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A Machine Learning approach to 5G
Infrastructure Market optimization

Dario Bega, Marco Gramaglia, Albert Banchs, Senior Member, IEEE, Vincenzo

Sciancalepore Member, IEEE, Xavier Costa-Pérez, Senior Member, IEEE

Abstract—It is now commonly agreed that future 5G Networks will build upon the network slicing concept. The ability to provide virtual,

logically independent “slices” of the network will also have an impact on the models that will sustain the business ecosystem. Network

slicing will open the door to new players: the infrastructure provider, which is the owner of the infrastructure, and the tenants, which

may acquire a network slice from the infrastructure provider to deliver a specific service to their customers. In this new context, how to

correctly handle resource allocation among tenants and how to maximize the monetization of the infrastructure become fundamental

problems that need to be solved. In this paper, we address this issue by designing a network slice admission control algorithm that

(i) autonomously learns the best acceptance policy while (ii) it ensures that the service guarantees provided to tenants are always

satisfied. The contributions of this paper include: (i) an analytical model for the admissibility region of a network slicing-capable 5G

Network, (ii) the analysis of the system (modeled as a Semi-Markov Decision Process) and the optimization of the infrastructure

providers revenue, and (iii) the design of a machine learning algorithm that can be deployed in practical settings and achieves close

to optimal performance.

Index Terms—Network Slicing, Admission Control, Neural Networks, Machine Learning, 5G Networks

✦

1 INTRODUCTION

T HE expectations that build around future 5G Networks are

very high, as the envisioned Key Performance Indicators

(KPIs) represent a giant leap when compared to the legacy

4G/LTE networks. Very high data rates, extensive coverage,

sub-ms delays are just few of the performance metrics that

5G networks are expected to boost when deployed.

This game changer relies on new technical enablers such

as Software-Defined Networking (SDN) or Network Function

Virtualization (NFV) that will bring the network architecture

from a purely hardbox based paradigm (e.g., a eNodeB or a

Packet Gateway) to a completely cloudified approach, in which

network functions that formerly were hardware-based (e.g.,

baseband processing, mobility management) are implemented

as software Virtual Network Functions (VNFs) running on a,

possibly hierarchical, general purpose telco-cloud.

Building on these enablers, several novel key concepts have

been proposed for next generation 5G networks [1]; out of

those, Network Slicing [2] is probably the most important

one. Indeed, there is a wide consensus in that accommodating
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the very diverse requirements demanded by 5G services using

the same infrastructure will not be possible with the current,

relatively monolithic architecture in a cost efficient way. In

contrast, with network slicing the infrastructure can be divided

in different slices, each of which can be tailored to meet

specific service requirements.

A network slice consists of a set of VNFs that run on a

virtual network infrastructure and provide a specific telecom-

munication service. The services provided are usually typified

in macro-categories, depending on the most important KPIs

they target. Enhanced Mobile Broadband (eMBB), massive

Machine Type Communication (mMTC) or Ultra Reliable Low

Latency Communication (URLLC) are the type of services

currently envisioned by, e.g., ITU [3]. Each of these services

is instantiated in a specific network slice, which has especially

tailored management and orchestration algorithms to perform

the lifecycle management within the slice.

In this way, heterogeneous services may be provided using

the same infrastructure, as different telecommunication ser-

vices (that are mapped to a specific slice) can be configured

independently according to their specific requirements. Addi-

tionally, the cloudification of the network allows for the cost-

efficient customization of network slices, as the slices run on

a shared infrastructure.

Network Slicing enables a new business model around

mobile networks, involving new entities and opening up new

business opportunities. The new model impacts all the players

of the mobile network ecosystem. For end-users, the capability

of supporting extreme network requirements [3] enables new

services that could not be satisfied with current technologies,

providing a quality of experience beyond that of todays

networks. For tenants such as service providers, network

slicing allows to tailor the network service to the specific
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needs of the service being provided, adjusting the slice’s

operation to the service provider’s needs. For mobile network

operators, network slicing allows to target new customers

with specific service requirements, such as industrial sectors

with stringent requirements, ultimately providing new revenue

streams coming from the new customers.

This business model underlying network slicing is the

Infrastructure as a Service (IaaS), which is expected to increase

the number of available revenue streams in 5G. This model

has already been successfully applied to the cloud computing

infrastructure by providers such as Amazon AWS or Microsoft

Azure. However, cloud computing platforms are selling to

customers (i.e., tenants) cloud resources (e.g., CPU, memory,

storage) only, while in a 5G Infrastructure market such as the

one enabled by network slicing, the traded goods also include

network resources (e.g., spectrum, transport network). This

entails a totally different problem due to the following reasons:

(i) spectrum is a scarce resource for which over-provisioning

is not possible, (ii) the actual capacity of the systems (i.e.,

the resources that can actually be sold) heavily depends

on the mobility patterns of the users, and (iii) the Service

Level Agreements (SLAs) with network slices tenants usually

impose stringent requirements on the Quality of Experience

(QoE) perceived by their users. Therefore, in contrast to IaaS,

in our case applying a strategy where all the requests coming to

the infrastructure provider are admitted is simply not possible.

The ultimate goal of InPs is to obtain the highest possible

profit from of the deployed infrastructure, thus maximizing

monetization. The design of a network slice admission control

policy that achieves such goal in this spectrum market is still

an open problem. More specifically, the network capacity bro-

ker algorithm that has to decide on whether to admit or reject

new network slice requests shall simultaneously satisfy two

different goals: (i) meeting the service guarantees requested by

the network slices admitted while (ii) maximizing the revenue

of a network infrastructure provider.

The goal of meeting the desired service guarantees needs

to consider radio related aspects, as a congested network will

likely not be able to meet the service required by a network

slice. Conversely, the goal of maximizing the revenue obtained

by the admission control should be met by applying an on-

demand algorithm that updates the policies as long as new

requests arrive.

In this paper, we propose a Machine Learning approach to

the 5G Infrastructure Market optimization. More specifically,

the contributions of this paper are: (i) we provide an analytical

model for the admissibility region in a sliced network, that

provide formal service guarantees to network slices, and

(ii) we design an online Machine Learning based admission

control algorithm that maximizes the monetization of the

infrastructure provider.

Machine learning is the natural tool to address such a

complex problem. As discussed in detail along the paper,

this problem is highly dimensional (growing linearly with the

number of network slices classes) with a potentially huge

number of states (increasing exponentially with the number of

classes) and many variables (one for each state). Furthermore,

in many cases the behavior of the tenants that request slices is

not known a priori and may vary with time. For these reasons,

traditional solutions building on optimization techniques are

not affordable (because of complexity reasons) or simply im-

possible (when slice behavior is not known). Instead, machine

learning provides a mean to cope with such complex problems

while learning the slice behavior on the fly, and thus allows

to develop a practical approach to deal with such a complex

and potentially unknown system.

The rest of the paper is structured at follows. In Section 2

we review the relevant works related to this paper in the

fields of resource allocation for network slicing aware net-

works, network slice admission control and machine learning

applied to 5G Networks. In Section 3 we describe our System

Model, while the analytical formulation for the network slice

admissibility region is provided in Section 4. In Section 5 we

model the decision-making process by means of a Markovian

analysis, and derive the optimal policy which we use as

a benchmark. In Section 6 we present a Neural Networks

approach based on deep reinforcement learning, which pro-

vides a practical and scalable solution with close to optimal

performance. Finally, in Section 7 we evaluate the proposed

algorithm in a number of scenarios to assess its performance

in terms of optimality, scalability and adaptability to different

conditions, before concluding the paper in Section 8.

2 STATE OF THE ART

While the network slicing concept has only been proposed

recently [2], it has already attracted substantial attention. 3GPP

has started working on the definition of requirements for

network slicing and the design of a novel network architecture

for supporting it [4], whereas the Next Generation Mobile

Networks Alliance (NGMN) identified network sharing among

slices (the focus of this paper) as one of the key issues to

be addressed [5]. While there is a body of work on the

literature on spectrum sharing [6]–[9], these proposal are not

tailored to the specific requirements of the 5G ecosystem.

