrate the potential of innov’SAR methodology (a form of arti�cial intelligence) 
in e�ciently identifying enantioselective mutants of the epoxide hydrolase from Aspergillus niger (ANEH). We 
also investigate innov’SARs’ capacity to predict mutational epistasis and to identify mutants with improved bio-
logical activity.

Epoxide hydrolases (EC 3.3.2.3) are enzymes that catalyse the hydrolytic kinetic resolution of racemic epoxides 
or the desymmetrisation of meso-epoxides, resulting in the formation of the respective chiral diols in enantiom-
erically enriched or pure form. Epoxide hydrolases have implications in both the �ne chemical and pharmaceu-
tical industries48. Sometimes wildtype (WT) epoxide hydrolases are highly stereoselective. In those many cases 
in which enantioselectivity is poor, directed evolution has been applied successfully, especially using saturation 
mutagenesis at sites lining the binding pocket (CASTing) and if necessary iterative saturation mutagenesis. For 
example, the group of Reetz carried out studies on the 398-residue ANEH49–51 that is a biocatalyst for the enan-
tioselective hydrolytic kinetic resolution of glycidyl phenyl ether (rac-1, GPE), (Fig. 1). �e WT ANEH has an 
enantioselectivity factor (E-value) of 4.6, in slight favour of the (S)-2 enantiomer.

In the CAST-study aimed at enhancing the enantioselectivity in the reaction of rac-1, the ANEH crystal struc-
ture served as a guide for identifying randomization sites used in saturation mutagenesis. Five sites (B-F) were 
chosen for combinatorial randomization using NNK codon degeneracy encoding all 20 canonical amino acids, 
inducing in each saturation mutagenesis cycle either single, double or triple point mutations (Fig. 2 and Table S1). 

Figure 1. Hydrolytic kinetic resolution of an epoxide (rac-1) catalysed by the epoxide hydrolase from 
Aspergillus niger (ANEH).
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A�er 5 iterative rounds of saturation mutagenesis, a total of nine single point mutations led to an improved var-
iant (LW202) with an E-value of 115. Even for this successful approach, this improvement of 25-fold involved at 
the time a tedious screening e�ort of around 20000 clones. Although CASTing and iterative saturation mutagen-
esis (ISM) have since been improved requiring notably less screening52, we were interested in exploring the pos-
sibility of applying machine learning for e�cient directed evolution of enantioselectivity using the same model 
reaction.

To develop a really useful sequence-based statistical predictor for a biological system, one should observe the 
following �ve steps53: (i) how to construct or select a valid benchmark dataset to train and test the predictor; (ii) 
how to formulate the biological sequence samples with an e�ective mathematical expression that can truly re�ect 
their intrinsic correlation with the target to be predicted; (iii) how to introduce or develop a powerful algorithm 
(or engine) to operate the prediction; (iv) how to properly perform cross-validation tests to objectively evaluate 
the anticipated accuracy of the predictor; (v) and as far as possible, how to establish a user-friendly web-server for 
the predictor that is accessible to the public. Below, we describe how to deal with these steps one-by-one.

Results
Modelling approach based on Digital Signal Processing using Fast Fourier Transform (FFT).  
innov’SAR requires only, as input data, an initial dataset with the primary sequences of protein variants and their 
values for a biological activity, to generate a predictive model. �is model can be used to �nd the activity of new 
mutants, outside of the initial dataset. In contrast to many other rational methods used to �nd new interesting 
mutants, innov’SAR can be used without knowledge of the 3D structure. �erefore, innov’SAR can be used for 
proteins where the crystal structure could not be obtained. 3D structural data could still be used to validate the 
results from innov’SAR.

innov’SAR consists of 3 phases, namely, the encoding phase, the modelling phase and the predictive phase.
In the �rst phase, the encoding phase, innov’SAR must encode the alphabetic protein sequence into a numer-

ical sequence, understandable by the modelling tools. �is phase takes into account only the protein sequences.
innov’SAR uses two steps for the encoding (Fig. 3). First, innov’SAR uses the indexes of the AAindex database 

[20] to encode the primary protein sequence into a numerical chain, where each letter of amino acid is replaced 
by a value. �is database holds more than 500 numerical indices representing various physicochemical and bio-
chemical properties for the 20 standard amino acids and correlations between these indices are also listed.

�e second step comprises a Fast Fourier Transformation (FFT) of the encoded sequences from the �rst step. 
FFT is a digital signal processing technique that is used to convert numerical signals into an Energy versus fre-
quency representation (equation 1). A�er this step, a spectral form of the protein, called the protein spectrum, 
is generated. �e use of FFT and protein spectra are the cornerstones for the prediction of biological activity by 
innov’SAR approach.
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With s the input signal (encoded sequence) of length N, S the output spectrum (complex numbers), n the position 
in the input signal, k the frequency in the spectrum and i the complex number such that i2 = −1.

