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Abstract. Land models are essential tools for understanding and predicting terrestrial processes and climate–

carbon feedbacks in the Earth system, but uncertainties in their future projections are poorly understood. Im-

provements in physical process realism and the representation of human influence arguably make models more

comparable to reality but also increase the degrees of freedom in model configuration, leading to increased para-

metric uncertainty in projections. In this work we design and implement a machine learning approach to globally

calibrate a subset of the parameters of the Community Land Model, version 5 (CLM5) to observations of car-

bon and water fluxes. We focus on parameters controlling biophysical features such as surface energy balance,

hydrology, and carbon uptake. We first use parameter sensitivity simulations and a combination of objective

metrics including ranked global mean sensitivity to multiple output variables and non-overlapping spatial pat-

tern responses between parameters to narrow the parameter space and determine a subset of important CLM5

biophysical parameters for further analysis. Using a perturbed parameter ensemble, we then train a series of

artificial feed-forward neural networks to emulate CLM5 output given parameter values as input. We use annual

mean globally aggregated spatial variability in carbon and water fluxes as our emulation and calibration targets.

Validation and out-of-sample tests are used to assess the predictive skill of the networks, and we utilize permu-

tation feature importance and partial dependence methods to better interpret the results. The trained networks

are then used to estimate global optimal parameter values with greater computational efficiency than achieved

by hand tuning efforts and increased spatial scale relative to previous studies optimizing at a single site. By de-

veloping this methodology, our framework can help quantify the contribution of parameter uncertainty to overall

uncertainty in land model projections.

1 Introduction

Land models were originally developed to provide lower

boundary conditions for atmospheric general circulation

models but have evolved to simulate important processes

such as carbon cycling, ecosystem dynamics, terrestrial hy-

drology, and agriculture. Including these societally relevant

processes helps provide insight into potential impacts on hu-

mans and ecosystems but also introduces additional sources

of uncertainty in model predictions. This uncertainty is

largely driven by a combination of insufficient observations

and incomplete knowledge regarding mathematical represen-

tations of these processes. At the same time, adequately pre-

dicting terrestrial processes and climate–carbon feedbacks

relies on improving these models and their predictive capa-

bilities while minimizing sources of model error (Bonan and

Doney, 2018).

For example, much of the uncertainty in projections of

the terrestrial carbon cycle comes from differences in model

parameterizations (Friedlingstein et al., 2006; Booth et al.,

2012). Looking across 11 carbon-cycle climate models all

forced by the same future climate scenario, Friedlingstein

et al. (2014) found that not only was the magnitude of the

land–atmosphere carbon flux different across models, but
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there was also disagreement in the sign, implying that the

land could be either a net carbon sink or source by the end

of the century. The model spread in predictions of land–

atmosphere carbon fluxes was found to be strongly tied to

process representation, such as model treatment of carbon

dioxide fertilization and the nitrogen cycle. This situation

has remained unchanged in the latest iteration of the Climate

Model Intercomparison Project (CMIP6) (Arora et al., 2020).

There are several different sources of uncertainty in Earth

system models. Variations in initial conditions produce inter-

nal variability uncertainty, mimicking internal climate pro-

cesses including stochastic weather noise. Differences in im-

posed forcing through future scenarios or boundary con-

ditions produce forcing uncertainty, representing the un-

certainty in predicting the pathway of future carbon emis-

sions. Inherent model uncertainty encompasses uncertainty

in model structure and parameters and represents the vari-

ous choices in how models use mathematical abstractions of

physics, chemistry, and biology to represent processes within

the Earth system. When contrasting land versus ocean carbon

cycle uncertainty over time, Lovenduski and Bonan (2017)

found that while uncertainty in the forcing dominates the

ocean carbon cycle, the land carbon cycle is dominated by

uncertainty in model structure and parameters.

