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Abstract

Background: Advances in cloning and sequencing technology are yielding a massive number of viral genomes. The

classification and annotation of these genomes constitute important assets in the discovery of genomic variability,

taxonomic characteristics and disease mechanisms. Existing classification methods are often designed for specific

well-studied family of viruses. Thus, the viral comparative genomic studies could benefit from more generic, fast and

accurate tools for classifying and typing newly sequenced strains of diverse virus families.

Results: Here, we introduce a virus classification platform, CASTOR, based on machine learning methods. CASTOR

is inspired by a well-known technique in molecular biology: restriction fragment length polymorphism (RFLP). It

simulates, in silico, the restriction digestion of genomic material by different enzymes into fragments. It uses two

metrics to construct feature vectors for machine learning algorithms in the classification step. We benchmark CASTOR

for the classification of distinct datasets of human papillomaviruses (HPV), hepatitis B viruses (HBV) and human

immunodeficiency viruses type 1 (HIV-1). Results reveal true positive rates of 99%, 99% and 98% for HPV Alpha species,

HBV genotyping and HIV-1 M subtyping, respectively. Furthermore, CASTOR shows a competitive performance

compared to well-known HIV-1 specific classifiers (REGA and COMET) on whole genomes and pol fragments.

Conclusion: The performance of CASTOR, its genericity and robustness could permit to perform novel and accurate

large scale virus studies. The CASTOR web platform provides an open access, collaborative and reproducible machine

learning classifiers. CASTOR can be accessed at http://castor.bioinfo.uqam.ca.
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Background
Genomic sequence classification assigns a given sequence

into its related group of known sequences with similar

properties, traits or characteristics. It is a fundamental

practice in different research areas of microbiology yield-

ing major challenges in comparative genomics. Accurate

genomic sequence classification and typing could help

to enhance the phylogenetics and functional studies of

viruses [1]. They also help in determining pathogenic-

ity, developing vaccines, studying epidemiology and drug

resistance [1, 2]. Recent advances in DNA sequencing

and molecular biology techniques provide an immense
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collection of genomic information. Such data volume

raises challenges for genetic-based classification tech-

niques. Three main approaches have been designed and

implemented to classify different types of viruses based

on their genomic sequence characteristics. The first is

sequence alignment-based approach which is widely used,

e.g. in similarity search methods (BLAST [3], USEARCH

[4], etc.) and in pairwise distance based-methods (PASC

[5], DEmARC [6], etc.). The second is phylogenetic-based

approach. It is implemented in several tools, e.g. REGA

[7, 8] and Pplacer [9]. The aim of these methods is to

place an unknown sequence on an existing phylogenetic

tree of a set of reference sequences. Each time a given

sequence has to be classified, it is realigned with the

set of reference sequences. Then, either a new phyloge-

netic tree is inferred or the given sequence is placed in

the existing tree. The third is alignment-free approach
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including methods based on nucleotide correlations [10]

and sequence composition [2, 11]. It transforms sequences

or their relationships to feature vectors and then con-

structs a phylogeny, a statistical model or a machine

learning model [12, 13]. These methods are reviewed in

Vinga and Almeida [12], Mantaci et al. [14], Xing et al.

[15] and Bonham-Carter et al. [13]. Restriction fragment

length polymorphism (RFLP), a molecular biology tech-

nique [16], is used to type different virus strains [17–21].

Several algorithmic approaches have tackled theoreti-

cal and experimental problems related to the restriction

enzyme data such as restriction mapping problem (see

chap. 2 [22]), phylogeny estimation [23–25], SNP geno-

typing [26] and analysis of RFLP digitized gel images

[27, 28]. However, large scale computational sequence

classification based on the RFLP technique is not yet cov-

ered in literature. Due to the genetic polymorphism in

DNA sequences, fragments resulting from enzyme diges-

tions are different in terms of number and length between

individuals or types. A set of restriction enzymes grounds

a fragment pattern signature for each sequence. There-

fore, similar sequences ought to have similar fragment pat-

terns and thus similar restriction site distributions. This

a priori knowledge could be used to build a machine

learning model where sequences are represented by

restriction site distributions as a feature vector and a

class feature corresponding to a taxonomic level (genus,

species, etc.). In this paper we introduce CASTOR, a

machine learning web platform, to classify and type

sequences. CASTOR integrates a new alignment-free

method based on the RFLP principle. Our in silicomethod

is independent of the sequence structure or function

and is also not organism-specific. CASTOR is designed

to facilitate the reuse, sharing and reproducibility of

sequence classification experiments.

Methods

Overview of the approach

In this paper, we propose an in silico approach to identify

and classify viral DNA sequences based on their restric-

tion enzyme sites using supervisedmachine learning tech-

niques. Like other supervised learning approaches, the

proposed one is divided into two main units (Fig. 1). The

classifier construction unit builds and trains classifica-

tion models (or classifiers). It requires a set of reference

viral genomic sequences, their classes and a list of restric-

tion enzyme patterns. It starts by creating a training set

including a group of feature vectors. The latter is com-

puted from the distribution of the restriction site patterns

on the given DNA sequences and then refined by fea-

ture selection methods. A collection of learning classifiers

are then trained and evaluated using 10-fold cross vali-

dation in order to choose the best classifier. The second

unit (prediction unit) is intended to predict the classes

or annotations of given viral sequences. The inputs of

this unit are a classifier, a set of DNA sequences and

the same list of restriction enzyme patterns used to train

the classifier.

Restriction fragment pattern-based features

Here, we propose a set of features simulating the out-

come of the RFLP technique. FromREBASE database [29],

we extracted a list of 172 type II restriction enzymes and

their recognition sites. Type II family cleaves (cuts) DNA

sequences precisely on each occurrence of the recognition

site. Then, the restriction digestion of DNA sequences is

computationally simulated. In order to build a training set,

for a sequence s and enzyme z we compute two metrics

representing the distribution of the digested fragments:

the number of cuts of the enzyme (CUT(s, z)) and the

rootmean square of digested fragment lengths (RMS(s, z))

calculated as

RMS(s, z) =

√

√

√

√

1

n

n
∑

i=1

l2i (1)

where n is the number of fragments (CUT(s, z) + 1) and

li is the length of the ith fragment in linear genomes. For

circular genomes n = CUT(s, z). Other metrics could be

easily computed from the fragment digestion to construct

the feature vectors.