A representation of a protein spectrum is shown in Fig. 3a as a plot Energy = f(frequency). �e protein spec-
trum allows to take into account the impact of mutations on the whole spectrum and does not focus on local 
�tness alone. �erefore, a single point mutation impacts the whole protein spectrum in a similar fashion a single 
point mutation can impact the whole structure of a protein. At the end of the encoding phase all the variants from 
the initial dataset will have a protein spectrum.

Figure 2. Active site of ANEH. ANEH catalytic triad comprises of Tyr 251 and 314 (in yellow), which 
orientates the GPE substrate rac-1, and Asp 192 (in red), responsible for the nucleophilic GPE-ring opening. 
A�er a CAST evolutionary process, 9 amino acids from ANEH WT (a), gathered in sites B–F, were mutated to 
yield LW202 (b).



www.nature.com/scientificreports/

4Scientific RepoRts | (2018) 8:16757 | DOI:10.1038/s41598-018-35033-y

Only the next phase, the modelling phase, will use the experimental values of the target activity, in conjunc-
tion with these protein spectra, in order to identify a predictive model (Fig. 3b). �e model is constructed by the 
application of standard regression approaches based on a learning step and a validation step. innov’SAR used a 
partial least square regression, PLS, as algorithm of regression to do the model for the predictions of the enanti-
oselectivity of epoxide hydrolase. �e protein spectra and the values of the activity are inputs of this regression 
method for the construction of a model. �e goal of the regression method is an attempt to learn and to analyse 
possible associations between frequencies of protein spectra and the activity values, during the learning step. 
�is learning step leads to the construction of a model. �e validation step consists to test the accuracy of the 
model in order to check if the learning step was e�cient. �e root mean squared error (RMSE) and the coe�cient 
of determination (R2) are the performance parameters to assess a regression model, during the validation step. 
RMSE values varies between 0 and +∞. R2 value varies between 0 and 1. An accurate regression model has an 
RMSE close to 0 and a R2 close to 1.

One particularity of innov’SAR approach, in the modelling phase, is to evaluate multiple encoding indexes 
to �nd the best for the construction of models. innov’SAR uses the initial dataset (training set) to construct a 
predictive model for each encoding index. For each model, innov’SAR calculates the value of the performance 
parameters in two stages. �e �rst stage is a standard cross validation. �e next stage is a modelling integrating 
the full set in the learning step. �e performances from the two stages are analysed to evaluate and to check the 
robustness and the validity of a model. In the �rst stage, the cross-validation stage, the initial dataset is split into 
k equal portions. �e number k varies according to the size of the initial dataset. We use low k value if the dataset 
size is high and high k value in the opposite case. We use k-1 portions as the learning dataset and the remaining 
one as the test dataset. �e procedure is repeated k more times until each portion is used as the testing dataset 

Figure 3. Schematic illustration of innov’SAR methodology. (a) A protein sequence is encoded in two steps: 
i. with a numerical encoding based on an index of AAindex database, i.i. a Fast Fourier transform is applied to 
convert the encoded sequence into a protein spectrum. (b) �e di�erent phases of innov’SAR. An encoding 
phase transforms the primary sequences of the initial dataset into protein spectra. �e modelling phase uses 
the protein spectra and the protein activity as learning dataset in order to construct a regression model. �e 
construction of the model is based on a partial least square regression method, PLS regression, in the modelling 
of the epoxide hydrolase by innov’SAR. �en the predictive phase uses the regression model and the protein 
spectra of new variants to have their predicted activity.
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once. �e cross-validation allows to avoid potential over�tting problem and to optimize some modelling parame-
ters. �e method of cross-validation used for this study is the Leave-One-Out Cross-Validation (LOOCV), where 
k is equal to the number of sequences.

In the second stage, the full set stage, the whole initial dataset is used as a learning dataset and a test dataset 
will be tested with the optimized parameters from the �rst stage. �is stage checks the accuracy of the predictions 
for learned sequences.

At the end of the modelling phase, a set of accurate models and their associated encoding indexes are selected 
and kept.

In the predictive phase, the sequences of the new variants are pre-treated by an encoding phase with a 
selected encoding index, determined in the modelling phase. Once all the new variants have a protein spectrum, 
innov’SAR employs a model associated to the encoding index and selected in the modelling phase. Next, the 
model predicts the values of the activity of the new variants from their protein spectrum (see Fig. 3b).