Conversely, most of the work has focused on architectural

aspects [10], [11] with only a limited focus on resource

allocation algorithms. In [12], the authors provide an analysis

of network slicing admission control and propose a learning

algorithm; however, the proposed algorithm relies on an offline

approach, which is not suitable for a continuously varying

environment such as the 5G Infrastructure market. Moreover,

the aim is to maximize the overall network utilization, in

contrast to our goal here which is focused on maximizing InP

revenues.

The need for new algorithms that specifically targets the

monetization of the network has been identified in [13].

However, there are still very few works on this topic. The work

in [14] analyzes the problem from an economical perspective,

proposing a revenue model for the InP. The authors of [15]

build an economic model that describes the Mobile Network

Operator (MNO) profit when dealing with the network slice

admission control problem, and propose a decision strategy to

maximize the expected overall network profit. The proposed

approach, however, is not on demand and requires the full
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knowledge of arriving requests statistics, thus making it im-

practicable in real scenarios. Another work in this field is the

one of [14], with similar limitations.

Learning algorithms are in the spotlight since Mnith et

al. [16] designed a deep learning algorithm called “deep Q-

network” to deal with Atari games, and further improved

it in [17] making the algorithm able to learn successful

policies directly from high-dimensional sensory inputs and

reach human-levels performance in most of Atari games.

Another approach is “AlphaGo”, which builds on deep neural

networks to play with the “Go” game [18]. Many more

algorithms have been proposed [19]–[23], which are mostly

applied in games, robotics, natural language processing, image

recognition problems.

The application of Reinforcement and Machine learning

approaches to mobile networks is also gaining popularity. To

name a few examples, the work in [24] proposes a Q-learning

algorithm for improving the reliability of a millimeter wave

(mmW) non-line-of-sight small cell backhaul system, while

in [25] Q-learning is implemented to solve the adaptive call

admission control problem.

Machine learning has been applied to a wide span of

applications in 5G networks, ranging from channel estima-

tion/detection for massive MIMO channel to user behav-

ior analysis, location prediction or intrusion/anomaly detec-

tion [26]. For instance, decision tree and information-theoretic

regression models have been used in [27] in order to identify

radio access networks problems. The authors of [28] em-

ploy a deep learning approach for modulation classification,

which achieves competitive accuracy with respect to traditional

schemes. The authors of [29] apply deep neural networks

to approximate optimization algorithm for wireless networks

resources management.

This work is an extension of the paper in [30]. In that

paper, the problem of slice admission control for revenue

maximization was addressed by employing Q-learning. While

this provides the ability to adapt to changing environments

while achieving close to optimal performance, an inherent

drawback of Q-learning is its lack of scalability, as the learning

time grows excessively when the state space becomes too

large. In contrast, the algorithm proposed in this paper is based

on Neural Networks, and it is shown to scale with the size of

the network, quickly converging to optimal performance.

To the best of our knowledge, the work presented in this

paper along with the previous version in [30] are the first

ones that build on Machine Learning to address the problem

of admission control for a 5G Infrastructure Market, with the

aim of maximizing the InP’s revenue while guaranteeing the

SLAs of the admitted slices.

3 SYSTEM MODEL

As discussed in Section 1, 5G networks necessarily introduce

changes in the applied business models. With the legacy

and rather monolithic network architecture, the main service

offered is a generic voice and best-effort mobile broadband.

Conversely, the high customizability that 5G Networks intro-

duce will enable a richer ecosystem on both the portfolio of

available services and the possible business relationships. New

players are expected to join the 5G market, leading to an

ecosystem that is composed of (i) users that are subscribed

to a given service provided by a (ii) tenant that, in turn,

uses the resources (i.e., cloud, spectrum) provided by an (iii)
infrastructure provider.1 In the remainder of the paper we use

this high level business model as basis for our analysis. In the

following, we describe in details the various aspects related to

our system model.

Players. As mentioned before, in our system model there are

the following players: (i) the Infrastructure Provider, InP,

who is the owner of the network (including the antenna

location and cloud infrastructure) and provides the tenants

with network slices corresponding to a certain fraction of

network resources, (ii) the tenants, which issue requests to

the infrastructure provider to acquire network resources, and

use these resources to serve their users, providing them a

specific telecommunication service, and finally (iii) the end-

users, which are subscribers of the service provided by a tenant

which uses the resources of the infrastructure provider.

Network model. The ecosystem described above does not

make any distinction on the kind of resources an InP may

provide to the tenants. From the various types of resources,

spectrum will typically be the most important factor when

taking a decision on whether to accept a request from a

tenant. Indeed, cloud resources are easier to provision, while

increasing the spectrum capacity is more complex and more

expensive (involving an increase on antenna densification).

Based on this, in this paper we focus on the wireless access

network as the most limiting factor. In our model of the

wireless access, the network has a set of base stations B owned

by an infrastructure provider. For each base station b ∈ B, we

let Cb denote the base station capacity. We further refer to

the system capacity as the sum of the capacity of all base

stations, C =
∑

B Cb. We let U denote the set of users in the

network.2 We consider that each user u ∈ U in the system

is associated to one base station b ∈ B. We denote by fub
the fraction of the resources of base station b assigned to

user u, leading to a throughput for user u of ru = fubCb.

We also assume that users are distributed among base stations

according to a given probability distribution; we denote by

Pu,b the probability that user u is associated with base station

b. We assume that these are independent probabilities, i.e.,

each user behaves independently from the others.

Traffic model. 5G Networks provide diverse services which

are mapped to three different usage scenarios or slice cat-

egories: eMBB, mMTC and URLLC [3]. As the main bot-

tleneck from a resource infrastructure market point of view

is spectrum, different slice categories need to be matched

based to their requirements in terms of the spectrum usage.

For instance eMBB-alike slices have a higher flexibility with

respect to resource usage, and can use the leftover capacity of

URLLC services which have more stringent requirements on

1. While some of these roles may be further divided into more refined
ones, as suggested in [31], the ecosystem adopted in this paper reflects a
large consensus on the current view of 5G networks.

2. The users of the network are the end-users we referred to above, each
of them being served by one of the tenants.
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the needed capacity.

Following the above, in this paper we focus on elastic

and inelastic traffic as it is the main distinguishing factor

for spectrum usage and thus provides a fairly large level of

generality. In line with previous work in the literature [32], we

consider that inelastic users require a certain fixed throughput

demand which needs to be satisfied at all times,3 in contrast

to elastic users which only need guarantees on the average

throughput, requiring that the expected average throughput

over long time scales is above a certain threshold. That is,

for inelastic users throughput needs to be always (or with

a very high probability) above the guaranteed rate, while

the throughput for elastic users is allowed to fall below the

guaranteed rate during some periods as long as the average

stays above this value.

We let I denote the set of classes of inelastic users; each

class i ∈ I has a different rate guarantee Ri which needs to be

satisfied with a very high probability; we refer the probability

that this rate is not met as the outage probability, and impose

that it cannot exceed P̄out, which is set to a very small value.

We further let Ni denote the number of inelastic users of class

i ∈ I, and Pi,b be the probability that a user of class i is at

base station b. Finally, we let Ne be the number of elastic

users in the network and Re their average rate guarantee.

At any given point in time, the resources of each base

stations are distributed among associated users as follows:

inelastic users u ∈ I are provided sufficient resources to

guarantee ru = Ri, while the remaining resources are equally

shared among the elastic users. In case there are not sufficient

resources to satisfy the requirements of inelastic users, even

when leaving elastic users with no throughput, we reject

as many inelastic users as needed to satisfy the required

throughput guarantees of the remaining ones.

Note that the above traffic types are well aligned with the

slice categories defined in 3GPP, as the elastic traffic behavior

is in line with the eMBB and mMTC services, while inelastic

behavior matches the requirements of URLCC services.