Feature selection methods

The selection of an optimal subset of features improves

the learning efficiency and increases the predictive perfor-

mance. Feature selection techniques reduce the learning

set dimension by pruning irrelevant and redundant fea-

tures. Two relevant methods of feature reduction are

provided. The first method (topAttributes) ranks the fea-

tures according to their information gain [30] and selects

a subset of top-k features. Information gain estimates

the mutual information between a feature and the target

class. The second method (correlation) uses the Spear-

man’s rank correlation coefficient to construct a set of

uncorrelated features. The correlation coefficient between

two feature ranking vectors u and v of size n is computed

as follows:

ρ = 1 −
6

∑n
i=1(ui − vi)

2

n(n2 − 1)
. (2)

A two-tailed p-value is computed to test the null

hypothesis which states that two feature vectors are

uncorrelated. In order to remove one of the two corre-

lated features, two strategies could be used: discarding

the feature with the largest sum of absolute correlation

coefficients or the one with the smallest information

gain score.
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Fig. 1 Overview of CASTOR kernel architecture. The kernel is composed of two main units (classifier construction and prediction).White rectangles

represent input and output data; grey and curved rectangles represent processes. TS and VS are training set and validation set, respectively

Learning and evaluation

We explored three types of classifiers: (1) symbolic meth-

ods (C4.5 decision tree (J48) [31] and random forests

(RFT) [32]), (2) statistical methods (naive Bayes classi-

fier (NBA) [33, 34], support vector machine (SVM) [35]

and K-nearest neighbors (IBK) [36, 37]) and (3) ensemble

methods (Adaboost (ADA) [38] and Bagging (BAG) [39]

both combined with J48); see Additional file 1: Table S1 for

more details. A 10-fold cross-validation strategy is used to

assess the performance of the trained classifiers. Perfor-

mance measures are weighted according to the number of

instances and computed for the overall classification. The

performance measures are:

TPR = TP/(TP + FN), (3)

FPR = FP/(FP + TN), (4)

Precision = TP/(TP + FP), (5)

F − measure =
2 × TPR × Precision

TPR + Precision
. (6)

where TP,TN, FP, and FN are the number of true positive,

true negative, false positive and false negative predic-

tions, respectively. TPR and FPR are the true positive rate

and the false positive rate, respectively. We used Weka

data mining program to perform the training and the

evaluation [40].

To include a negative class in the training sets, two

approaches could be used. First, provide manually con-

structed negative class from collected relevant data. Sec-

ond, build it with the provided negative class gener-

ator. This generator constructs altered sequences data

from a sampling with replacement of the positive set

sequences. To alter the sampled sequences, we reshape the

RFLP length distribution of the training set by randomly

shrinking, expanding or keeping unchanged the length of

the sampled sequences. Then, each sequence is randomly

shuffled while preserving k-mer counts.

Datasets

In this study, we applied our approach to a wide range

of viruses. We selected one dsDNA virus (human papillo-

mavirus (HPV)), one dsDNA-RT virus (hepatitis B virus

(HBV)) and one ssRNA-RT virus (human immunodefi-

ciency virus type 1 (HIV-1)). (1) HPVs have a circular dou-

ble stranded DNA genome of ∼8000 bp and belong to five

genera (Alpha, Beta, Gamma, Mu and Nu). HPVs belong-

ing to a genus share over 53% identity of their complete

genomes and ones in the same species level share over 62%

of identity [41, 42]. We assessed the performance of HPV

classification in the genus and species taxonomic levels. At

the species level, we selected only the Alpha HPV genus

representing the most abundant and diverse genomes in

databases. It is divided into thirteen species (Alpha 1–

11, Alpha 13–14). Unfortunately, some HPV genera (Mu

and Nu) and Alpha HPV species (1, 5, 8, 11 and 13) were

underrepresented and were therefore discarded. (2) HBV

genomes are smaller (3200 bp) and are circular partly

double stranded DNA. HBVs are classified into eight

genotypes (A–H) with at least 8% divergence among their

genomic sequences [43]. We evaluated the performances

of our method for the genotyping of HBV strains. HPV

and HBV complete genome sequences were downloaded

from the NCBI RefSeq database [44]. The taxonomic

annotations were extracted from the NCBI Taxonomy

database [44]. (3) HIV-1 genomes have two copies of

positive-sense single-stranded RNA with ∼9700 bp. Phy-

logenetically, HIV-1 strains are divided into four groups:

M, N, O and P [45, 46]. M group strains are worldwide

prevalent. They are categorized into pure subtypes (A–D,



Remita et al. BMC Bioinformatics  (2017) 18:208 Page 4 of 11

F–H, J and K) and recombinant forms (up to 70 CRFs

and URFs). Genetic variations among subtypes are about

20–30% for env gene, 7–20% for gag gene and 10% for

pol gene [47]. For HIV-1 classification, we studied com-

plete genomes (CGs) and fragments covering pol gene

from the position 2253 to 3554 with respect to HXB2 ref-

erence sequence and having a minimum size of 1 Kbp

(pol fragments). HIV-1 sequences were extracted from

the Los Alamos HIV sequence database (http://www.hiv.

lanl.gov/). For all the datasets, only complete, curated

and well-annotated sequences were selected. Moreover,

each class ought to have an adequate number of genomic

sequences in order to have a representative genetic

diversity.

Simulation studies

Raw viral sequence datasets, described above, were class-

size imbalanced, i.e., the difference in the number of

genome sequences belonging to each class was relatively

large. Generally, epidemiological studies are conducted on

host-specific viruses (human, cattle, etc.) with the high-

est prevalence and pathogenicity [48, 49]. This leads to

more data for some groups of viruses over others. Usu-

ally, training standard classifiers on imbalanced datasets

affects their performance (mainly sensitivity and speci-

ficity) and misleads the interpretation of their accuracy

[50, 51]. Under-samplingmajority class approach has been

shown to perform well [52] and could be used with stan-

dard algorithms. Hence, from each previous dataset, we

randomly performed under-sampling, without replace-

ment, of the larger classes to have relatively the same

sizes as the other classes. In order to identify the best

parameters of the classifiers, we randomly sampled 10

datasets for each of the HPV genera, HPV Alpha species,

HBV genotypes, HIV-1 M subtypes CGs and HIV-1 M

subtypes pol fragments data. For each obtained sample,

we performed a 10-fold cross-validation study with dif-

ferent classifiers built as follows. We constructed all the

combinations of the two metrics (CUT and RMS), the

two feature selection methods (topAttributes and correla-

tion) and the seven learning algorithms. This construction

yielded 28 combinations ∗ 10 datasets = 280 experiments

for each virus classification.