All steps of the innov’SAR approach were implemented on a workstation equipped with Intel(R) Xeon(R) 
E5-2650 v4 2.20 GHz processor and 16 GB of RAM. Using this hardware, we were able to handle up to 30 sin-
gle mutations, generate all combinations of mutations (230) and predict their values of the activity in less than 
48 hours. �e developed algorithm made use of all of the 12 cores of the CPU to speed up the calculation, but the 
memory was the main limiting factor to generate and predict the activity of new variants. �is methodology can 
scale to larger machines like High Performance Computing (HPC) clusters to either reduce the computation time 
or to increase the number of mutations that can be handled at once and ultimately the number of new variants 
that can be predicted.

Modelling of the training set of ANEH with innov’SAR methodology. Prediction of enantioselec-
tivity with the ∆∆G‡ for multiple point mutants using single point mutations or recombinations thereof. Like in 
most machine learning approaches, innov’SAR needs a training set to learn the correlation between sequence 
space and experimental values. We wanted to know if it is possible to establish a predictive model with a train 
set containing only few single point mutations, i.e., without any combinations of mutations allowing to capture 
epistasis. As noted above, in the original 2006-study, nine single point mutations of ANEH were experimentally 
evolved and assessed for their impact on the enantioselectivity49.

�e E-value can be transformed in ∆∆G‡ (kcal/mol) by the relation ∆∆G‡ = −RT ln (E). We used the ∆∆G‡ 
values for the construction of innov’SAR models, in order to follow and determine the enantioselectivity of the 
ANEH variants of this study. �e energy of the 9-single point mutations and the WT constitute a �rst learning 
dataset of protein sequences that was used by innov’SAR and named dataset A (Table S2).

A �rst model, named model DSA_FFT, was generated with dataset A to predict the ∆∆G‡ of double, triple 
and quadruple point mutants and to appraise the modelling done by innov’SAR with only single point mutants. 
After the evaluation of multiple encoding indexes by innov’SAR, described previously, the encoding index 
ZHOH04010154 was identi�ed as one of the best to generate an accurate model by innov’SAR and selected to 
build the model DSA_FFT.

�e ∆∆G‡ values of all possible combinations of these single point mutations, 29 = 512 possible variants, 
were thus predicted. We created a validation dataset with the 28 multiple point mutants (Table S3), including 
the mutant LW202, that were previously reported (among a total of 512)50, in order to check the accuracy of our 
models based on only 9 single point mutations. �e high value of the coe�cient of determination, R2 = 0.81 from 
the prediction of the validation dataset, indicates the good accuracy of our model (Fig. 4).

�e model uses a learning dataset based only on single point mutations, with relatively high value of ∆∆G‡, 
i.e., low values of enantioselectivity. However, it can determine the multiple point mutants with high experimental 
values of E-value such as the mutant LW202.

�e incorporation of the 28-multiple mutation variants, including the mutant LW202, into the dataset A 
should improve the accuracy of the model for the prediction of the 512 possible variants. �is incorporation 
formed a new dataset, named dataset B, by gathering all the 37 mutants and the WT (Table S4). A new model, 
named model DSB_FFT, was constructed with the dataset B. A�er the evaluation of multiple indices from the 
AAindex database, the index RACS82010455 was used as encoding index due to its higher modelling performance 
on the new learning dataset.

We compared the performances of the model DSA_FFT and the model DSB_FFT for the prediction of the 
28 multiple point mutants. As the model DSB_FFT used already the 28 multiple mutants in the learning step, we 
performed a Leave-One-Out Cross-Validation (LOOCV) for the validation of the second model. In the LOOCV, 
the predicted value of each mutant was calculated by removing the mutant from the learning dataset.

We obtained an excellent R2 value (0.96) for the LOOCV of the model DSB_FFT, based on the multiple point 
mutants. Hence, the addition of multiple point mutants to the learning dataset includes some information about 
the epistasis between mutations and thus improves the accuracy of the prediction model (Fig. 5).

Analysis of mutants demonstrating epistatic interactions. It was reported that the recombination of mutations 
resulted in various non-linear improvements in the desired properties of the mutant ANEH51. �is cooperativity 
re�ects the e�ect of epistatic interactions between mutations of ANEH. In a mutant demonstrating epistasis, the 
association of two or several mutations may result in a di�erent activity than the one resulting from pure addition 
of each single mutation56–59. �e e�ect of combining mutations can be either an addition of mutations where the 
resulting activity represents the sum of the single activities, or a positive epistasis, with an increase of activity 
compared to the addition, or a negative epistasis with decreased activity compared to the addition56–59.