Network slice model. By applying the network slicing concept

discussed in Section 1, the network is divided into different

logical slices, each of them belonging to one tenant. Thus, we

characterize a network slice by (i) its traffic type (elastic or

inelastic), and (ii) its number of users (i.e., the subscribers of

a given service) that have to be served.

A network slice comes with certain guarantees provided by

an SLA agreement between the tenant and the infrastructure

provider. In our model, a tenant requests a network slice that

comprises a certain number of users and a traffic type. Then,

as long as the number of users belonging to a network slice

is less or equal than the one included in the SLA agreement,

each of them will be provided with the service guarantees

corresponding to their traffic type.

A network slice may be limited to a certain geographical

area, in which case the corresponding guarantees only apply

3. Note that, by ensuring that the instantaneous throughput of inelastic traf-
fic stays above a certain threshold, it is possible to provide delay guarantees.
Indeed, as long as the traffic generated by inelastic users is not excessive, by
providing a committed instantaneous throughput we can ensure that queuing
delays are sufficiently low.

to the users residing in the region. In our model, we focus on

the general case and consider network slices that span over the

entire network. However, the model could be easily extended

to consider restricted geographical areas.

Following state of the art approaches [11], network slicing

onboarding is an automated process that involves little or no

human interaction between the infrastructure provider. Based

on these approaches, we consider a bidding system in order

to dynamically allocate network slices to tenants. With this,

tenants submit requests for network slices (i.e., a certain

number of users of a given service) to the infrastructure

provider, which accepts or rejects the request according to

an admission control algorithm such as the one we propose in

this paper. To that aim, we characterize slices request by:

• Network slice duration t: this is the length of the time

interval for which the network slice is requested.

• Traffic type κ: according to the traffic model above, the

traffic type of a slice can either be elastic or inelastic

traffic.

• Network slice size N : the size of the network slice

is given by the number of users it should be able to

accommodate.

• Price ρ: the cost a tenant has to pay for acquiring

resources for a network slice. The price is per time

unit, and hence the total revenue obtained by accepting a

network slice is given by r = ρt.

Following the above characterization, an infrastructure

provider will have catalogs of network slice blueprinted by

predefined values for the tuple {κ,N, ρ}, which we refer to

as network slice classes. Tenants issue requests for one of

the slice classes available in the catalogue, indicating the total

duration t of the network slice. When receiving a request,

an infrastructure provider has two possible decisions: it can

reject the network slice and the associate revenue to keep the

resources free or it can accept the network slice and charge the

tenant r dollars. If accepted, the infrastructure provider grants

resources to a tenant during a t-window.

To compute the profit received by the tenant, we count the

aggregated revenue resulting from all the admitted slices. This

reflects the net benefit of the InP as long as (i) the costs of

the InP are fixed, or (ii) they are proportional to the network

utilization (in the latter case, ρ reflects the difference between

the revenue and cost of instantiating a slice). We argue that

this covers a wide range of cases of practical interest such as

spectrum resources or computational ones. Moreover, in the

cases where costs are not linear with the network usage, our

analysis and algorithm could be extended to deal with such

cases by subtracting the cost at a given state from the revenue.

4 BOUNDING THE ADMISSIBILITY REGION

An online admission control algorithm has to decide whether

to accept or reject a new incoming network slice request issued

by a tenant. Such a decision is driven by a number of variables

such as the expected income and the resources available. The

objective of an admission control algorithm is to maximize

the overall profit while guaranteeing the SLA committed to

all tenants. A fundamental component of such an algorithm is
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the admissibility region, i.e., the maximum number of network

slices that can be admitted in the system while guaranteeing

that the SLAs are met for all tenants. Indeed, if admitting a

new network slice in the system would lead to violating the

SLA of already admitted slices, then such a request should be

rejected. In the following, we provide an analysis to determine

the admissibility region, denoted by A, as a first step towards

the design of the optimal admission algorithm.

4.1 Admissibility region analysis

We say that a given combination of inelastic users of the

various classes and elastic users belongs to the admissibility

region, i.e., {N1, . . . , N|I|, Ne} ∈ A, when the guarantees

described in the previous section for elastic and inelastic traffic

are satisfied for this combination of users. In the following,

we compute the admissibility region A.

In order to determine whether a given combination of

users of different types, {N1, . . . , N|I|, Ne}, belongs to A, we

proceed as follows. We first compute the outage probability

for an inelastic user of class i ∈ I, Pout,i. Let Rb be the

throughput consumed by the inelastic users at b. The average

value of Rb can be computed as

E[Rb] =
∑

j∈I

NjPj,bRj , (1)

and the typical deviation as

σ2
b =

∑

j∈I

Njσ
2
j,b, (2)

where σ2
j,b is the variance of the throughput consumed by one

inelastic user of class j, which is given by

σ2
j,b = Pj,b(Rj  Pj,bRj)

2 + (1  Pj,b)(Pj,bRj)
2

= Pj,b(1  Pj,b)R
2
j . (3)

Our key assumption is to approximate the distribution of

the committed throughput at base station b by a normal

distribution of mean Rb and variance σ2
b , i.e., N (E[Rb], σ

2
b ).

Note that, according to [33], this approximation is appropriate

as long as the number of users per base station in the boundary

of the admissibility region is no lower than 5, which is

generally satisfied by cellular networks (even in the extreme

case of small cells).

The outage probability at base station b is given by the

probability that the committed throughput exceeds the base

station capacity, i.e.,

Pout,b = P(Rb > Cb), (4)

where Cb be the capacity of base station b.
To compute the above probability with the normal approx-

imation, we proceed as follows:

Pout,b ≈ 1  Φ

(

Cb + C̃b  E[Rb,i]

σb,i

)

, (5)

where Φ(·) is the cumulative distribution function of the

standard normal distribution and C̃b is a continuity correction

factor that accounts for the fact Rb is not a continuous

variable. In line with [34], where this is applied to a binomial

distribution and the correction factor is one half of the step

size, in our case we a set the continuity correction factor as

one half of the average step size, which yields

C̃b =
1

2

∑

j∈I Pj,bNjRj
∑

j∈I Pj,bNj

. (6)

Once we have obtained Pout,b, we compute the outage

probability of an inelastic user of class i with the following

expression:

Pout,i =
∑

b∈B

Pi,bPout,b. (7)

Next, we compute the average throughput of an elastic user.

To this end, we assume that (i) in line with [32], elastic users

consume all the capacity left over by inelastic traffic, (ii) there

is always at least one elastic user in each base station, and (iii)
all elastic users receive the same throughput on average.

With the above assumptions, we proceed as follows. The

average committed throughput consumed by inelastic users at

base station b is given by

E[Rb] =
∑

i∈I

NiPi,bRi, (8)

which gives an average capacity left over by inelastic users

equal to Cb  E[Rb]. This capacity is entirely used by elastic

users as long as the base station is not empty. The total

capacity usage by elastic users is then given by the sum of

this term over all base stations. As this capacity is equally

shared (on average) among all elastic users, this leads to the

following expression for the average throughput of an elastic

user:

re =

∑

b∈B Cb  E[Rb]

Ne

. (9)

Based on the above, we compute the admissibility region A
as follows. For a given number of inelastic users in each class,

Ni, i ∈ I , and of elastic users, Ne, we compute the outage

probability of the inelastic classes, Pout,i, and the average

throughput of the elastic users, re. If the resulting values meet

the requirements for all classes, i.e., Pout,i ≤ P̄out ∀i and

re ≥ Re, then this point belongs to the admissibility region,

and otherwise it does not.

4.2 Validation of the admissibility region

In order to assess the accuracy of the above analysis, we

compare the admissibility region obtained theoretically against

the one resulting from simulations. To this end, we consider

the reference scenario recommended by ITU-T [35], which

consists of |B| = 19 base stations placed at a fixed distance

of 200m. Following the system model of Section 3, we have

elastic and inelastic users. All inelastic users belong to the

same class, and all users (elastic and inelastic) move in the

area covered by these base stations following the Random

Waypoint (RWP) mobility model, with a speed uniformly

distributed between 2 and 3 m/s.