Results and discussion
The Results section is divided into four parts: first,

we show how the RFLP signatures are suitable for

viral classification; second, we assess the performance

of several competing classification algorithms on dif-

ferent virus datasets; third, we compare the predic-

tion made by CASTOR against widely used meth-

ods for HIV-1 datasets, one of the most difficult

to classify and fourth, we present the CASTOR web

platform.

Classification with RFLP signatures in virus families

Figure 2 highlights the natural RFLP cuts in the col-

lected HPV, HBV and HIV-1 datasets. The second col-

umn of the figure shows the multidimensional scaling

(MDS) plot of the first two dimensions of distances

between the feature vectors of the genomes. The sepa-

ration between the different HPV genera (Fig. 2a) could

approximatively be drawn, which is partly the case for

the HPV species. The Cohesion [41] and Silhouette [53]

indexes allow to measure the compactness and sepa-

rability of classes. Here, both indexes show moderate

values (between 0.2 and 0.8 for Cohesion index and

–0.2 to 0.7 for Silhouette index) indicating that the

classes are not well distinct. Several instances could be

mislabeled or share the same RFLP cut patterns with

other classes. This results in low or negative values of

Silhouette index in HPV Alpha 3, 7 and HPV Gamma

(Fig. 2a). With CASTOR, the best HPV Alpha Species

classification obtains a TPR of 0.992 and FPR of 0.002

in 10-fold cross-validation analyses of 118 instances (see

Table 1). The power of RFLP cuts in classification of

viruses could be observed in HBV genotypes heatmap

(see Fig. 2b). HBV highlights three genotypes (A, E and

F) with Cohesion indexes for most instances above 0.7

indicating very coherent classes. But B and C genotypes

have values between 0.1 and 0.6. The Silhouette index

plots show several instances of B, C, E and G genotypes

that have an striking disagreement with their assigned

classes (Silhouette index < −0.1). Even with these con-

straints, CASTOR achieves the genotyping of 230 HBV

instances with TPR of 0.996 and FPR of 0.001 accord-

ing to a 10-fold cross-validation study (see Table 1).

The HIV-1 cut site patterns have more variability among

pure subtypes and CRFs (Fig. 2c). Likely, the MDS plot

shows a moderate subtype clustering for the main HIV-1

subtypes. But this clustering is not well separated com-

pared to HPV and HBV. This variability among classes

is reflected in low values of the Cohesion index (≤

0.4). All, suggesting either variability, noise or misla-

belling. For instance, > 30% of HIV-1 B and HIV-1 C

instances tend to have RFLP cut patterns of other subtypes

(negative Silhouette indexes). With CASTOR, the sub-

typing of HIV-1 group M within 18 main subtypes was

assessed for 597 instances with a TPR of 0.983 and

FPR of 0.001.

Previously, it has been clearly shown that RFLP has a

power for classification in several viruses such as HPV

[17, 18], HBV [20] and HIV [19]. But these studies are

mostly limited to two to five classes. To the best of

our knowledge, our study constitutes the first large scale

and multi-class analyses of RFLP cut for classification. It

provides the basis to explore large and various types

of classifications, in particular those based on machine

learning methods.

http://www.hiv.lanl.gov/
http://www.hiv.lanl.gov/
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Fig. 2 Class cohesion of three virus datasets. The four columns illustrate the separability and compactness of three virus complete genomes datasets

based on 172 restriction enzyme cuts. The first column shows heatmaps of CUT clustered by x-axis. The samples in the y-axis are grouped by studied

classes followed by intra-class clusterings. The second column shows MDS of the CUT distances between samples. The third and fourth column

represent, respectively, the Cohesion and Silhouette indexes of the classes. a Classes in HPV are Alpha species, Beta and Gamma genera. b Classes

in HBV are A-H genotypes c Classes in HIV-1 are M pure subtypes and CRFs

Table 1 CASTOR best accuracies on the classification of five datasets

Group of virus Organism Classification # of classes # of instances TPR FPR F-measure Classifier ID

I (dsDNA) HPV Genera 3 125 0.992 0.005 0.992 PMSHPV01

Alpha species 8 118 0.992 0.002 0.992 PMSHPV02

VII (dsDNA-RT) HBV Genotypes 8 230 0.996 0.001 0.996 PMSHBV01

VI (ssRNA-RT) HIV-1 Groups 4 76 1.000 0.000 1.000 PMSHIV01

M Subtypes 18 597 0.983 0.001 0.983 PMSHIV02

This table contains the best results of the experimental study performed on the different datasets. The evaluation measures are obtained with 10-fold cross-validation

analysis. The column Classifier ID contains the corresponding models available in CASTOR platform
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Machine learning classifier tuning and performance

The CASTOR platform relies on machine learning meth-

ods for the classification of viruses based on RFLP sig-

natures of nucleotide sequences. The platform is detailed

in the CASTOR web platform section. Three impor-

tant parameters constitute the kernel of each CASTOR

classifier: a metric, a feature selection method and a

learning algorithm. To assess the different combination

of the models, we performed a 10-fold cross-validation

of the 280 experiments associated to each of the five

datasets (HPV genera, HPV Alpha species, HBV geno-

types, HIV-1 M subtypes CGs and HIV-1 M subtypes

pol fragments). From the overall results of the five virus

classifications, it is not obvious to distinguish the best

candidate between CUT and RMS metrics. In the geno-

typing of HBV, CUT performs better than RMS (p-value =

0.0012, Wilcoxon/Kruskal-Wallis test) while in the HPV

genera and species classifications RMS performs better

than CUT (p-values 5.00E-03 and 0.0293, respectively;

Wilcoxon/Kruskal-Wallis test) (Additional file 1: Figure

S1). However the mean of weighted F-measures for both

methods is in all cases ≥ 0.906 (with a minimum of

0.793 and a maximum of 0.996). The same analyses were

performed on HIV-1 CGs and pol fragments. CUT per-

forms slightly better than RMS in both datasets when

comparing the mean of weighted F-measures (p-values

0.0213 and 0.0237 for CGs and pol fragments, respec-

tively; Wilcoxon/Kruskal-Wallis test). Due to the variabil-

ity of HIV-1, the mean of weighted F-measures falls to

0.857 in CGs and 0.793 in pol fragments (Additional file 1:

Figure S1). Hence for the remaining of our study, we will

fix the RFLP metric according to its performance on the

corresponding datasets.