Hence, it is crucial to determine the capacity for identifying these epistatic interactions of any predictive algo-
rithm, so that mutants with positive epistasis or negative epistasis can be distinguished. We therefore �rst calcu-
lated the theoretical value of ∆∆G‡, for the case of pure additivity of mutations, for each of the 28 recombinants, 
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by simply adding the corresponding values of the single mutations (Table S4). �e comparison between these 
theoretical additive values and the measured values allow the evaluation of the impact of epistatic interactions, 
while revealing whether positive epistasis or negative epistasis is involved. It turned out that all of the 28 variants 
with multiple mutations have a positive or a negative epistasis: 9 with positive epistasis and 19 with negative 
epistasis (Table S4).

A�er the calculation of the theoretical values, we used them to evaluate the accuracy of predictions based 
only on the addition of mutations to �nd the ∆∆G‡ of the 28 recombinants. We obtained a R2 of 0.80. We already 
know that the presence of epistasis prevents a perfect accuracy if we consider only the addition of mutations. But 
for these 28 variants, the predictions based on the addition of mutations provide already a correct accuracy. �e 
model DSA_FFT, based on single point mutants, has a performance of predictions (R2 = 0.81) close to the per-
formance when the addition of mutations is used. �e performances are close, but our model is not based only on 

Figure 4. Predictions from model DSA_FFT based solely on experimental values of 9 single point mutants and 
the WT of ANEH as learning set. �e ∆ points are the variants for the learning set, the 9 single point mutants 
and the WT, already learned by the model. �e • points are the variants for the validation set, comprising 
the 28 multiple point mutants, not learned by the model. R2 for the learning dataset (∆): R2 = 0.99. R2 for the 
validation dataset (•): R2 = 0.81.

Figure 5. Leave-One-Out Cross-Validation (LOOCV) predictions from model DSB_FFT, based on all the 37 
single and multiple point mutants, including LW202 mutant, and the WT of ANEH as learning set. LOOCV 
performances of prediction: R2 = 0.96.
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the addition of mutations. Indeed, in a next step we compared the predicted ∆∆G‡ of the 28 recombinants based 
on only the addition of mutation and the predicted ∆∆G‡ of the model DSA_FFT (Fig. 6).

Among the 28 multiple point mutants, the model DSA_FFT gives better results for 18 mutants than the pre-
diction based only on the addition of mutations (Fig. 6 and Table 1). �e innov’SAR model allows a distinct cap-
ture of epistasis for these mutants, which is a powerful characteristic of this machine learning approach.

We then tested if model DSB_FFT, with the incorporation of the 28-multiple point mutants into the 9-single 
point mutant model could bring improvements to the prediction of epistasis for the other mutants where the 
model DSA_FFT fails to fully capture epistasis. Among the 28 multiple point mutants, the model DSB_FFT 
generates more accurate predictions for 22 mutants, better results than the one based only on the addition of 
mutations (see Fig. 7 and Table 1). An improvement is observed in the ability of innov’SAR to capture epistatic 
e�ects compared to the use of only single mutants in the learning dataset. As already pointed out, this fact is also 
shown by the higher R2 value (0.96) for the LOOCV training set. �e LOOCV shows that the model identi�es 
more epistatic e�ects from the learning dataset.

�e generation of protein spectra is a key feature of innov’SAR methodology. To get a better idea why innov’SAR 
approach could predict epistatic e�ects, we ran di�erent kinds of modelling, with either single and/or multiple 
mutants and with or without FFT during the encoding phase of innov’SAR (see Fig. 3a).

Models were built without applying FFT during the encoding phase. When a model based on dataset A 
and without FFT, named model DSA_noFFT, the ∆∆G‡ predictions perfectly �t with the pure additive values 
(Fig. 8). In this case, we obtained the same performance as when only the addition of mutations is used to predict 
the value of ∆∆G‡ (R2 = 0.80). Without FFT, the model DSA_noFFT supposes only the addition of mutation and 
could not reproduce the epistasis for the prediction.

Next, we then performed the modelling with the dataset B and without FFT to generate the model DSB_
noFFT. �is model has 0.88 as value of R2. Figure 9 shows that the model DSB_noFFT can predict some epistatic 
interactions, but with lower accuracy than the model DSB_FFT, using FFT in the encoding phase (Fig. 7). 
Finally, as shown in Fig. 7, a model including FFT improves the accuracy of the predictions of the epistatic inter-
actions of the multiple point mutations. FFT is an improving factor for the predictions of mutants with epistasis in 
the models generated by innov’SAR.

Prediction of new improved ANEH mutants. �e best experimental mutant previously described49, named 
LW202, contains all 9 single point mutations in its sequence and has an E-value of 115. In an attempt to identify 
better mutants, we generated computationally all combinations of the 9 single point mutations (29 variants). �is 
approach resulted in 29–38 = 474 new variants with multiple point mutations. Figure 10 shows the predictions of 
E-value for all recombinants from the model DSB_FFT and our model was able to identify candidates with better 
predicted enantioselectivity than LW202.