Parametric uncertainty in land models has been tradition-

ally explored through experimentation with different param-

eter values to test how variations impact resulting model pre-

dictions (e.g., Bauerle et al., 2014; Fischer et al., 2011; Göh-

ler et al., 2013; Hawkins et al., 2019; Huo et al., 2019; Ric-

ciuto et al., 2018; White et al., 2000; Zaehle et al., 2005).

Hand tuning parameter values can be computationally ineffi-

cient, requiring many model simulations and large amounts

of computer time, especially when the spatial domain is large

or global. Single point simulations provide a lower compu-

tational cost and the ability to more easily run large ensem-

bles; however, results from parameter estimation at a single

site may not be transferable to other regions due to differ-

ences in climate, soil, and vegetation types (Post et al., 2017;

Cai et al., 2019; Huang et al., 2016; Lu et al., 2018; Ray

et al., 2015). Undirected model calibration can be limited in

its ability to objectively assess whether the optimal parame-

ter configuration has been found due to the ambiguous and

subjective nature of the hand tuning process (Mendoza et al.,

2015; Prihodko et al., 2008). A machine learning approach

can help streamline this process by providing increased com-

putational efficiency and reduced analysis time as well as ob-

jective methods to assess calibration results (Reichstein et al.,

2019). Artificial feed-forward neural networks are a type of

machine learning algorithm that can learn relationships be-

tween input and output data (Russell and Norvig, 1995; Ha-

gan et al., 1996; Mitchell, 1997). By using neural networks to

build a surrogate model that emulates the behavior of a land

model, additional parameter values can be tested and opti-

mized quickly and efficiently without running the full model,

thus more effectively exploring the parameter space (Sander-

son et al., 2008; Knutti et al., 2003).

In this work we seek to better understand land model un-

certainty through variations in parameter choices. By explor-

ing the CLM5 biophysical parameter space and determining

sensitive parameters, we investigate the role that parameter

choices play in overall model uncertainty. We first narrow

the parameter space following a series of one-at-a-time sen-

sitivity simulations assessed with objective metrics by rank-

ing global mean sensitivity to multiple output variables and

searching for low spatial pattern correlations between param-

eters. With a candidate list of important CLM5 biophysical

parameters, we use model results from a perturbed parame-

ter ensemble (PPE) to train a series of artificial feed-forward

neural networks to emulate a subset of the outputs of CLM5.

Here we utilize supervised learning, where the neural net-

work is trained on known model parameter values and sim-

ulation output from the PPE. The networks are trained to

predict annual mean spatial variability in carbon and wa-

ter fluxes, given biophysical parameter values as input. The

trained networks are then applied to globally estimate opti-

mal parameter values with respect to observations, and these

optimal values are tested with CLM5 to investigate changes

in model predictive skill.

2 Model simulations and parameter selection

2.1 Community Land Model, version 5

For this work we use the latest version of the Community

Land Model, CLM5 (Lawrence et al., 2019). We use the

“satellite phenology” version of the model where vegetation

distributions and leaf and stem area indices (LAI) are pre-

scribed by remote sensing data (Bonan et al., 2002), thus re-

ducing the degrees of freedom by turning off processes that

in fully prognostic mode lead to the prediction of LAI. Veg-

etated land units in CLM are partitioned into up to 15 plant

functional types (PFTs) plus bare ground. Some model pa-

rameter values (those associated with plant physiology) vary

with PFT, an important consideration for this work. We se-

lect parameters associated with biogeophysical processes in

CLM, such as surface energy fluxes, hydrology, and pho-

tosynthesis. Parametric uncertainty of biogeochemical pro-

cesses in CLM5 (vegetation carbon and nitrogen cycling) un-

der carbon dioxide and nitrogen fertilization scenarios were

explored by Fisher et al. (2019), though that study did not

include an optimization component.