The association procedure of elastic and inelastic users with

base stations is as follows. Inelastic users try to associate to

the nearest base station b ∈ B, if it has at least Ri capacity left.
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Fig. 1: Admissibility region: analysis vs. simulation.

Otherwise they do not associate and generate an outage event,

joining again the network when their throughput guarantee

can be satisfied. When associating, they consume a capacity

Ri from the base station. The probability of association to

each base station (i.e., the Pi,b values) are extracted from the

simulations and fed into the analysis.

Similarly to inelastic users, elastic users always associate

to the nearest base station. All the elastic users associated to

a base station fairly share among them the capacity left over

by inelastic users. Upon any association event, the throughput

received by the users associated to the new and the old base

station changes accordingly.

Following the above procedure, we have simulated all the

possible combinations of inelastic and elastic users, {Ni, Ne}.

For each combination, we have evaluated the average through-

put received by elastic users, computed over samples of 10

seconds time windows, and the outage probability Pout of

inelastic users, computed as the fraction of time over which

they do not enjoy their guaranteed throughput. If these two

metrics (average elastic traffic throughput and inelastic traffic

outage probability) are within the guarantees defined for

the two traffic types, we place this combination inside the

admissibility region, and otherwise we place it outside.

Fig. 1 shows the boundaries of the admissibility region

obtained analytically and via simulation, respectively, for

different throughput guarantees for elastic and inelastic users

(A5 : Ri = Re = Cb/5, A10 : Ri = Re = Cb/10 and

A20 : Ri = Re = Cb/20) and P̄out = 0.01. We observe

that simulation results follow the analytical ones fairly closely.

While in some cases the analysis is slightly conservative in the

admission of inelastic users, this serves to ensure that inelastic

users’ requirements in terms of outage probability are always

met.

5 MARKOVIAN MODEL FOR THE DECISION-
MAKING PROCESS

While the admissibility region computed above provides the

maximum number of elastic and inelastic users that can

be admitted, an optimal admission algorithm that aims at

maximizing the revenue of the infrastructure provider may not

always admit all the requests that fall within the admissibility

region. Indeed, when the network is close to congestion,

admitting a request that provides a low revenue may prevent

the infrastructure provider from admitting a future request

with a higher revenue associated. Therefore, the infrastructure

provider may be better off by rejecting the first request with

the hope that a more profitable one will arrive in the future.

The above leads to the need for devising an admission

control strategy for incoming slice requests. Note that the

focus is on the admission of slices, in contrast to traditional

algorithms focusing on the admission of users; once a tenant

gets its slice admitted and instantiated, it can implement

whatever algorithm it considers more appropriate to admit

users into the slice.

In the following, we model the decision-making process on

slice requests as a Semi-Markov Decision Process (SMDP).4

The proposed model includes the definition of the state space

of the system, along with the decisions that can be taken

at each state and the resulting revenues. This is used as

follows: (i) to derive the optimal admission control policy

that maximizes the revenue of the infrastructure provider,

which serves as a benchmark for the performance evaluation

of Section 7, and (ii) to lay the basis of the machine learning

algorithm proposed in Section 6, which implicitly relies on

the states and decision space of the SMDP model.

5.1 Decision-making process analysis

SMDP is a widely used tool to model sequential decision-

making problems in stochastic systems such as the one con-

sidered in this paper, in which an agent (in our case the InP)

has to take decisions (in our case, whether to accept or reject a

network slice request) with the goal of maximizing the reward

or minimizing the penalty. For simplicity, we first model our

system for the case in which there are only two classes of

slice requests of fixed size N = 1, i.e., for one elastic user or

for one inelastic user. Later on, we will show how the model

can be extended to include an arbitrary set of network slice

requests of different sizes.

The Markov Decision Process theory [36] models a system

as: (i) a set of states s ∈ S, (ii) a set of actions a ∈ A,

(iii) a transition function P (s, a, s′), (iv) a time transition

function T (s, a), and (v) a reward function R (s, a). The

system is driven by events, which correspond to the arrival

of a request for an elastic or an inelastic slice as well as the

departure of a slice (without loss of generality, we assume

that arrivals and departures never happen simultaneously, and

treat each of them as a different event). At each event, the

system can be influenced by taking one of the possible actions

a ∈ A. According to the chosen actions, the system earns the

associated reward function R (s, a), the next state is decided

by P (s, a, s′) while the transition time is defined by T (s, a).
The inelastic and elastic network slices requests follow

two Poisson processes Pi and Pe with associated rates of

λi and λe, respectively. When admitted into the system, the

slices occupy the system resources during an exponentially

distributed time of average 1
µi

and 1
µe

. Additionally, they

generate a revenue per time unit for the infrastructure provider

of ρi and ρe. That is, the total revenue r generated by, e.g.,

an elastic request with duration t is tρe.

4. Note that SMDP allows to model systems operating under continuous
time such as ours, where slice requests may arrive at any point in time.
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Fig. 2: Example of system model with the different states.

We define our space state S as follows. A state s ∈ S is a

three-sized tuple (ni, ne, k | ni, ne ∈ A) where ni and ne are

the number of inelastic and elastic slices in the system at a

given decision time t, and k ∈ {i, e, d} is the next event that

triggers a decision process. This can be either a new arrival of

a network slice request for inelastic and elastic slices (k = i
and k = e, respectively), or a departure of a network slice of

any kind that left the system (k = d). In the latter case, ni and

ne represent the number of inelastic and elastic slices in the

system after the departure. Fig. 2 shows how the space state

S relates to the admissibility region A.

The possible actions a ∈ A are the following: A = G,D.

The action G corresponds to admitting the new request of an

elastic or inelastic slice; in this case, the resources associated

with the request are granted to the tenant and the revenue

r = ρi,et is immediately earned by the infrastructure provider.

In contrast, action D corresponds to rejecting the new request;

in this case, there is no immediate reward but the resources

remain free for future requests. Note that upon a departure

(k = d), the system is forced to a fictitious action D that

involves no revenue. Furthermore, we force that upon reaching

a state in the boundary of the admissibility region computed

in the previous section, the only available action is to reject

an incoming request (a = D) as otherwise we would not be

meeting the committed guarantees. Requests that are rejected

are lost forever.

The transition rates between the states identified above are

derived next. Transitions to a new state with k = i and k = e
happen with a rate λi and λe, respectively. Additionally, states

with k = d are reached with a rate niµi + neµe depending

the number of slices already in the system. Thus, the average

time the system stays at state s, T̄ (s, a) is given by

T̄ (s, a) =
1

υ (ni, ne)
, (10)

where ni, and ne are the number of inelastic and elastic slices

in state s and υ (ni, ne) = λi + λe + niµi + neµe.

We define a policy π (S), π (s) ∈ A, as a mapping from

each state s to an action A. Thus, the policy determines

whether, for a given number of elastic and inelastic slices in

the system, we should admit a new request of an elastic or

an inelastic slice upon each arrival. With the above analysis,

given such a policy, we can compute the probability of staying

at each of the possible states. Then, the long-term average

revenue R obtained by the infrastructure provider can be

computed as

R =
∑

ni,ne,k

P (ni, ne, k) (niρi + neρe) , (11)

where ρi and ρe are the price per time unit paid by an inelastic

and an elastic network slice, respectively.

The ultimate goal is to find the policy π (S) that maximizes

the long term average revenue, given the admissibility region

and the network slices requests arrival process. We next devise

the Optimal Policy when the parameters of the arrival process

are known a priori, which provides a benchmark for the best

possible performance. Later on, in Section 6, we design a

learning algorithm that approximates the optimal policy.

5.2 Optimal policy

In order to derive the optimal policy, we build on Value

Iteration [37], which is an iterative approach to find the optimal

policy that maximizes the average revenue of an SMDP-based

system. According to the model provided in the previous

section, our system has the transition probabilities P (s, a, s′)
detailed below.

Let us start with a = D, which corresponds to the action

where an incoming request is rejected. In this case, we have

that when there is an arrival, which happens with a rate λi

and λe for inelastic and elastic requests, respectively, the

request is rejected and the system remains in the same state.