Experimental characterization of predicted ANEH mutants. In a next step, we made an arbitrary 
selection of the predicted improved mutants and tested them in wet lab for enantioselectivity. �e predicted and 
experimental values are listed in Table 2.

Figure 6. Predictions of ∆∆G‡ values for multiple point mutation mutants from model DSA_FFT, based on 
the WT and the 9 single point mutants. Experimental values are in red, theoretical values for predictions based 
only on addition of mutations are in blue, and innov’SAR predictions are in green.
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We decided to select 5 mutants comprising a large spectrum of E-values ranging from E-values that are close 
to the WT and to mutants with E-values that are outside the highest value of the training set. We were able to 
demonstrate that the 5 mutants have properties that corresponded quite well to the predictions. We also observed 
that innov’SAR not only allows accurate predictions of E-values that are inside the learning dataset but can also be 
used to predict and identify superior variants of ANEH. Gratifyingly, a R2 value of 0.94 was obtained. With only 
37 mutants, our model was able to predict the potential outcome of 512, which means that on the basis of only 
7% of the mutants, a whole �tness landscape was predicted. We determined the predictions of E-values of these 5 
mutants only when considering the addition of mutations and when no FFT is used with the model DSB_noFFT 
(Fig. 11). We found 0.62 and 0.64 as R2 values, respectively, for the predictions based on the addition of mutations 
and for the predictions generated without FFT. �ese results show that innov’SAR model performs better for 
the predictions of these new mutants. It can also be seen that the predicted E-values correspond very well to the 
experimentally determined enantioselectivity. Especially impressive is the performance of the predicted mutants 
P4(8) and P5(9), the experimental E-values amounting to 253 and 228, respectively (Table 2). �ese are distinctly 
better than mutant LW202 (E = 115) evolved in our original study.

It is important to note that the predictions based on only the addition of mutations cannot �nd any better 
mutants than the mutant LW202, because this mutant comprises already all 9 possible mutations and each of 
these single mutants has an activity equal or better than the WT. �e prediction based solely on descriptors 
without FFT also failed to give predictions of enantioselectivity better than mutant LW202 (Fig. 11). Both models 
would have therefore not resulted in the identi�cation of improved new recombinants and are not able to predict 
recombinants which are outside of the training set.

Discussion
Previously, attempts have been made to study the e�ect of amino acid substitutions on the activity, function 
and stability of proteins whose structures have been resolved. �is resulted in Quantitative Structure Function 
Relationship (QSFR) and Quantitative Structure Stability Relationship (QSSR) studies, respectively60–62. 
Particularly, the impact of mutations on the stability of proteins is of speci�c industrial interest and has been the 
subject of various studies. Although these structure dependent methods are e�ective in deriving the correlation 
between the mutation and its e�ect on the protein activity, they are limited by their requirement of the availability 
of the protein structure. �e question of enhancing enzyme stereoselectivity was not addressed in these studies.

Mutant model DSA_FFT model DSB_FFT

B I I

C I I

E A I

BC I I

BD I I

BE I I

BF I A

CD I I

EC I I

FC A I

ED A I

FD I I

FE A I

BCD I I

BEC I I

BFC A I

BED I I

BFD I A

BFE I A

ECD I I

FCD I I

FEC A A

FED A A

BFCD A I

BECD I I

BFEC I I

BFED A A

BFECD A I

Table 1. Comparison of the 28 multiple point mutants between the predictions based on addition of mutation 
and the prediction from the innov’SAR model DSA_FFT and model DSB_FFT. I means better prediction by 
innov’SAR model and A means better predictions by using only the addition of mutations.
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Hence interest lies in deciphering the impact of mutations irrespective of the availability of structural informa-
tion, purely based on physico-chemical and other molecular properties of the varying amino acids and statistical 
analysis thereof. �e generation and accumulation of data about protein mutants and their properties as well 
as the increase of knowledge of protein structure such as enzymes and antibodies has enabled and supported 
the appearance of knowledge-based predictive algorithms for protein evolution. Quantitative structure-activity 
relationships (QSAR) have largely been applied to molecule modelling. QSAR methods have also been applied 
to model peptide or protein activity, but not focused on improving or reversing enantioselectivity63–65. It consists 
in using sets of descriptors derived from sequence information. One of these applications was termed as Protein 
Sequence Activity Relationship or ProSAR20. In this paper, the methodology relied on the binary encoding of the 
amino acid sequences of the wild type and a collection of few mutants whose activities are known. A statistical 

Figure 7. Prediction of ∆∆G‡ values by LOOCV method from model DSB_FFT, based on the WT and the 37 
single and multiple point mutants. Experimental values are in red, theoretical values for predictions based only 
on addition of mutations are in blue, and innov’SAR predictions are in green.