We run the model globally with a horizontal resolution

of 4◦ in latitude and 5◦ in longitude. This coarse resolu-

tion is intended to maximize computational efficiency and

allow for a greater number of ensemble members in both

the sensitivity simulations and the perturbed parameter en-

semble. CLM is forced by the Global Soil Wetness Project,

Phase 3 (GSWP3) meteorological forcing data, repeatedly

sampled over the years 2000–2004. These years are cho-
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sen to provide a consistent 5-year period of present-day cli-

mate forcing for each simulation. GSWP3 is a reanalysis-

based product providing 3-hourly precipitation, solar ra-

diation, wind speed, humidity, downward longwave radia-

tion, and bottom atmospheric layer temperature and pressure

(http://hydro.iis.u-tokyo.ac.jp/GSWP3/, last access: October

2020). Each CLM simulation is run for 20 years, with the last

5 years used in the analysis. The first 15 years are used as

spin-up to equilibrate the soil moisture and soil temperature

(Fig. S1 in the Supplement). All simulations reach equilib-

rium after 15 years.

2.2 Parameter sensitivity simulations

We begin with a set of parameter sensitivity simulations to

explore the effect of one-at-a-time parameter perturbations

for 34 CLM5 biophysical parameters, the results of which

will inform the selection of a narrowed list of key parame-

ters to utilize in the emulation and optimization steps. Initial

parameter selection of the 34 parameters is based on iden-

tifying tunable quantities in the model which are important

for the calculation of biophysical processes, including evap-

otranspiration, photosynthesis, and soil hydrology. These 34

parameters include a mix of empirically derived parameters

(10) and parameters that describe biophysical properties (24).

Parameter ranges are based on an extensive literature review

and expert judgment, utilizing observational evidence when-

ever possible (Tables S1 and S2 in the Supplement, and ref-

erences therein). We run two model simulations for each pa-

rameter using the setup described above, one simulation us-

ing the minimum value of the parameter sensitivity range and

one using the maximum value. Ten of the parameters vary

with PFT and thus have PFT-specific sensitivity ranges that

are applied in these simulations. In most cases, these PFT-

varying parameters are uniformly perturbed across PFTs by

the same perturbation amount relative to their default value

(e.g., ±20 %). This approach accounts for the fact that the

default values for a given parameter may vary across PFTs.

For some parameters where the default values do not vary

much across PFTs, all PFTs are perturbed to the same min-

imum or maximum value. Table S2 shows the details of the

minimum and maximum values used for each parameter in

the one-at-a-time sensitivity simulations, including the per-

turbation amounts for PFT-varying parameters.

We use seven different model outputs to assess the sen-

sitivity of the 34 parameters. These outputs are gross pri-

mary production (GPP), evapotranspiration (ET), transpira-

tion fraction (TF = transpiration / ET), sensible heat flux, soil

moisture of the top 10 cm, total column soil moisture, and

water table depth. These output fields are selected to span

the relevant biogeophysical processes in the model. To nar-

row the parameter space and identify candidate parameters

for further uncertainty quantification, we use multiple param-

eter selection criteria. First we assess the sensitivity of each

parameter to the seven different outputs using a simple sensi-

tivity metric. We call this the parameter effect (PE), detailed

in Eq. (1), where Xp, max and Xp, min represent the model

output of a quantity X from the simulations using the maxi-

mum and minimum values of parameter p, respectively. We

calculate the 5-year annual mean PE at each grid point and

then take the global mean of the resulting quantity.

PE(p) =
∣

∣Xp, max − Xp, min

∣

∣ (1)

In order to account for differences in units between vari-

ables, the global mean PE values for each parameter are

ranked across each output variable from highest to lowest,

with the average of the individual ranks across all seven out-

puts used to assess overall sensitivity rank. The PE ranks for

each parameter and output variable are shown in Table S3,

along with the average and overall ranks. The annual mean

PE for GPP for the final six parameters is shown in Fig. 1.