In case of a departure of an elastic or an inelastic slice, which

happens with a rate of neµe or niµi, the number of slices in

the system is reduced by one unit (recall that no decision is

needed when slices leave the system). Formally, for a = D
and s = (ni, ne, i), we have:

P (s, a, s′) =























λi

υ(ni,ne)
, s′ = (ni, ne, i)

λe

υ(ni,ne)
, s′ = (ni, ne, e)

niµi

υ(ni,ne)
, s′ = (ni  1, ne, d)

neµe

υ(ni,ne)
, s′ = (ni, ne  1, d)

. (12)

When the chosen action is to accept the request (a = G)

and the last arrival was an inelastic slice (k = i), the transition

probabilities are as follows. In case of an inelastic slice arrival,

which happens with a rate λi, the last arrival remains k = i,
and in case of an elastic arrival it becomes k = e. The number

of inelastic slices increases by one unit in all cases except of an

inelastic departure (rate niµi). In case of an elastic departure

(rate neµe), the number of elastic slices decreases by one.

Formally, for a = G and s = (ni, ne, i), we have:

P (s, a, s′) =























λi

υ(ni+1,ne)
, s′ = (ni + 1, ne, i)

λe

υ(ni+1,ne)
, s′ = (ni + 1, ne, e)

(ni+1)µi

υ(ni+1,ne)
, s′ = (ni, ne, d)

neµe

υ(ni+1,ne)
, s′ = (ni + 1, ne  1, d)

. (13)

If the accepted slice is elastic (k = e), the system exhibits

a similar behavior to the one described above but increasing



8

Algorithm 1 Value Iteration

1) Initialize the vector V (s) = 0, ∀s ∈ S. V (s) represents the
long term expected revenue for being in state s. Initialize the
step number n to 1.

2) Update the expected reward at time n + 1, Vn+1 (s) using
the rule

Vn+1 (s) = max
a∈A

[

R (s, a)

T (s, a)
τ

+
τ

T (s, a)

∑

s′

P
(

s, a, s′
)

Vn

(

s′
)

+

(

1 −
τ

T (s, a)

)

Vn (s)

]

∀s ∈ S

3) Compute the boundaries

Mn = max
s∈S

(Vn+1 (s) − Vn (s))

mn = min
s∈S

(Vn+1 (s) − Vn (s))

and check the condition

0 ≤ (Mn − mn) ≤ ϵmn

4) If the condition in step 3 is not fulfilled, then repeat from
step 2

by one the number of elastic slices instead. Thus, for a = G,

s = (ni, ne, e), we have:

P (s, a, s′) =























λi

υ(ni,ne+1) , s′ = (ni, ne + 1, i)
λe

υ(ni,ne+1) , s′ = (ni, ne + 1, e)
niµi

υ(ni,ne+1) , s′ = (ni  1, ne + 1, d)
(ne+1)µe

υ(ni,ne+1) , s′ = (ni, ne, d)

. (14)

A reward is obtained every time the system accepts a new

slice, which leads to

R (s, a) =











0, a = D

tρi a = G, k = i

tρe a = G, k = e

. (15)

Applying the Value Iteration algorithm [37] for SMDP is

not straightforward. The standard algorithm cannot be applied

to a continuous time problem as it does not consider variable

transition times between states. Therefore, in order to apply

Value Iteration to our system, an additional step is needed:

all the transition times need to be normalized to multiples

of a faster, arbitrary, fixed transition time τ [38]. The only

constraint that has to be satisfied by τ is that it has to be faster

than any other transition time in the system, which leads to

τ < minT (s, a) , ∀s ∈ S, ∀a ∈ A. (16)

With the above normalization, the continuous time SMDP

corresponding to the analysis of the previous section becomes

a discrete time Markov Process and a modified Value Iteration

algorithm may be used to devise the best policy π (S) (see

Algorithm 1). The discretized Markov Chain will hence per-

form one transition every τ interval. Some of these transitions

correspond to transitions in continuous time system, while in

the others the system keeps in the same state (we call the latter

fictitious transitions).

























  

  
















Fig. 3: Example of optimal policy for elastic and inelastic

slices.

The normalization procedure affects the update rule of

step 2 in Algorithm 1. All the transition probabilities

P (s, a, s′) are scaled by a factor τ
T (s,a′) to enforce that the

system stays in the corresponding state during an average time

T (s, a′). Also, the revenue R (s, a) is scaled by a factor of

T (s, a) to take into account the fact that the reward R (s, a)
corresponds to a period T (s, a) in the continuous system,

while we only remain in a state for a τ duration in the discrete

system. In some cases, transitions in the sampled discrete time

system may not correspond to any transition in the continuous

time one: this is taken into account in the last term of the

equation, i.e., in case of a fictitious transition, we keep in

state Vn (s).

As proven in [30], Algorithm 1 is guaranteed to find the

optimal policy π (S). Such an optimal policy is illustrated in

Fig. 3 for the case where the price of inelastic slice is higher

than that of elastic slice (ρi > ρe). The figure shows those

states for which the corresponding action is to admit the new

request (straight line), and those for which it is to reject it

(dashed lines). It can be observed that while some of the states

with a certain number of elastic slices fall into the admissibility

region, the system is better off rejecting those requests and

waiting for future (more rewarding) requests of inelastic slice.

In contrast, inelastic slice requests are always admitted (within

the admissibility region).

The analysis performed so far has been limited to network

slice requests of size one. In order to extend the analysis to

requests of an arbitrary size, we proceed as follows. We set

the space state to account for the number of slices of each

different class in the system (where each class corresponds

to a traffic type and a given size). Similarly, we compute the

transition probabilities P (s, a, s′) corresponding to arrival and

departures of different classes. With this, we can simply apply

the same procedure as above (over the extended space state)

to obtain the optimal policy.

Following [39], it can be seen that (i) Algorithm 1 converges

to a certain policy, and (ii) the policy to which the algorithm

converges performs arbitrarily close to the optimal policy.
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6 N3AC: A DEEP LEARNING APPROACH

The Value Iteration algorithm described in Section 5.2 pro-

vides the optimal policy for revenue maximization under the

framework described of Section 5.1. While this is very useful

in order to obtain a benchmark for comparison, the algorithm

itself has a very high computational cost, which makes it

impractical for real scenarios. Indeed, as the algorithm has to

update all the V values V (s) , s ∈ S at each step, the running

time grows steeply with the size of the state space, and may

become too high for large scenarios. Moreover, the algorithm

is executed offline, and hence cannot be applied unless all

system parameters are known a priori. In this section, we

present an alternative approach, the Network-slicing Neural

Network Admission Control (N3AC) algorithm, which has a

low computational complexity and can be applied to practical

scenarios.

6.1 Deep Reinforcement Learning

N3AC falls under category of the deep reinforcement learning

(RL). With N3AC, an agent (the InP) interacts with the

environment and takes decisions at a given state, which lead

to a certain reward. These rewards are fed back into the agent,

which “learns” from the environment and the past decisions

using a learning function F . This learning function serves to

estimate the expected reward (in our case, the revenue).

RL algorithms rely on an underlying Markovian system

such as the one described in Section 5. They provide the

following features: (i) high scalability, as they learn online on

an event basis while exploring the system and thus avoid a long

learning initial phase, (ii) the ability to adapt to the underlying

system without requiring any a priori knowledge, as they

learn by interacting with the system, and (iii) the flexibility

to accommodate different learning functions F , which provide

the mapping from the input state to the expected reward when

taking a specific action.

The main distinguishing factor between different kinds of

RL algorithms is the structure of the learning function F .

Techniques such as Q-Learning [40] employ a lookup table for

F , which limits their applicability due to the lack of scalability

to a large space state [41]. In particular, Q-Learning solutions

need to store and update the expected reward value (i.e., the Q-

value) for each state-action pair. As a result, learning the right

action for every state becomes infeasible when the space state

grows, since this requires experiencing many times the same

state-action pair before having a reliable estimation of the Q-

value. This leads to extremely long convergence times that are

unsuitable for most practical applications. Additionally, storing

and efficiently visiting the large number of states poses strong

requirements on the memory and computational footprint of

the algorithm as the state space grows. For the specific case

studied in this paper, the number of states in our model

increases exponentially with the number of network slicing

classes. Hence, when the number of network slicing classes

grows, the computational resources required rapidly become

excessive.