Additional file 1: Figure S2 presents the comparative

analyses of the two feature selection methods (correla-

tion and topAttribute) in the 280 experiments for each

dataset. The mean of weighted F-measures of the two fea-

ture selection methods are not statistically different in

all datasets (based on the Wilcoxon/Kruskal-Wallis test).

In fact, the results of the two methods are correlated

for the three viruses with the Spearman’s rank corre-

lation coefficient ranging between 0.772 and 0.968 (see

Additional file 1: Figure S4). In these simulations, the

seven learning algorithms have various performances

according to the different datasets. The algorithm J48 has

the worst weighted F-measure values (see Fig. 3). How-

ever, its performance improves when combined with RFT

or BAG algorithms. In general, SVM performs better in

four of five datasets with mean of weighted F-measures >

0.906 and ranks number one in HPV Alpha species,

HBV genotypes and HIV-1 subtypes classifications and

four in HPV genera classification. It is followed by RFT,

NBA and IBK. However, RFT and NBA are affected

by a large variance (Fig. 3). These rankings are clearly

observable on Additional file 1: Figure S3 and Figure

S4 presenting respectively the correlations CUT/RMS

and topAttribute/correlation grouped by algorithms.

While most algorithms have similar performance with

CUT or RMS, Naive Bayes surprisingly performs better

with CUT.

Assessing the performance CASTOR on HIV-1 data

CASTOR exhibits high accuracy for different HIV-1

classification

Table 2 highlights CASTOR prediction accuracies on five

CG and seven pol fragment HIV-1 classifications. For each

dataset, the best performingmodels (classifiers) have been

identified according to a 10-fold cross-validation analysis.

The F-measure of the best classifier for the HIV-1 groups

M,N,O and P indicates that all the sequences are correctly

classified (for CGs and pol fragments). For the predic-

tion of the main HIV-1 pure subtypes as well as CRFs,

F-measures are above 0.971 (with FPR ≤ 0.003) for both

CGs and pol fragments when the pure subtypes and CRFs

are separate models. When combining pure subtypes and

CRFs, the F-measure still remains above 0.971 for CGs

but it drops to 0.919 when the classes are balanced to 30

instances per class or 0.962 for 200 instances per class. It

appears that the CASTOR models are underperforming

when we try to predict between pure subtypes and CRFs

(F-measures of 0.795 and 0.885 for CGs and pol fragments,

respectively).

Comparing COMET, REGA and CASTOR

Next, we compared the performance of CASTOR against

the most powerful and widely used HIV-1 specific pre-

dictors namely COMET [2] and REGA version 2.0 [7, 8]

(Fig. 4). These comparisons are based on CG as well as

pol fragment data. It is important to notice that these pro-

grams are fixed and do not allow neither any change on

the trained classes nor new training samples. Here the

actual training of COMET and REGA includes respec-

tively 55 and 22 classes for either CG or pol fragments.

To avoid under-represented classes, CASTOR was trained

on 18 classes for CGs and 28 classes for pol fragments

(models are available under the classifier IDs PMSHIV02

and PMSHIV03, respectively). We performed three com-

parisons (see Fig. 4). The first, named complete sampling,

assesses the performance of each method on 10 percent of

randomly sampled Los Alamos HIV data. This sampling

permits to assess the performance of the predictors to fit

realistic data with unknown classes. The second, named

specific subtypes, focuses, for each method, only on the

corresponding trained subtypes. The third, named com-

mon subtypes, compares the performance of the methods

on the intersection of the 3 trained subtypes. This strategy

is used due to the fact that the training of COMET and

REGA cannot be changed. Thus, it is difficult to adapt or
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Fig. 3 Learning algorithm evaluation on five datasets. This figure illustrates the F-measure distribution (boxplot) of seven learning algorithms on

the prediction of a HPV genera, b HPV Alpha species, c HBV genotypes, d HIV-1 M subtypes with complete genomes e HIV-1 M subtypes with pol

fragments. HPV and HBV datasets are complete genomes. The number below each boxplot corresponds to the statistically discriminative rank of

the algorithms. The ranking is performed with paired Student’s t test. µ, σ are the mean and the standard deviation of the overall F-measures,

respectively. p is the p-value of the statistically significance of the weighted F-measuremean differences among the algorithms computed with the

Wilcoxon/Kruskal-Wallis test

perform other classification studies or larger benchmark

analyses. Figure 4 shows that for CGs, REGA performs

the best followed by CASTOR and for pol fragments

COMET outperforms, followed again by CASTOR. In the

two types of data, when not performing the best, REGA

or COMET performance drops drastically by more than

10% and ranks at the third position (Fig. 4). Meanwhile

CASTOR ranks second in both two types of data. With

CGs, CASTOR obtains a correct classification of 72.41%

against the sampling of Los Alamos HIV data when REGA

obtains 76.77%. But when testing predictors on their

trained classes, the percentage of correct classification

drastically increases to 98.33 and 96.61% respectively for

REGA and CASTOR. This result remains almost the same

when comparing only the common trained classes among

the three predictors (Fig. 4). These common classes cover

Table 2 Evaluation of HIV-1 classification with CASTOR

Classification # of classes # of instances [min - max] instances/class TPR FPR F-measure Classifier ID

Complete genomes Groups (M, N, O and P) 4 76 [4 – 32] 1.000 0.000 1.000 PMVHIVGC01