The second selection criterion uses spatial pattern correla-

tions to maximize the sampled range of model physics and

responses in the final parameter set. Filtering parameters by

spatial pattern correlations helps avoid the situation where all

the selected parameters control behavior in a certain region

(e.g., the tropics but not at the mid or high latitudes). We

compute this metric by calculating the spatial pattern corre-

lation of the PE between all pairwise parameter combinations

for each output. This method reveals parameters with similar

spatial pattern responses and provides an additional means

by which to narrow the parameter space. While one-at-a-time

sensitivity studies do not explicitly account for parameter in-

teractions (Rosolem et al., 2012), by calculating the spatial

correlation between parameters and selecting those with low

correlations, we indirectly account for some of these poten-

tial interactions.

Equation (2) details the pattern correlation calculation,

where PC(p,q)v is the spatial pattern correlation of the PE

between parameters p and q for a given output variable v.

The pairwise pattern correlations are then summed across the

seven output variables (V = 7). A visual representation of the

sum of pattern correlations across outputs for each parame-

ter combination is shown in Fig. S2. Then the average pattern

correlation is calculated across parameters (Q = 34), result-

ing in a single PC value for each parameter p. (This is equiva-

lent to taking the average across rows or columns in Fig. S2.)

The average pattern correlations are also ranked across pa-

rameters, though this time the ranks are computed from low-

est to highest as we are looking for parameters which ex-

hibit low spatial correlation between each other to sample

the broadest possible space of model processes. The average

pattern correlations and pattern correlation ranks for each pa-

rameter are shown in Table S4.

PC(p) =
1

Q

Q
∑

q=1

V
∑

v=1

PC(p,q)v (2)

The pattern correlation ranks are averaged with the PE

ranks to help inform the final list of candidate parameters
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Figure 1. Annual mean parameter effect (PE) for GPP (µmolCO2 m−2 s−1) for the final six parameters.

(Table S5). We aim for a balance between parameters with

high PE values across outputs and low spatial pattern corre-

lations with other parameters. In this way we are selecting

sensitive parameters in the model that do not all control the

same behavior and looking across a range of outputs to in-

form this selection. We also prioritize parameters for which

we are able to use observational data to better inform their

uncertainty ranges, in particular for those parameters that

vary with PFT. These results are detailed in Sect. 2.3. As a

result of these parameter selection criteria, a list of 6 candi-

date parameters is chosen from the original set of 34. These

six parameters, along with a short description of each, are

shown in Table 1. A six-dimensional space was found during

this study to be the practical limiting size for optimization,

as we are motivated to include the most important param-

eters while also considering computational constraints. We

first select the top four parameters by PE rank (medlynslope,

kmax, fff, and dint). We then select dleaf because it has a rel-

atively high parameter effect (PE rank = 10) and because we

are able to use observations to generate new PFT-specific un-

certainty ranges for this parameter. All five of these param-

eters are among the top 50 % of parameters when looking

by average rank across PE and PC ranks (Table S5). Finally,

we select the parameter baseflow_scalar because it has the

highest overall average rank, largely due to its low spatial

pattern correlation with other parameters (PC rank = 2). Ad-

ditional information for these parameters, including their de-

fault CLM5 values, their uncertainty ranges, and references

used to determine their minimum and maximum bounds, can

be found in the tables in the Supplement.

2.3 Using observations to inform PFT-specific

parameter ranges

For some parameters that vary with PFT, we can improve

estimates of plausible ranges by incorporating additional ob-

servational data. We can then define uncertainty ranges for a

single parameter that vary in their bounds and widths across

PFTs. The first parameter we constrain is dleaf, the character-

istic dimension of leaves in the direction of wind flow. This

parameter is relevant for boundary layer dynamics and relates

to the structural form of the equation for leaf boundary layer
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Table 1. CLM5 candidate parameters selected based on sensitivity tests.