A common technique to avoid the problems described above

for Q-learning is to generalize the experience learned from

some states by applying this knowledge to other similar states,

which involves introducing a different F function. The key

idea behind such generalization is to exploit the knowledge

obtained from a fraction of the space state to derive the right

action for other states with similar features. There are different

generalization strategies that can be applied to RL algorithms.

The most straightforward technique is the linear function

approximation [42]. With this technique, each state is given

as a linear combination of functions that are representative of

the system features. These functions are then updated using

standard regression techniques. While this approach is scalable

and computationally efficient, the right selection of the feature

functions is a very hard problem. In our scenario, the Q-values

associated to states with similar features (e.g., the number

of inelastic users) are increasingly non linear as the system

becomes larger. As a result, linearization does not provide a

good performance in our case.

Neural Networks (NNs) are a more powerful and flexible

tool for generalization. NNs consist of simple, highly inter-

connected elements called neurons that learn the statistical

structure of the inputs if correctly trained. With this tool, the

design of neuron internals and the interconnection between

neurons are the most important design parameters. RL al-

gorithms that employ NNs are called Deep RL algorithms:

N3AC belongs to this family. One of the key features of such

a NN-based approach is that it only requires storing a very

limited number of variables, corresponding to the weights and

biases that compose the network architecture; yet, it is able

to accurately estimate the F function for a very large number

of state/action pairs. In the rest of this Section, we review the

NNs design principles (Section 6.2) and explain how these

principles are applied to a practical learning algorithm for our

system (Section 6.3).

6.2 Neural networks framework

The fundamental building blocks of DRL algorithms are the

following ones [43]:

• A set of labeled data (i.e., system inputs for which

the corresponding outputs are known) which is used to

train the NN (i.e., teach the network to approximate the

features of the system).

• A loss function that measures the neural network perfor-

mance in terms of training error (i.e., the error made when

approximating the known output with the given input).

• An optimization procedure that reduces the loss functions

at each iterations, making the NN eventually converge.

There are many different Machine Learning (ML) schemes

that make use of NNs, which are usually categorized as

supervised, unsupervised and RL. A ML system is supervised

or unsupervised depending on whether the labeled data is

available or not, and it is a RL system when it interacts with the

environment receiving feedback from its experiences. N3AC

falls under the latter category, and, within RL, it falls under

the category of deep RL. Since the seminal work in [16], deep

RL techniques have gained momentum and are nowadays one

of the most popular approaches for RL. In spite of the bulk

of literature available for such techniques, devising the N3AC
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Fig.4:Neuralnetworksinternals.

algorithminvolvesanumberofdesigndecisionstoaddress
thespecificitiesofourproblem,whicharesummarizedinthe
following.

Neuroninternalconfiguration.AnexemplaryNNisillus-
tratedinFigure4, where wehave multiplelayersofinter-
connectedneuronsorganizedas:(i)aninput,(ii)anoutput
and(iii)oneormorehiddenlayers.Aneuronisanon-linear
elementthatexecutesaso-calledactivationfunctiontothe
linearcombinationofthe weightedinputs. Manydifferent
activationfunctionsareavailableintheliteraturespanning
fromalinearfunctionto morecomplexonessuchastanh,
sigmoidorthe Rectified Linear Unit(ReLU)[44].N3AC
employsthelatter.

Neural NetworkStructure.Oneofthedesignchoicesthat
needstobetaken whendevisinga NNapproachisthe
the wayneuronsareinterconnectedamongthem.The most
commonsetupisfeed-forward,wheretheneuronsofalayer
arefullyinterconnected withtheonesofthenext. There
arealsootherconfigurations,suchastheconvolutionalor
therecurrent(wheretheoutputisusedasinputinthenext
iteration).However,thebestchoiceforasystemliketheone
studiedinthispaperisthefeed-forward.Indeed,convolutional
networksareusuallyemployedforimagerecognition,while
recurrentareusefulwhenthesysteminputandtheoutputhave
acertaindegreeofmutualrelation.Noneofthesematchour
system,whichis memorylessasitisbasedona Markovian
approach.Furthermore,our NNdesignreliesonasingle
hiddenlayer.Suchadesignchoiceisdrivenbythefollowing
twoobservations:(i)ithasbeenproventhatispossibleto
approximateanyfunctionusing NN withasinglehidden
layer[45],and(ii) whilealargernumberofhiddenlayers
mayimprovetheaccuracyofthe NN,italsoinvolvesa
highercomplexityandlongertrainingperiod;asaresult,one
shouldemploytherequirednumberofhiddenlayersbutavoid
buildingalargernetworkthanstrictlynecessary.

Back-propagationalgorithmselection.Inclassical MLap-
plications,theNNistrainedusingalabeleddataset:theNN
isfedwiththeinputsandthedifferenceamongtheestimated
outputandthelabelisevaluated withtheerrorfunction.
Then,theerrorisprocessedtoadjustthe NN weightsand
thusreducetheerrorinthenextiteration. N3ACadjusts

weightsusinga Gradient Descentapproach:the measured
errorattheoutputlayerisback-propagatedtotheinputlayer
changingtheweightsvaluesofeachlayeraccordingly[44].
Morespecifically,N3ACemploystheRMSprop[46]Gradient
Descentalgorithm.
Integration withthe RLframework.Oneofthecritical
requirementsforN3ACistooperatewithoutanypreviously
knownoutput,butratherinteractingwiththeenvironmentto
learnitscharacteristics.Indeed,inN3ACwedonothaveany
“groundtruth”andthusweneedtorelyonestimationsofthe
output,whichwillbecomemoreaccurateaswekeepexploring
thesystem. Whilethisproblemhasbeenextensivelystudied
intheliterature[43],[47],weneedtodeviseasolutionthatis
suitableforthespecificproblemaddressed.InN3AC,wetake
astheoutputoftheNNtheaveragerevenuesexpectedata
givenstatewhentakingaspecificdecision.Oncethedecision
istaken,thesystemtransitionstothenewstateandwemeasure
theaveragerevenueresultingfromthedecisiontaken(0in
caseofarejectionandρtincaseofanacceptance).Then,the
errorbetweentheestimatedrevenueandthe measuredone
isusedtotraintheNN,back-propagatingthiserrorintothe
weights.N3ACusestwodifferentNNs:onetoestimatethe
revenueforeachstatewhentheselectedactionistoacceptthe
incomingrequest,andanotheronewhenwerejecttherequest.
Uponreceivingarequest,N3ACpollsthetwoNNsandselects
theactionwiththehighestexpectedrevenue;then,afterthe
transitiontothenewstateisperformed,theselected NNis
trained. MoredetailsabouttheN3ACoperationareprovided
inthenextsection.
Exploration vsexploitationtrade-off. N3ACdrivesthe
selectionofthebestactiontobetakenateachtimestep.
Whilechoosingtheactionthatmaximizestherevenueateach
stepcontributesto maximizingtheoverallrevenue(referred
toasexploitationstep),inordertolearnwealsoneedtovisit
new(stillunknown)statesevenifthismayeventuallyleadto
asuboptimalrevenue(referredtoasexplorationstep).This
procedureisespeciallyimportantduringtheinitialinteraction
ofthesystem,whereestimatesareveryinaccurate.InN3AC,
thetrade-offbetweenexploitationandexplorationisregulated
bytheγparameter,whichindicatestheprobabilityoftaking
anexplorationstep.Inthesetupusedinthispaper,wetake
γ=0.1.OncetheNNsarefullytrained,thesystemgoesinto
exploitationonly,completelyomittingtheexplorationpart.