Figure 8. Prediction from model DSA_noFFT, based on WT and 9 single point mutants and without FFT 
during the encoding phase. Experimental values are in red, theoretical values for predictions based only on 
addition of mutations are in blue, and innov’SAR predictions without FFT are in green.
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Figure 9. Prediction from model DSB_noFFT, based on the WT and 37 single and multiple point mutants and 
without FFT during the encoding phase. Experimental values are in red, theoretical values for predictions based 
only on addition of mutations are in blue, and innov’SAR predictions without FFT are in green.

Figure 10. Ranking of the E-values for the 512 possible variants of ANEH with innov’SAR and the model 
DSB_FFT. (∆): E-value measured for WT and 37 single and multiple point mutants. (•): E-value predicted for 
all 512 possible variants.

Variant Mutations
Predicted 
∆∆G‡

Predicted 
E-value

Experimental 
E-value

WT −1.07 6 6

P1 A217N_R219S_L249Y −1.18 7 6

P2 A217N_L249Y_T317W_M329P_L330Y_C350V −1.98 27 15

P3 L215F_A217N_R219S_L249Y_T317W_T318V_M329P_C350V −2.86 117 96

P4 L215F_A217N_L249Y_T317W_T318V_M329P_C350V −3.10 175 253

P5 L215F_A217N_R219S_L249Y_T317W_T318V_L330Y_C350V −3.14 185 228

Table 2. Performance of new ANEH mutants as catalysts in the hydrolytic kinetic resolution of rac-1 as 
predicted by innov’SAR.
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model is built to represent the relationship between the mutation and the activity20. Subsequent mutant librar-
ies are generated by favouring those mutations that positively a�ect the activity. �e ProSAR method has been 
demonstrated to show a 4000-fold improvement in the volumetric productivity of the enzyme halohydrin dehal-
ogenase, while maintaining complete (R)-selectivity as already shown by the WT21. ProSAR was also used to 
enhance the activity of a transaminase, again with no trade-o� in stereoselectivity; in this study, iterative satura-
tion mutagenesis (ISM) at CAST-sites lining the binding pocket was also applied66. Both ProSAR and the structure 
dependent method QSFR, fall under the category of iterative mutant screening methods. �e main assumption 
in iterative mutant library screening methods is that the e�ects of the mutations are additive in nature67–69. �e 
additive nature of the �tness property is exploited mainly to avoid exhaustive and time-consuming search of the 
vast sequence space. However, in the case of ANEH it was shown that non-additive e�ects are predominant which 
makes the application of machine learning methods mainly based on additivity of mutations less e�cient. Hence, 
these methods demonstrate di�culties to predict non-additive epistatic e�ects as well as long range interactions 
between amino acids which are non-adjacent to each other. Another method that combines structure activity 
analysis with machine learning algorithms is the SCHEMA based predictive method developed by the Arnold 
group70,71. Based on a train set of chimeras of the cytochrome P450 enzyme BM3, they developed a linear regres-
sion model that allowed the prediction of improved functional chimeras with r = 0.96.

�is machine learning method has also been used to predict the properties of membrane bound proteins. 
Based on SCHEMA, chimeras of channel rhodopsins (ChR) were generated and characterized. �e experimental 
values served as training set for a predictive machine learning application based on regression and Gauss models. 
Iterative cycles of prediction and empirical testing of ChR chimeras demonstrated that their properties could be 
e�ciently predicted, resulting in the identi�cation of improved variants. In contrast to innov’SAR, this hybrid 
approach however also requires structural knowledge of the protein72.

In the present report, we describe the �rst application of innov’SAR to guide the choice of mutations to be 
combined, and to �nd local or even global optima in the sequence space for enhanced enantioselectivity. A novel 
statistical model that links protein sequence to protein property was developed and successfully applied. �e 
combination of descriptors and FFT resulted in appropriate predictions and the identi�cation of improved epox-
ide hydrolase variants in terms of enhanced stereoselectivity. �is is mainly due to the capability of the innov’SAR 
approach to predict the epistasis of interacting mutations. We could demonstrate that the prediction of epistatic 
e�ects of combinations of single point mutants is mainly due to the application of the FFT step. �is becomes 
evident when new distinctly improved previously uncharacterized recombinants were correctly predicted, iden-
ti�ed and substantiated experimentally. In this case the innov’SAR application comprising FFT was the only 
method that could predict any improved recombinants, while a pure additive model and innov’SAR without FFT 
proposed at best only the already known experimental LW202 mutant. �is means that these models would have 
missed the local optima, which is a key criterion for the evaluation of machine learning algorithms.