Parameter name Description Varies with PFT?

medlynslope Slope of stomatal conductance–photosynthesis relationship Yes

dleaf Characteristic dimension of leaves in the direction of wind flow Yes

kmax Plant segment maximum conductance Yes

fff Decay factor for fractional saturated area No

dint Fraction of saturated soil for moisture value at which dry surface layer initiates No

baseflow_scalar Scalar multiplier for base flow rate No

resistance. The dleaf parameter has a constant fixed value

across PFTs in the default CLM5 configuration but in the real

world would likely vary by PFT. We use the TRY plant trait

database (Kattge et al., 2011) to identify a dataset with con-

current measurements of leaf width and PFT-relevant infor-

mation (e.g., leaf type, phenology, growth form). The TRY

database included only one dataset with adequate leaf width

measurements and enough information to associate the mea-

surements with CLM PFTs. The particular dataset we use

is from Northeast China (Prentice et al., 2011), which in-

cludes a total of 409 usable measurements of leaf width,

each of which we assign to a CLM PFT. Some measure-

ments are applied across multiple CLM PFTs based on the

lack of biome variation in the dataset. Because we are utiliz-

ing measurements from one geographic location, we may not

be adequately capturing biome variation (e.g., tropical versus

temperate versus boreal PFTs), and this may impact the re-

sults. However, it is likely that this variation is small relative

to other types of PFT variation (e.g., phenology) which we

are able to capture using this dataset. Using the equations

of Campbell and Norman (1998), which relate leaf width

to dleaf by a leaf shape-dependent factor, we produce PFT-

dependent uncertainty bounds for dleaf (Table S6). These

minimum and maximum values are then applied consistently

across all PFTs for the minimum and maximum dleaf pertur-

bation simulations, respectively.

The second parameter we constrain using observational

data is medlynslope, the slope of the stomatal conductance–

photosynthesis relationship defined by Medlyn et al. (2011).

This relationship is important for determining stomatal re-

sponses to environmental changes and calculating photosyn-

thesis and transpiration. We use data from Lin et al. (2015)

to perform a combination of genus- and species-based linear

regressions of photosynthesis versus stomatal conductance to

obtain slope values (Table S7). The minimum and maximum

parameter values are taken from the set of slopes for each

PFT. The only PFT we cannot constrain using this method is

C3 Arctic grasses, due to a lack of available data. In this case

we use a ±10 % perturbation from the default medlynslope

value for C3 Arctic grasses. As with dleaf, the minimum and

maximum values are then applied simultaneously across all

PFTs for the minimum and maximum medlynslope perturba-

tion simulations.

2.4 Perturbed parameter ensemble

To generate the parameter values for a perturbed parame-

ter ensemble, we use Latin hypercube (LHC) (Mckay et al.,

2000) sampling to generate 100 unique parameter sets for

the six CLM5 parameters identified in Table 1. The parame-

ter uncertainty ranges are normalized to uniform linear pa-

rameter scalings such that the sampling generates random

numbers between 0 (minimum of uncertainty range) and 1

(maximum of uncertainty range). This sampling allows us to

include unique uncertainty ranges for each PFT for the PFT-

specific parameters without increasing the dimensionality of

the problem, albeit while assuming no cross-PFT interactions

(Fer et al., 2018). We then run 100 simulations of CLM5 us-

ing the LHC-generated parameter sets and the same setup

outlined at the beginning of this section. We use the result-

ing model output, along with the parameter scaling values, to

build and train a set of neural networks to emulate the land

model.

3 Land model emulation

In order to adequately explore the parameter space of CLM,

we seek to emulate the output of the land model using a

machine learning-based emulator. This approach will allow

us to perform global model calibration in an objective way

while reducing computational demands.

3.1 Neural network training and validation

We train feed-forward artificial neural networks to emulate

the output of the perturbed parameter ensemble described

above (hereafter referred to as the PPE simulations). These

networks consist of a series of fully interconnected layers,

each of which is made up of a number of nodes, or connected

units (Fig. 2). The first layer is the input layer, and here the

input values to the networks are the six normalized parame-

ter scaling values (pi) used in generating the CLM PPE. The

last layer is the output layer or the CLM output we would like

to predict. Our output layer consists of three outputs (zm),

which will be described in detail below. In between the input

and output layers there are a variable number of “hidden lay-

ers” which can have different numbers of nodes within them

(Mitchell, 1997). Specified activation functions transform the
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input values into the values at each node in the hidden lay-

ers (n1
j and n2

k) and the output layer (zm). Weights and biases

associated with the nodes and the interconnections are calcu-

lated during the training process based on chosen activation

functions. An optimization algorithm minimizes the error be-

tween actual model output and network predictions and up-

dates the weights and biases using backpropagation (Russell

and Norvig, 1995).