Pure subtypes 6 189 [30 – 36] 0.995 0.001 0.995 PMVHIVGC02

CRFs 12 234 [10 – 30] 1.000 0.000 1.000 PMVHIVGC03

Pure subtypes and CRFs 18 423 [10 – 36] 0.981 0.001 0.981 PMVHIVGC04

Pure subtypes vs CRFs 2 200 [100 – 100] 0.795 0.205 0.795 PMVHIVGC05

pol fragments Groups (M, N, O and P) 4 94 [4 – 45] 1.000 0.000 1.000 PMVHIVPL01

Pure subtypes 6 1800 [300 – 300] 0.983 0.003 0.983 PMVHIVPL02

CRFs 16 480 [30 – 30] 0.971 0.002 0.971 PMVHIVPL03

CRFs 6 1200 [200 – 200] 0.993 0.001 0.993 PMVHIVPL04

Pure subtypes and CRFs 23 690 [30 – 30] 0.920 0.004 0.919 PMVHIVPL05

Pure subtypes and CRFs 12 2400 [200 – 200] 0.962 0.003 0.962 PMVHIVPL06

Pure subtypes vs CRFs 2 200 [100 – 100] 0.885 0.115 0.885 PMVHIVPL07

This table contains the TPR, FPR and F-measure of 12 HIV-1 classifications obtained with 10-fold cross-validation analysis. For each classification, the number of corresponding

classes and instances are given. The range [min-max] indicates the interval of instance frequencies per class used during the training of each model. The column Classifier ID

contains the corresponding models available in CASTOR platform
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Fig. 4 Performance of CASTOR with COMET and REGA predictors on HIV-1 datasets. The panels a and b show the percentage of correct

classifications for HIV-1 complete genomes and HIV-1 pol fragments, respectively. The number of instances and the associated classes for each

sampling is presented above the panels. Complete sampling corresponds to 10% of Los Alamos HIV data selected randomly. In specific subtypes

sampling, the predictors are assessed against their trained classes. In common subtypes sampling, the predictors are assessed against the

intersection of the classes of the three trained predictors

75 and 93% of the overall instances of the sampling of

CGs and pol fragments, respectively. The mean TPR of

CASTOR is higher than 0.950 in the case of either pure

subtypes or CRFs. The TPR of REGA drops to 0.835

when assessing CRFs and remains almost perfect for pure

subtypes (Table 3). In pol fragments, COMET outper-

forms CASTOR and REGA in all comparisons. Applying

the three methods, COMET, REGA and CASTOR, on

10% random sampling of Los Alamos HIV data, the per-

centages of correct classification were 91.74, 72.48 and

86.64%, respectively. This result is confirmed when com-

paring only the common trained classes where COMET

reaches 95.57% and CASTOR 89.51%. Note that REGA

could not perform higher than 76% and has a mean TPR

of 0.953 for pure subtypes competing with COMET. In

CRF instances, COMET and CASTOR obtain almost an

equal mean of TPR around 0.930 (Table 4). REGA can-

not perform well in CRF classification and has a mean of

TPR equal to 0.570. CASTOR has higher FPR values com-

pared to the two other programs in overall classifications.

This fact is not surprising since REGA and COMET are

specifically tuned to predict HIV data. Their predictions

with lower scores tend to be discarded or ambiguous. For

instance, COMET has 32% of its CG predictions that are

unassigned as well as 5% of its pol fragment predictions.

Hence, these numbers are higher than the false positive

values of CASTOR, but they are not included in the FPR

computation. However, it will be interesting to include in

CASTOR a threshold of inclusion of a given sequence into

a class. This could help reducing the FPR but it would

require deeper analyses. It also should be associated to the

open-set classification problem that is beyond the scope

of this paper.

Even though CASTOR is not a specific HIV-1 clas-

sifier, it competes with the most powerful methods in

HIV-1. Unlike COMET and REGA, CASTOR provides

Table 3 Performances of HIV-1 predictors on complete genome classification

COMET REGA CASTOR

# of instances TPR FPR F-measure TPR FPR F-measure TPR FPR F-measure

CRFs HIV1_01_AE 100 0.960 0.000 0.980 0.970 0.000 0.985 1.000 0.000 1.000

HIV1_02_AG 10 0.900 0.000 0.947 0.700 0.000 0.824 0.900 0.007 0.818

Mean 0.930 0.000 0.964 0.835 0.000 0.905 0.950 0.004 0.909

Pure subtypes HIV1_A 100 0.660 0.000 0.795 0.990 0.000 0.995 0.940 0.000 0.969

HIV1_B 100 0.910 0.000 0.953 1.000 0.000 1.000 0.960 0.003 0.975

HIV1_C 100 0.970 0.000 0.985 1.000 0.000 1.000 0.970 0.003 0.980

Mean 0.847 0.000 0.911 0.997 0.000 0.998 0.957 0.002 0.975

This table contains TPR, FPR and F-measure of COMET, REGA and CASTOR on the prediction of HIV-1 M pure subtypes and CFRs complete genomes. The shown classes

belong to the common subtypes sampling. The CASTOR model used in this evaluation is PMSHIV02
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Table 4 HIV-1 predictor performances on pol fragment classification