�e di�erence existing between the predictions generated when only the �rst step of innov’SAR (which con-
verts amino acids into a series of descriptor dependent numbers) and the FFT (which converts the numbers into 
a spectrum with di�erent frequencies) suggests that the later plays an important role in the accuracy of the pre-
dictions. In addition, we hypothesize that the frequency of a protein spectrum and each amino-acid position in 
the protein sequence is not linked to one position, but several amino-acid residues or positions at the same time. 

Figure 11. E-values for the 5 mutants identi�ed selected by innov’SAR and for the mutant LW202 originally 
evolved experimentally. In red: measured E-values, in blue: predicted E-values without FFT during the encoding 
(model DSB_noFFT), in green: predicted E-values with FFT applied by innov’SAR (model DSB_FFT), in 
purple: predicted E-value based only on the addition of mutations.
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�e frequencies that have a better correlation with the experimental activity contribute better to the prediction of 
epistatic interactions. We are currently further deciphering the reasons for these observations.

In this work we propose an e�cient combinatorial mutant library screening tool for the rational screening and 
improvement of epoxide hydrolase. While writing this paper, a study appeared describing genetic algorithms to 
improve an epoxide hydrolases in silico, but stereoselectivity was not treated73. Experimental proof of the predic-
tive e�cacy of these algorithms was also not provided. In a fundamentally di�erent approach to in silico guidance 
when evolving the epoxide hydrolase ANEH for enhanced enantioselectivity, we have previously applied the 
ASRA-algorithm (Adaptive Substituent Reordering Algorithm)74. Accordingly, ASRA identi�es the underlying 
regularity of the protein property landscape, in this case enantioselectivity. Consequently, it is not a QSAR-type 
approach, but a machine learning process very di�erent from innov’SAR.

�e present study is the �rst report that describes the application of innov’SAR in directed enzyme evolution. 
In this particular case we have limited the application to recombine learned mutations which are contained in the 
train set. We could identify and experimentally con�rmed extremely �t mutants out of 512 possible mutational 
combinations by using a dataset made of only 7% of the mutants contained in the total �tness landscape. In a next 
step we are considering going further and to test to what extent our approach is able to predict the properties of 
non-learned mutations on learned or non-learned positions.

As a conclusion, innov’SAR approach based on sequence information and experimental data combined with 
Digital Signal Processing such as FFT has demonstrated its ability to capture and predict mutational epista-
sis. Predictions of new improved versions of the epoxide hydrolase enzyme for enantioselectivity have been 
con�rmed experimentally. �is machine learning approach takes into account the interactions between the 
amino-acids in a protein sequence and is very fast. It opens new opportunities in terms of protein engineering 
and screening.

As pointed out75 and demonstrated in a series of recent publications, user-friendly and publicly accessible 
web-servers represent the future direction for demonstrating new �ndings or approaches. Actually, many practi-
cally useful web-servers have signi�cantly increased their impacts on medical science, driving medicinal chemis-
try into an unprecedented revolution76, we shall make e�orts in our future work to provide a web-server to display 
the �ndings that can be manipulated by users according to their needs.

Materials and Methods
Materials. KOD Hot Start DNA Polymerase was obtained from Novagen. Restriction enzyme Dpn I was 
bought from NEB. �e oligonucleotides were synthesized by Life Technologies. Plasmid preparation kit was 
ordered from Zymo Research, and PCR puri�cation kit was bought from QIAGEN. DNA sequencing was con-
ducted by GATC Biotech. All commercial chemicals were purchased from Sigma-Aldrich, Tokyo Chemical 
Industry (TCI) or Alfa Aesar.

Methods. Evaluation of modelling performances by innov’SAR. innov’SAR evaluates the generated models 
with the values of the root mean squared error (RMSE) and the coe�cient of determination (R2) during the 
cross-validation stage and the full set stage. �e formulas of these metrics are shown below:
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where, yi is the measured activity of the ith sequence, ŷŷi is the predicted activity of the ith sequence, y  is the aver-
age and S the number of sequences.