The output values for training the neural network are de-

rived from the global 5-year mean maps from the PPE sim-

ulations. To reduce the dimensionality of the output vari-

ables while preserving information on the spatial patterns ob-

served globally, we calculate empirical orthogonal functions

(EOFs) (Lorenz, 1956) and principal components (PCs) (Jol-

liffe, 2002) of area-weighted GPP and latent heat flux (LHF)

anomalies for each ensemble member and use these as the

targets for emulation. In this way we can emulate spatial vari-

ability of global fields without having to explicitly represent

model output at each grid point, which would require a more

complex network design. GPP and LHF are chosen based on

the availability of globally gridded observations to calibrate

the emulator predictions. We use singular value decompo-

sition (SVD) to generate the EOFs and PCs for each vari-

able (Hannachi et al., 2007). The SVD calculation is shown

in Eq. (3), where X represents the area-weighted anoma-

lies where we have reshaped the output into two dimensions

(number of ensemble members by number of grid points), U

represents the variability across space (number of ensemble

members by number of modes), s is a diagonal matrix where

the diagonal elements are the singular values for each mode,

and V represents the variability across ensemble members

(number of modes by number of grid points).

X = U × s × V (3)

The first three modes of variability are used for each out-

put variable, representing over 95 % of the spatial variance

in each case. We choose to truncate at three modes because

the higher modes are noisy and we are unable to sufficiently

emulate them. The resulting ensemble PC distributions (col-

umn vectors of U, shown in Fig. 3) represent the output data

we are training the emulators to predict (zm in Fig. 2), with

separate networks constructed for GPP and LHF. We choose

to construct separate neural network emulators for GPP and

LHF based on performance and ease of interpretation. To fur-

ther investigate the relationships between the inputs and out-

puts of the emulator, we plot the PCs versus parameter scal-

ing values from the PPE for GPP and LHF in Figs. S3 and S4,

respectively. Linear and nonlinear relationships are evident in

both plots for certain parameters, demonstrating the impor-

tance of including different activation functions within the

neural network architecture to account for these diverse rela-

tionships. The neural network architecture will be discussed

in more detail below.

The associated EOF spatial patterns (reshaped row vec-

tors of V) are shown in Fig. 4. The maps show that the first

mode is primarily a tropical signal for both GPP and LHF,

with different spatial patterns evident in the second and third

modes. The second mode of GPP and third mode of LHF

show similar spatial patterns and likely reflect arid locations.

The second mode of LHF is similar to the first mode of LHF

and could be a variation on a tropical signal, with some ad-

ditional mid-latitude influences reminiscent of an east–west

dipole pattern. The third mode of GPP is unstructured, noisy,

and relatively unimportant as this mode is responsible for

only about 1 % of the total GPP spatial variance. Despite

using EOFs to preserve some spatial information, there will

still be regional biases present in the calibration results due

to the outsized influence of the tropics on global carbon and

water cycles. In addition, we have spatially masked the low

horizontal resolution model output to match the gridded ob-

servations, in anticipation of the global calibration proce-

dure. (The observations will be discussed in more detail in

Sect. 4.1.) This leads to the absence of EOF signals in cer-

tain locations in Fig. 4 (e.g., Sahara, Madagascar, Papua New

Guinea). These details will also impact the calibration proce-

dure in terms of which geographic areas the model is tuned

to.