6.3 Algorithmdescription

Inthefollowing,wedescribetheproposedN3ACalgorithm.
Thisalgorithmbuildsonthe Neural Networksframework
describedabove,exploitingRLtotrainthealgorithmwithouta
groundtruthsequence.Thealgorithmconsistsofthefollowing
highlevelsteps(seeAlgorithm2forthepseudocode):

• Step1,acceptancedecision:Inordertodecidewhether
toacceptorrejectanincomingrequest,welookatthe
expectedaveragerevenuesresultingfromacceptingand
rejectingarequestinthetwo NNs, which wereferto
asthe Q-values.Specifically, wedefineQ(s,a)asthe
expectedcumulativerewardwhenstartingfromacertain
stateswithactiona,comparedtoabaselineσgivenby
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the optimal policy reward when starting from state 0, i.e.,

Q (s, a) = E



 lim
t→∞

D(t)
∑

n=0

Rn  σt|s0 = s, a0 = a



 (17)

where D(t) is the number of requests received in a period

t, Rn is the revenue obtained with the nth request and

σ = E[limt→∞
1
t

∑D(t)
n=0 Rn|s0 = 0] under the optimal

policy. Then, we take the decision that yields the highest

Q-value. This procedure is used for elastic slices only, as

inelastic slices shall always be accepted as long as there is

sufficient room. When there is no room for an additional

slice, requests are rejected automatically, regardless of

their type.

• Step 2, evaluation: By taking a decision in Step 1, the

system experiences a transition from state s at step n, to

state s′ at step n+1. Once in step n+1, the algorithm has

observed both the reward obtained during the transition

R (s, a) and a sample tn of the transition time. The

algorithm trains the weights of the corresponding NN

based on the error between the expected reward of s
estimated at step n and the target value. This step relies

on two cornerstone procedures:

– Step 2a, back-propagation: This procedure drives the

weights update by propagating the error measured back

through all the NN layers, and updating the weights

according to their gradient. The convergence time is

driven by a learning rate parameter that is used in the

weight updates.

– Step 2b, target creation: This procedure is needed to

measure the accuracy of the NNs estimations during

the learning phase. At each iteration our algorithm

computes the observed revenue as follows:

ω = R (s, a, s′)  σtn +max
a′

Q (s′, a′) , (18)

where R (s, a, s′) is the revenue obtained in the transi-

tion to the new state. As we do not have labeled data,

we use ω to estimate the error, by taking the difference

between ω and the previous estimate Qn+1 (s, a) and

using it to train the NN. When the NN eventually

converges, ω will be close to the Q-values estimates.

• Step 3, penalization: When a state in the boundary of the

admissibility region is reached, the system is forced to

reject the request. This should be avoided as it may force

the system to reject potentially high rewarding slices. To

avoid such cases, N3AC introduces a penalty on the Q-

values every time the system reaches the border of the

admissibility region. With this approach, if the system is

brought to the boundary through a sequence of highly

rewarding actions, the penalty will have small effect

as the Q-values will remain high even after applying

the penalty. Instead, if the system reaches the boundary

following a chain of poorly rewarding actions, the impact

on the involved Q-values will be much higher, making it

unlikely that the same sequence of decisions is chosen in

the future.

Algorithm 2 N3AC algorithm.

1) Initialize the Neural Network’s weights to random values.
2) An event is characterized by: s, a, s′, r, t (the starting state,

the action taken, the landing state, the obtained reward and
the transition time).

3) Estimate Q (s′, a′) for each action a′ available in state s′

through the NN.
4) Build the target value with the new sample observation as

follows:

target = R
(

s, a, s′
)

− σtn +max
a′

Q
(

s′, a′
)

(19)

where tn is the transition time between two subsequent states
s and s′ after action a.

5) Train the NNs through RMSprop algorithm:

5.1 If s ̸∈ admissibility region boundary, train the NN with
the error given by the difference between the above target
value (step 4) and the measured one.

5.2 Otherwise, train the NN corresponding to accepted re-
quests by applying a “penalty” and train the NN corre-
sponding to rejected requests as in step 5.1.

• Step 4, learning finalization: Once the learning phase is

over, the NN training stops. At this point, at a given

state we just take the the action that provides the highest

expected reward.

We remark that the learning phase of our algorithm does not

require specific training datasets. Instead, the algorithm learns

from the real slice requests on the fly, during the real operation

of the system; this is the so-called exploration phase. The

training corresponding to such an exploration phase terminates

when the algorithm has converged to a good learning status,

and is triggered again when the system detects changes in the

system that require new training.

7 PERFORMANCE EVALUATION

In this section we evaluate the performance of N3AC via

simulation. Unless otherwise stated, we consider a scenario

with four slice classes, two for elastic traffic and two for

inelastic. Service times follow an exponential distribution with

µ = 5 for all network slices classes, and arrivals follow a

Poisson process with average rates equal to λi = 2µ and

λe = 10λi for the elastic and inelastic classes, respectively.

We consider two network slice sizes, equal to C/10 and C/20,

where C is the total network capacity. Similarly, we set the

throughput required guarantees for elastic and inelastic traffic

to Ri = Re = Cb/10. Two key parameters that will be

employed throughout the performance evaluation are ρe and

ρi, the average revenue per time unit generated by elastic

and inelastic slices, respectively (in particular, performance

depends on the ratio between them). The rest of the network

setup (including the users’ mobility model) is based on the

scenario described in Section 4.2.

Following the N3AC algorithm proposed in the previous

section, we employ two feed-forward NNs, one for accepted

requests and another one for rejected. Each neuron applies

a ReLU activation function, and we train them during the

exploration phase using the NNs RMSprop algorithm imple-

mentation available in Keras (https://keras.io/); the learning

parameter of the RMSprop Gradient Descent algorithm [46] is
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Fig. 5: Revenue vs. ρi/ρe.

equal to 0.001. The number of input nodes in the NN is equal

to the size of the space state (i.e., the number of considered

classes plus one for the next request k), the number of neurons

in the hidden layer equal to 40 for the scenario described in

Sections 7.3 and 7.4 and 20 for the others, and the output layer

is composed of one neuron, applying a linear function. Note

that, while we are dealing with a specific NN structure, one of

the key highlights of our results is that the adopted structure

works well for a wide range of different 5G networks.

In the results given in this section, when relevant we

provide the 99% confidence intervals over an average of 100

experiments (note that in many cases the confidence intervals

are so small that they cannot be appreciated).

7.1 Algorithm Optimality

We first evaluate the performance of the N3AC algorithm

(which includes a hidden layer of 20 neurons) by comparing it

against: (i) the benchmark provided by the optimal algorithm,

(ii) the Q-learning algorithm proposed in [30], and (iii) two

naive policies that always admit elastic traffic requests and

always reject them, respectively. In order to evaluate the

optimal algorithm and the Q-learning one, which suffers from

scalability limitations, we consider a relatively small scenario.

Figure 5 shows the relative average reward obtained by each of

these policies, taking as baseline the policy that always admit

all network slice requests (which is the most straightforward

algorithm).

We observe that N3AC performs very closely to the Q-

learning and optimal policies, which validates the proposed

algorithm in terms of optimality. We further observe that the

revenue improvements over the naive policies is very substan-

tial, up to 100% in some cases. As expected, for small ρi/ρe
the policy that always admits all requests is optimal: in this

case both elastic and inelastic slices provide the same revenue.

In contrast, for very large ρi/ρe ratios the performance of the

“always reject” policy improves, as in this case the revenue

obtained from elastic traffic is (comparatively) much smaller.

7.2 Learning time and adaptability

One of the key advantages of the N3AC algorithm as compared

with Q-learning is that it requires a much shorter learning time.

This is due to the fact that with N3AC the knowledge acquired

Fig. 6: Learning time for N3AC and Q-learning.