PCR based methods for construction of ANEH mutants. �e ANEH, constructed in PET-22b77, was chosen as tem-
plate for mutants constructing with over-lap PCR and megaprimer approach78. 50 µL reaction mixtures typically 
contained 30 µL water, 5 µL KOD hot start polymerase bu�er (10×), 3 µL 25 mM MgSO4, 5 µL 2 mM dNTPs, 2.5 µL 
DMSO, 0.5 µL (50~100 ng) template DNA, 100 µM primers Mix (0.5 µL each) and 0.5 µL (short fragment PCR) or 
1 µL (megaprimer PCR) KOD hot start polymerase. �e PCR conditions for short fragment: 95 °C 3 min, (95 °C 
30 sec, 56 °C 30 sec, 68 °C 40 sec) × 30 cycles, 68 °C 120 sec. For mega-PCR: 95 °C 3 min, (95 °C 30 sec, 60 °C 30 sec, 
68 °C 5 min 30 sec) × 28 cycles, 68 °C 10 min. �e PCR products were analysed on agarose gel by electrophoresis 
and puri�ed using a Qiagen PCR puri�cation kit. 2 µL NEB CutSmart™ Bu�er and 2 µL Dpn I were added in 50 µL 
PCR reaction mixture and the digestion was carried out at 37 °C for 7 h. A�er Dpn I digestion, the PCR products 
1.5 µL were directly transformed into electro-competent E. coli BL21(DE3) to create the �nal library.

Primer design and creation of ANEH mutants. Primer design depend upon the particular amino-acid chosen, 
and in the case of P1 involves three sites mutation: (1) Ampli�cation of the short fragments of WTANEH using 
mixed primers P1-A217N/R219S-F/P1-L249Y-R (Table S6); (2) Ampli�cation of the whole plasmid WTANEH 
using the PCR products of step1 as megaprimers, leading to the �nal plasmids for mutant P1 generation.

For mutant P2: (1) Ampli�cation of the short fragments of P1 using mixed primers P2-P1-A217N/S219R-F/
P2-P1-T317W/M329P/L330Y-R and P2-P1-T317W/M329P/L330Y-F/P2-P1-C350V-R, respectively; (2) Over-lap 
PCR using the PCR products of step1 as template and mixed primers P2-P1-A217N/S219R-F/P2-P1-C350V-R; 
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(3) Ampli�cation of the whole plasmid of P1 using the over-lap PCR product of step2 as megaprimers, leading to 
the �nal plasmids for mutant P2 generation.

For mutant P3: (1) Ampli�cation of the short fragments of P1 using mixed primers P2’-P1-L215F/A217N/
R219S-F/P3-P1-T317W/M329P -R; (2) Ampli�cation of the whole plasmid of P1 using the PCR product of step1 
as megaprimers, leading to the �nal plasmid for mutant P2’ generation. (3) Ampli�cation of the short fragments 
of P2’ using mixed primers P3-P2’-T317W/T318V-F/P3-P2’-C350V-R; (4) Ampli�cation of the whole plasmid 
of P2’ using the PCR product of step1 as megaprimers, leading to the �nal plasmids for mutant P3 generation.

For mutants P4 and P5: (1) Ampli�cation of the short fragments of P3 using mixed primers P4-P3-S219R-F/
P4-P3-C350V-R and P5-P3-P329M-L330Y-F/P5-P3-R; (2) Amplification of the whole plasmid of P3 using 
the PCR product of step1 as megaprimers, leading to the �nal plasmids for mutants P4 and P5 generation. 
All the primers used are listed in Table S6. �e PCR products were digested by Dpn I and transformed into 
electro-competent E. coli BL21 (DE3) to create the library.

Protein expression. E. coli BL21 (DE3) cells carrying the recombinant plasmid were cultivated in 5 mL LB 
medium containing carbenicillin (100 µg/mL) overnight at 37 °C. �e overnight culture was inoculated into 
100 mL of TB medium containing carbenicillin (100 µg/mL) and grown at 37 °C. �e culture was induced by 
addition of isopropyl β-D-1-thiogalactopyranoside (IPTG) with a �nal concentration of 0.2 mM when OD600 
reached 0.6, and then allowed to grow for additional 12 h at 25 °C. A�er centrifugation at 6000 g for 15 min at 4 °C, 
the bacterial pellet was washed once with phosphate bu�er (50 mM, pH 7.4), and resuspended in a phosphate 
bu�er (50 mM, pH 7.4).

Hydrolytic kinetic resolution of rac-1. A 1 mL mixture of 50 mM rac-1 (10 mM for mutant P2) and recombinant 
expressed whole cells of WT ANEH or mutants (WT ANEH: OD600 = 1, P1: OD600 = 0.02, P2: OD600 = 25, P3: 
OD600 = 0.02, P4: OD600 = 0.3 and P5: OD600 = 0.02) in PBS bu�er (50 mM, pH 7.4) was stirred at 25 °C. �en 
0.2 mL reaction product were extracted with ethyl ether (0.2 mL) at 10 min and 30 min (P2: 1 h, 3 h, 5 h and 7 h), 
respectively.

Data Availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information �les).
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