We utilize 60 % of the ensemble members as training,

20 % for validation during the training process, and keep the

remaining 20 % completely separate for out-of-sample test-

ing. We use the mean squared error (MSE) between the net-

work predictions and the actual model output as our skill

metric for training the emulator. Our calculation of MSE is

detailed in Eq. (4), where n represents the number of ensem-

ble members, U i represents the actual model output for en-

semble member i (calculated in Eq. 3), and Û i represents

the associated neural network predictions. We calculate the

MSE across ensemble members and modes for each subset

of the data (training, test, and validation) and compare em-

ulator skill during training with test data and out-of-sample

prediction using the validation set. We also consider linear

regressions between U and Û for each mode in the validation

set and aim to maximize the r2 values for all three modes.

MSE(U, Û) =
1

n

n
∑

i=1

(U i − Û i)
2 (4)

During the training process, we iterate on different net-

work configurations to determine the values of some of the

important neural network “hyperparameters”, such as num-

ber of hidden layers, number of nodes in each layer, acti-

vation functions between each layer, optimization algorithm

and associated learning rate, batch size, and number of train-

ing epochs (Breuel, 2015; Kurth et al., 2018). We find that

a network with two hidden layers improves the performance

over a single hidden layer (not shown). We also find that a

combination of linear and nonlinear activation functions pro-

vides the best performance, relative to a single type of acti-

vation function. We utilize rectified linear activation for the

first hidden layer and hyperbolic tangent for the activation
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Figure 2. Representative neural network architecture, with input values as land model parameters pi , three output values zm, and two hidden

layers with j and k nodes, respectively.

into the second hidden layer (which improved over a logistic

sigmoidal function) (Krizhevsky et al., 2017; Breuel, 2015).

Finally, we use a linear activation to transition from the sec-

ond hidden layer into the output layer. We use some regular-

ization in the form of the L2 norm to prevent overfitting and

improve generalization (Belkin et al., 2019; Bengio, 2012).

We find that the optimization algorithm RMSprop (Tieleman

et al., 2012), which utilizes an adaptive learning rate, greatly

improves the predictive skill of the network relative to opti-

mization using stochastic gradient descent.

Once the basic structure of each network is defined (two

hidden layers with linear and nonlinear activation functions),

we test initial learning rates for the RMSprop optimizer and

find that a value of 0.005 provides the best tradeoff between

computational learning efficiency and accuracy of predic-

tions (Bengio, 2012; Smith, 2017). We also test different

batch sizes, defined as the number of samples used to esti-

mate the error gradient at each epoch. Here we also utilize

early stopping, where the number of epochs is limited based

on the stability of the errors, another method commonly ap-

plied to combat overfitting (Belkin et al., 2019; Zhang et al.,

2017). A batch size of 30 helps minimize errors during train-

ing and improves the ability of the emulator to generalize

(Keskar et al., 2017; Bengio, 2012).