COMET REGA CASTOR

# of instances TPR FPR F-measure TPR FPR F-measure TPR FPR F-measure

CRFs HIV1_01_AE 1000 0.989 0.000 0.993 0.007 0.000 0.014 0.956 0.001 0.975

HIV1_02_AG 1000 0.952 0.002 0.967 0.000 0.000 0.000 0.853 0.005 0.897

HIV1_06_cpx 698 0.924 0.000 0.958 0.938 0.000 0.965 0.927 0.003 0.943

HIV1_07_BC 1000 0.977 0.000 0.988 0.988 0.000 0.993 0.982 0.002 0.980

HIV1_08_BC 399 0.965 0.000 0.981 0.990 0.000 0.994 0.972 0.001 0.970

HIV1_11_cpx 58 0.828 0.000 0.906 0.690 0.000 0.816 0.897 0.006 0.588

HIV1_12_BF 222 0.860 0.000 0.925 0.374 0.000 0.544 0.932 0.008 0.807

Mean 0.928 0.000 0.960 0.570 0.000 0.618 0.931 0.004 0.880

Pure subtypes HIV1_A 1000 0.966 0.001 0.980 0.968 0.106 0.654 0.891 0.006 0.917

HIV1_B 1000 0.995 0.001 0.993 0.945 0.000 0.970 0.817 0.007 0.866

HIV1_C 1000 0.990 0.001 0.991 0.997 0.000 0.997 0.912 0.003 0.942

HIV1_D 1000 0.938 0.000 0.968 0.911 0.000 0.953 0.892 0.010 0.899

HIV1_F 1000 0.927 0.000 0.962 0.970 0.000 0.985 0.914 0.003 0.940

HIV1_G 1000 0.915 0.001 0.952 0.929 0.007 0.931 0.778 0.003 0.860

Mean 0.955 0.001 0.974 0.953 0.019 0.915 0.867 0.005 0.904

This table contains TPR, FPR and F-measure of COMET, REGA and CASTOR on the prediction of HIV-1 M pure subtypes and CFRs pol fragments. The shown classes belong to

the common subtypes sampling. The CASTOR model used in this evaluation is PMSHIV03

an easy way of performing several types of classification

(see Table 2). It also has no restriction on the size of data

and is time efficient. Hence, we completed the analysis by

performing a test on the whole Los Alamos HIV dataset

(without the training sequences of the three methods). For

CGs (3 778 instances), CASTOR completes the test in 1

min 59 s with an accuracy of 91.2%.While for the pol frag-

ments (119 005 instances), it requires 20min10s with an

accuracy of 85.41%. It shows that CASTOR takes 0.01s to

process a sequence that is far more efficient than the time

results indicated in [2] for REGA (28s/sequence), but 10-

fold less efficient than COMET (0.001s/sequence) [2]. Fur-

thermore, due to size issues, it is not possible to perform

such large analyses in actual version of COMET server.

Overall, CASTOR highlights a good accuracy on the clas-

sification of the three studied viruses. However this accu-

racy is slightly lower than specific virus predictors as

shown previously. But it exhibits more analysis capacity,

permitting several and highly accurate set of classifica-

tions. As shown in Table 2, this accuracy is higher than

90% for almost all studies except for comparing HIV-1 M

pure subtypes vs CRFs. For less complex genomes such as

HPV and HBV, the mean of weighted F-measures is higher

than 0.912. CASTORwill allow to increase the class repre-

sentatives, to add or remove classes and also to benchmark

several types of classification. For viruses without exist-

ing predictors, it could accurately cover the needs as it

is for HPV, instead of relying on the similarity sequence

search such as BLAST [3] or USEARCH [4]. Sequence

search is generally not recommended for subtyping since

it will not allow the identification of novel forms, it

cannot also aggregate common attributes of a class while

predicting [2, 4].

CASTOR web platform

CASTOR is available as a public web platform. It is

composed of four main applications. (1) CASTOR-build

allows users to create and train new classifiers from a set

of labeled virus sequences. It contains default parameters

and advanced options letting users to customize the clas-

sifier parameters. It can be used also to update the param-

eters or input sequences of an already built classifier.

The constructed classifiers can be saved in an exportable

file locally or published to the community via CASTOR-

database described below. (2) CASTOR-optimize con-

structs improved classifiers. Unlike CASTOR-build that

allows users to define metrics, algorithms and feature

selection techniques, it assesses all combinations of the

classification parameters and provides the best fitting

classifier according to the input data. (3) CASTOR-

predict is the kernel application that allows users to

annotate viral sequences according to a chosen classi-

fier. Also, it serves as an evaluation module for clas-

sifiers with labeled test sets. The results are provided

with enriched graphics and performance measures (4)

CASTOR-database is a public database of classifiers

which allows the community to share their expertise

and models. It facilitates experiment reproducibility and
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model refinement. A characteristic viewer and a search

engine of the published classifiers are also implemented.

Hence, from the interface of CASTOR-database, users can

download, reuse, update and comment the classifiers. To

the best of our knowledge, CASTOR constitutes the first

RFLP-based prediction platform for the classification of

viral sequences.

Conclusion
In this paper, we have shown that RFLP has a great per-

formance in large scale sequence classification. We also

provide CASTOR, the first viral sequence classification

platform based on RFLP.We claim that CASTOR can per-

form well for different types of viruses (Group I, Group

VI and Group VII) with mean of weighted F-measures >

0.900 in most cases (see Table 1). In the future, we

will attempt to increase the performance by modelling

the boundaries of the classes and including an open-set

approach to deal with instances from unknown classes.

The CASTOR platform implements several metrics and

classifiers, allowing generic and diverse analyses within

the same environment. CASTOR allows the storage of

models enabling reproducible experiments and open data

access. Even though CASTOR is scaled for viruses, it can

be used and extended easily for other types of organisms,

including whole genome and partial sequences. In the

future, more models will be included, in particular those

specialized in less studied organisms and/or without ded-

icated tools. In addition, scientists could add their tuned

models helping CASTOR to enhance the predictions. We

will also optimize the platform to allow other types of

classification such as functional, disease related and geo-

graphical classifications. Hence, CASTOR could quickly

become a reference in comparative genomics focusing on

various types of sequence classification.
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Abbreviations

ADA: Adaboost; BAG: Bagging; DNA: Deoxyribonucleic acid; FN: False negative;

FP: False positive; FPR: False positive rate; HBV: Hepatitis B viruses; HIV: Human

immunodeficiency viruses; HPV: Human papillomaviruses; IBK: K-nearest

neighbors; J48: C4;5 decision tree; MDS: Multidimensional scaling NBA: Naive

Bayes classifier; RFLP: Restriction fragment length polymorphism; RFT: Random

forests; RMS: Root mean square; SVM: Support vector machine; TN: True

negative; TP: True positive; TPR: True positive rate

Acknowledgements

Nothing to declare.

Funding

This work was supported by the Natural Sciences and Engineering Research

Council of Canada (NSERC) and the Fonds de Recherche du Québec-Nature et

Technologie (FRQNT) to ABD. MAR, AAMD and BD are FRQNT fellows. MAR is a

NSERC fellow.