Fig. 7: Performance under changing conditions.

at each step is used to update the Q-values of all states, while

Q-learning just updates the Q-value of the lookup table for

the state being visited. To evaluate the gain provided by the

NNs in terms of convergence time, we analyze the evolution

of the expected revenue over time for the N3AC and the Q-

learning algorithms. The results are shown in Figure 6 as a

function of the number of iterations. We observe that after

few hundred iterations, N3AC has already learned the correct

policy and the revenue stabilizes. In contrast, Q-learning needs

several thousands of iterations to converge. We conclude that

N3AC can be applied to much more dynamic scenarios as it

can adapt to changing environments. Instead, Q-learning just

works for relatively static scenarios, which limits its practical

applicability. Furthermore, Q-learning cannot scale to large

scenarios, as the learning time (and memory requirements)

would grow unacceptably for such scenarios.

When the network conditions change, e.g., the arrival pat-

tern of slice requests, this is detected by the system, and

a new training period is triggered. To evaluate the system

performance under such conditions, Figure 7 illustrates the

behavior of N3AC and Q-learning. In this experiment, the

arrival rate of elastic network slices is reduced to one half at a

given point in time, and this is detected as the revenue drops

beyond a given threshold (which we set to 10%). We observe

that N3AC rapidly moves to the best point of operation, while

Q-learning needs much more time to converge, leading to a

substantially lower revenue. We further observe that, even in

the transients, N3AC obtains a fairly good performance.
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Fig. 8: Revenue vs. ρi/ρe.

7.3 Large-scale scenario

The previous results have been obtained for a relatively

small scenario where the evaluation of the optimal and Q-

learning algorithm was feasible. In this section, we assess

the performance of the N3AC algorithm in a large-scale

scenario; indeed, one of the design goals of this algorithm

is its scalability to large scenarios. We consider a scenario

with eight slice classes, four for elastic traffic and four for

inelastic. For each traffic type, we allow four network slice

sizes, linearly distributed among C/10 and C/20. We have

the same throughput guarantees for elastic and inelastic traffic

as in the previous experiment (Ri = Re = Cb/10) and thus we

have the same admissibility region (although the space state

is much larger now). We set µ and λ parameters in a way that

the load of the network is similar to the previous experiment.

In this larger scenario, the optimal and Q-learning algo-

rithms are not feasible. Hence, we evaluate the performance

of N3AC and compare it against the naive policies only.

Figure 8 shows the relative average reward obtained by each

of these policies, taking as baseline the policy that always

admits all network slice requests. Similarly to the evaluation

performed in the previous experiment, we observe that the

N3AC algorithm always substantially outperforms the naive

policies. As expected, for small ρi/ρe the policy that always

admits all requests is optimal, while for very large ρi/ρe ratios

the performance of “always reject” policy improves since the

revenue obtained from the elastic traffic is much smaller.

7.4 Gain over random policies

While the result of the previous section shows that the

proposed algorithm provides high gains, it is only compared

against two naive policies and thus does not give an insight on

the real revenue gains that could be achieved over smarter, yet

not optimal policies. To this end, we compare the performance

of the N3AC algorithm against a set of “smart” random

policies which work as follows: (i) inelastic network slices

requests are always accepted, and (ii) the decision of rejecting

an elastic request is chosen randomly upon defining the policy

for each different state. Then, by drawing a high number of

random policies, it is to be expected that some of them provide

good performance.

Figure 9 compares N3AC against the above approach with

1,000 and 10,000 different random policies, respectively. We

note that the improvement achieved with 10,000 random

policies over 1,000 is very small, which shows the the chosen

setting for the random policies approach is appropriate and

provides the best performance that can be achieved with

such an approach. From the figure, we can see that N3AC

provides substantial gains over the best performing random

policy (around 20%). This confirms that a smart heuristic

is not effective in optimizing revenue; indeed, with such a

large space state it is very difficult to calibrate the setting for

the acceptance of elastic slices that maximizes the resulting

revenue. Instead, by using a NN-based approach such as

N3AC, we are capable of accurately capturing such a large

space state within a limited range of parameters and thus drive

acceptance decisions towards very high performance.

7.5 Memory and computational footprint

One of the key aspects of the proposed framework is the

memory footprint, which has a strong impact on scalability.

By using NNs, N3AC does not need to keep track of the

expected reward for each individual state-action Q (s, a), but

it only stores the weights of the NNs. Indeed, NNs capture the

dynamics of the explored system based on a small number of

weights, which are used to estimate the Q-values for all the

states of the system. This contrasts with Q-learning, which

requires to store data for each individual state. As the number

of weights, fixed by the NN layout, is much smaller than the

total number of states, this provides a much higher scalability,

specially when the number of states grows substantially. For

example, the large scale scenario evaluated in Section 7.3 has

an internal space state of around 500 thousand states, which

makes the Q-learning technique unfeasible for such a scenario.

In contrast, N3AC only requires storing state for around 400

parameters, which represents a huge improvement in terms of

scalability.

In addition to memory, the computational footprint also

has a strong impact on scalability. In order to understand the

computational load incurred by N3AC, we measured the time

elapsed in the computation for one iteration. Table gives the

results obtained with a NVIDIA GTX 1080 GPU platform for

different system scenarios in terms of neurons, number of base

stations and number of users. Results show that computational

times are very low, and the differences between the various

scenarios are almost negligible, which further confirms the

ability of N3AC to scale up to very large network scenarios.

Number of Number of Number of Computational
neurons base stations users time (sec)

40 50 500 0.0181
40 100 1000 0.0194
40 250 1000 0.0195

100 250 2500 0.0192
100 500 2500 0.0197
100 500 5000 0.0199

TABLE 1: Computational load for different network scenarios.

7.6 Different traffic types

Our analysis so far has focused on two traffic types: elastic

and inelastic traffic. In this section, we address a different



14

(a) ρi/ρe = 5

0.6 0.7 0.8 0.9 1.0

Relative revenue

P
D

F

N3AC

Random

1,000 random policies

10,000 random policies

(b) ρi/ρe = 10

0.6 0.7 0.8 0.9 1.0

Relative revenue

P
D

F

N3AC

Random

1,000 random policies

10,000 random policies

(c) ρi/ρe = 15

Fig. 9: The distribution of the revenues obtained by random smart policies compared to the N3AC algorithm.

Fig. 10: Revenue vs. ρi/ρe.

scenario that includes the traffic types corresponding to the

four service classes defined by 3GPP [48] (hereafter we refer

to them as class 1 to class 4, where class 1 is the one with

most stringent delay requirements). In line with the analysis

of Section 4, for this scenario with 4 different traffic types we

take the admissibility region A∗ given by (i) |T1| ≤ T max
1 ,

(ii) |T1|+ |T2| ≤ T max
2 , (iii) |T1|+ |T2|+ |T3| ≤ T max

3 , and

(iv) |T1|+ |T2|+ |T3|+ |T4| ≤ T max
4 . For this scenario, we run

the same experiment as in Section 7.3, varying the price ratio

ρ among different classes as follows: rk = ρ · rk+1 ∀k, where

rk is the revenue generated by class k. Figure 10 compares the

performance provided by the N3AC algorithm in this scenario

against the one provided by naive policies which only accept

a subset of classes. We can observe that N3AC provides very

high gains when compared to all the naive policies, which

confirms that our approach can be successfully applied to

scenarios with more traffic types, such as, e.g., the 3GPP

service classes.

8 CONCLUSION

Network Slicing will be one of the pillars of future 5G

networks. It is expected that this new paradigm will bring new

players to the business: Infrastructure Providers will sell their

resources to tenants which, in turn, provide a service to their

users. An open problem within this model is how to admit

requests from the tenants, ensuring that the corresponding

SLAs will be satisfied while maximizing the monetization

of the Infrastructure Provider. In this paper we propose a

machine learning approach to address this problem. To this

aim, we first present a model based on SMDP for the decision-

making process and formulate the optimal revenue problem.

Then, building on this model, we design an algorithm based on

Neural Network: the N3AC algorithm. Our evaluation shows

that N3AC (i) performs close to the optimal under a wide

range of configurations, (ii) substantially outperforms naive

approaches as well as smart heuristics, and (iii) only requires a

few hundred of iterations to converge to optimal performance.

Furthermore, N3AC scales to large scenarios and can be used

in practical settings.
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