Availability of data andmaterials

The CASTOR web platform is available at http://castor.bioinfo.uqam.ca.

Authors’ contributions

MAR, AH and ABD conceived and designed the study. MAR developed and

implemented CASTOR program and web platform. MAR, AAMD, GK and ABD

collected the virus datasets and analyzed the HIV-1 results. MAR and AH

performed the simulations. MAR, BD and ABD computed and analyzed the

Cohesion and Silhouette indexes. MAR and ABD analyzed the overall results.

MAR, AH, AAMD and ABD wrote the paper. All authors read and approved the

final manuscript.

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Received: 27 September 2016 Accepted: 15 March 2017

References

1. Van Belkum A, Struelens M, de Visser A, Verbrugh H, Tibayrenc M. Role

of genomic typing in taxonomy, evolutionary genetics, and microbial

epidemiology. Clin Microbiol Rev. 2001;14(3):547–60.

2. Struck D, Lawyer G, Ternes AM, Schmit JC, Bercoff DP. Comet: adaptive

context-based modeling for ultrafast hiv-1 subtype identification. Nucleic

Acids Res. 2014;42(18):e144.

3. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W,

Lipman DJ. Gapped blast and psi-blast: a new generation of protein

database search programs. Nucleic Acids Res. 1997;25(17):3389–402.

4. Edgar RC. Search and clustering orders of magnitude faster than blast.

Bioinformatics. 2010;26(19):2460–1.

5. Bao Y, Chetvernin V, Tatusova T. Improvements to pairwise sequence

comparison (PASC): a genome-based web tool for virus classification.

Arch Virol. 2014;159(12):3293–304.

6. Lauber C, Gorbalenya AE. Partitioning the genetic diversity of a virus

family: Approach and evaluation through a case study of picornaviruses. J

Virol. 2012;86(7):3890–904.

7. de Oliveira T, Deforche K, Cassol S, Salminen M, Paraskevis D, Seebregts

C, Snoeck J, van Rensburg EJ, Wensing AMJ, van de Vijver DA, Boucher

CA, Camacho R, Vandamme AM. An automated genotyping system for

analysis of hiv-1 and other microbial sequences. Bioinformatics.

2005;21(19):3797–800.

8. Alcantara LCJ, Cassol S, Libin P, Deforche K, Pybus OG, Van Ranst M,

Galvao-Castro B, Vandamme AM, de Oliveira T. A standardized

framework for accurate, high-throughput genotyping of recombinant

and non-recombinant viral sequences. Nucleic Acids Res. 2009;37(Web

Server issue):W634–42.

9. Matsen FA, Kodner RB, Armbrust EV. pplacer: linear time

maximum-likelihood and bayesian phylogenetic placement of sequences

onto a fixed reference tree. BMC Bioinformatics. 2010;11:538.

10. Liu Z, Meng J, Sun X. A novel feature-based method for whole genome

phylogenetic analysis without alignment: Application to HEV genotyping

and subtyping. Biochem Biophys Res Commun. 2008;368(2):223–30.

11. Yu C, Hernandez T, Zheng H, Yau SC, Huang HH, He RL, Yang J, Yau

SS-T. Real time classification of viruses in 12 dimensions. PLoS One.

2013;8(5):e64328.

12. Vinga S, Almeida J. Alignment-free sequence comparison–a review.

Bioinformatics. 2003;19(4):513–23.

13. Bonham-Carter O, Steele J, Bastola D. Alignment-free genetic sequence

comparisons: a review of recent approaches by word analysis. Brief

Bioinform. 2014;15(6):890–905.

http://dx.doi.org/10.1186/s12859-017-1602-3
http://castor.bioinfo.uqam.ca


Remita et al. BMC Bioinformatics  (2017) 18:208 Page 11 of 11

14. Mantaci S, Restivo A, Sciortino M. Distance measures for biological

sequences: Some recent approaches. Int J Approx Reason. 2008;47(1):

109–24.

15. Xing Z, Pei J, Keogh E. A brief survey on sequence classification. ACM

SIGKDD Explor. 2010;12(1):40–48.

16. Williams RC. Restriction fragment length polymorphism (RFLP). Am J Phys

Anthropol. 1989;32(S10):159–84.

17. Bernard HU, Chan SY, Manos MM, Ong CK, Villa LL, Delius H, Peyton CL,

Bauer HM, Wheeler CM. Identification and assessment of known and

novel human papillomaviruses by polymerase chain reaction

amplification, restriction fragment length polymorphisms, nucleotide

sequence, and phylogenetic algorithms. J Infect Dis. 1994;170(5):1077–85.

18. Nobre RJ, de Almeida LP, Martins TC. Complete genotyping of mucosal

human papillomavirus using a restriction fragment length polymorphism

analysis and an original typing algorithm. J Clin Virol. 2008;42(1):13–21.

19. Janini LM, Pieniazek D, Peralta JM, Schechter M, Tanuri A, Vicente ACP,

dela Torre N, Pieniazek NJ, Luo CC, Kalish ML, Schochetman G, Rayfield

MA. Identification of single and dual infections with distinct subtypes of

human immunodeficiency virus type 1 by using restriction fragment

length polymorphism analysis. Virus Genes. 1996;13(1):69–81.

20. Mizokami M, Nakano T, Orito E, Tanaka Y, Sakugawa H, Mukaide M,

Robertson BH. Hepatitis B virus genotype assignment using restriction

fragment length polymorphism patterns. FEBS Lett. 1999;450(1–2):66–71.

21. Nakao T, Enomoto N, Takada N, Takada A, Date T. Typing of hepatitis C

virus genomes by restriction fragment length polymorphism. J Gen Virol.

1991;72(9):2105–12.

22. Pevzner P. Computational Molecular Biology: An Algorithmic Approach.

Cambridge: MIT press; 2000.

23. Adams J, Rothman E. Estimation of phylogenetic relationships from dna

restriction patterns and selection of endonuclease cleavage sites. Proc

Natl Acad Sci USA. 1982;79(11):3560–4.

24. Templeton AR. Phylogenetic inference from restriction endonuclease

cleavage site maps with particular reference to the evolution of human

and the apes. Evolution. 1983;37(2):221–44.

25. Felsenstein J. Phylogenies from restriction sites: A maximum-likelihood

approach. Evolution. 1992;46(1):159–73.

26. Chang HW, Cheng YH, Chuang LY, Yang CH. SNP-RFLPing 2: an updated

and integrated PCR-RFLP tool for SNP genotyping. BMC Bioinformatics.

2010;11:173.

27. Bajla I, Holländer I, Fluch S, Burg K, Kollár M. An alternative method for

electrophoretic gel image analysis in the GelMaster software. Comput

Methods Programs Biomed. 2005;77(3):209–31.

28. Maramis CF, Delopoulos AN, Lambropoulos AF. A computerized

methodology for improved virus typing by PCR-RFLP gel electrophoresis.

IEEE Trans Biomed Eng. 2011;58(8):2339–51.

29. Roberts RJ, Vincze T, Posfai J, Macelis D. REBASE–a database for DNA

restriction and modification: enzymes, genes and genomes. Nucleic Acids

Res. 2015;43(Database issue):298–9.

30. Ben-Bassat M. 35 Use of distance measures, information measures and

error bounds in feature evaluation. Handbook of Statistics. 1982;2:773–91.

31. Quinlan JR. C4.5: Programs for Machine Learning. San Francisco: Morgan

Kaufmann Publishers Inc; 1993.

32. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.

33. Langley P, Iba W, Thompson K. An analysis of bayesian classifiers. In:

Proceedings of the Tenth National Conference on Artificial Intelligence.

AAAI’92. Menlo Park: AAAI Press; 1992. p. 223–8.

34. John GH, Langley P. Estimating continuous distributions in bayesian

classifiers. In: Proceedings of the Eleventh Conference on Uncertainty in

Artificial Intelligence. UAI’95. San Francisco: Morgan Kaufmann Publishers

Inc; 1995. p. 338–45.

35. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20(3):

273–97.

36. Cover T, Hart P. Nearest neighbor pattern classification. IEEE Trans Inf

Theory. 1967;13(1):21–7.

37. Aha DW, Kibler D, Albert MK. Instance-based learning algorithms. Mach

Learn. 1991;6(1):37–66.

38. Freund Y, Schapire RE. A decision-theoretic generalization of on-line

learning and an application to boosting. J Comput Syst Sci. 1997;55(1):

119–39.

39. Breiman L. Bagging predictors. Mach Learn. 1996;24(2):123–40.

40. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The

WEKA data mining software: an update. ACM SIGKDD Explor. 2009;11(1):

10–18.

41. Daigle B, Makarenkov V, Diallo AB. Effect of hundreds sequenced

genomes on the classification of human papillomaviruses. In: Data

Science, Learning by Latent Structures, and Knowledge Discovery. Berlin,

Heidelberg: Springer; 2015. p. 309–18.

42. Bernard HU, Burk RD, Chen Z, van Doorslaer K, zur Hausen H, de Villiers

EM. Classification of papillomaviruses (PVs) based on 189 PV types and

proposal of taxonomic amendments. Virology. 2010;401(1):70–9.

43. Schaefer S. Hepatitis B virus taxonomy and hepatitis B virus genotypes.

World J Gastroenterol. 2007;13(1):14–21.

44. NCBI Resource Coordinators. Database resources of the National

Center for Biotechnology Information. Nucleic Acids Res. 2016;44

(Database issue):D7–19.

45. Robertson DL, Anderson JP, Bradac JA, Carr JK, Foley B, Funkhouser RK,

Gao F, Hahn BH, Kalish ML, Kuiken C, Learn GH, Leitner T, McCutchan F,

Osmanov S, Peeters M, Pieniazek D, Salminen M, Sharp PM, Wolinsky S,

Korber B. HIV-1 nomenclature proposal. Science. 2000;288(5463):55–6.

46. Plantier JC, Leoz M, Dickerson JE, De Oliveira F, Cordonnier F, Lemée V,

Damond F, Robertson DL, Simon F. A new human immunodeficiency

virus derived from gorillas. Nat Med. 2009;15(8):871–2.

47. Gao F, Robertson DL, Carruthers CD, Morrison SG, Jian B, Chen Y,

Barré-Sinoussi F, Girard M, Srinivasan A, Alashle G A, Abimiku AG, Shaw

GM, Sharp PM, Hahn BH. A comprehensive panel of near-full-length

clones and reference sequences for non-subtype B isolates of human

immunodeficiency virus type 1. J Virol. 1998;72(7):5680–98.

48. Muñoz N, Bosch FX, de Sanjosé S, Herrero R, Castellsagué X, Shah KV,

Snijders PJF, Meijer CJLM. Epidemiologic classification of human

papillomavirus types associated with cervical cancer. N Engl J Med.

2003;348(6):518–27.

49. Perz JF, Armstrong GL, Farrington LA, Hutin YJF, Bell BP. The

contributions of hepatitis B virus and hepatitis C virus infections to

cirrhosis and primary liver cancer worldwide. J Hepatol. 2006;45(4):529–38.

50. Libbrecht MW, Noble WS. Machine learning applications in genetics and

genomics. Nat Rev Genet. 2015;16(6):321–32.

51. Lin WJ, Chen JJ. Class-imbalanced classifiers for high-dimensional data.

Brief Bioinform. 2013;14(1):13–26.

52. Blagus R, Lusa L. Class prediction for high-dimensional class-imbalanced

data. BMC Bioinformatics. 2010;11:523.

53. Rousseeuw PJ. Silhouettes: A graphical aid to the interpretation and

validation of cluster analysis. J Comput Appl Math. 1987;20:53–65.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:


	Abstract
	Background
	Results
	Conclusion
	Keywords

	Background
	Methods
	Overview of the approach
	Restriction fragment pattern-based features
	Feature selection methods
	Learning and evaluation
	Datasets
	Simulation studies

	Results and discussion
	Classification with RFLP signatures in virus families
	Machine learning classifier tuning and performance
	Assessing the performance CASTOR on HIV-1 data
	CASTOR exhibits high accuracy for different HIV-1 classification
	Comparing COMET, REGA and CASTOR

	CASTOR web platform

	Conclusion
	Additional file
	Additional file 1

	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Publisher's Note
	References