With the majority of our hyperparameters set, we then it-

eratively test the performance of the emulator using between

5 and 15 nodes in each layer and select the best performing

configurations based on the mean squared error and predic-

tive skill. For the 5–10 best configurations, we randomly re-

sample the training data 100 times to test the stability of these

configurations. This resampling also helps avoid overtraining

the network, an important factor considering our small sam-

ple size. Our final network configuration is selected based

on a combination of high predictive skill and low variabil-

ity of errors and correlation coefficients. Scatterplots com-

paring CLM model output with emulator predictions for the

first three modes of variance for GPP and LHF are shown

in Fig. 5. We further assess emulator performance by ana-

lyzing the combined mode predictions to show the error in-

troduced by the EOF approximation and the combined error

introduced by the EOF approximation and the emulation. We

calculate the root mean squared error (RMSE) across spatial

grid points for GPP and LHF relative to FLUXNET-MTE

observations of GPP and LHF (Jung et al., 2011). The obser-

vations are sampled over the same years as the model sim-

ulations (2000–2004), and we calculate the area-weighted

anomalies of the observations relative to the PPE ensemble

mean. The RMSE is calculated for the original CLM PPE

and the reconstructed climatology from the neural network

(NN) predictions. We further decompose this error by also

calculating the RMSE relative to observations for the re-

constructed CLM PPE based on truncating at the first three

modes of variability. Figure 6a, b show the error introduced

by the EOF approximation, and Fig. 6c, d show the total

error from the EOF approximation and the emulation com-

bined. Comparing these top and bottom panels, most of the

error comes from the emulation rather than the EOF ap-

proximation for both GPP and LHF. However, the emulation

performance when viewing the combined mode predictions

is still comparable to the performance across individual PC

modes as shown in Fig. 5. Figure 6e shows the combined

GPP and LHF normalized error performance relative to ob-
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Figure 3. Distributions of the first three principal components (PCs) across CLM PPE ensemble members for GPP (a, b, c) and LHF (d, e, f).

The percent variance explained by each mode is shown in each panel in the upper right corner.

servations, comparing the NN predictions with the original

CLM PPE. The normalized error is calculated in the form

of a weighted cost function, which will be discussed further

in Sect. 4.2. We also perform a history matching type ex-

periment (Williamson et al., 2015) in this section to study

optimal regions of the parameter space, and for reference the

error threshold for this experiment is shown as a vertical ma-

genta line in this panel. All panels of Fig. 6 also show the

error resulting from the model with default parameter values

for comparison.

To provide another check on the performance of the emu-

lator, we produce a second PPE using 100 different random

combinations of parameter values for the same set of six pa-

rameters, also generated using Latin hypercube sampling but

with a different LHC than the first PPE. We then use the em-

ulator trained on the first PPE to test the predictive skill using

the information from the second PPE. The predictive skill is

comparable, especially for the first two modes, which pro-

vides more confidence in the trained emulator and helps sup-

port the notion that the network is not overtrained (Fig. S5).

Following Fig. 6, we also plot the RMSE comparisons and

error breakdown for the second CLM PPE relative to obser-

vations (Fig. S6). Again, most of the error comes from the

emulation rather than the EOF approximation, and the pre-

dictive skill is comparable to the first PPE.

3.2 Interpretation of emulator performance and skill

We use multiple interpretation methods to better understand

how the neural network emulator makes its predictions and

what it has learned (McGovern et al., 2019). The first method

we use is called permutation feature importance, which is an
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Figure 4. Associated spatial patterns of the first three EOFs for GPP (a, b, c) and LHF (d, e, f).

approach to ranking the importance of various model pre-

dictors. Permutation feature importance tests the importance

of different inputs (in this case, land model parameters) in

the predictive skill of the neural network (Gagne et al., 2019;

Molnar, 2019). Feature importance is calculated by randomly

shuffling the values of one parameter input while preserving

others and testing the resulting performance of the emula-

tor. The goal of this method is to determine the impact on

emulator skill when the statistical link between a predictor

input and the output is severed. The skill metric we use for

these tests is the mean squared error between the predictions

and the actual values (Eq. 4). A larger value implies that the

parameter is more important to the predictive skill of the em-

ulator, because when the link between this particular param-

eter and the emulator output is broken, the performance de-

grades and the prediction error increases. We plot the results

of the permutation feature importance tests for PC1 of GPP

and LHF as bar charts in Fig. 7, with larger bars reflecting

greater prediction error and thus implying important infor-

mation is stored in that parameter. We also plot the original

emulator skill (i.e., the mean squared error without any per-

mutations) to better compare the permutation results relative

to the control with no permutations. For parameters with er-

ror very close to the original emulator skill, this implies that

either these parameters are not very important to the predic-

tive skill of the emulator or that the information in these pa-

rameters is present in a different predictor (McGovern et al.,

2019). We find the permutation results are different for the

first modes of GPP and LHF, where the skill of the GPP em-

ulator is dominated by one parameter in particular, kmax,

and none of the other parameters is particularly important.

However, for LHF, there are several important parameters,

including medlynslope, kmax, and dint. These results change

when you look at the higher modes of variability, demonstrat-

ing that there are different parameters important to predicting

different modes of GPP and LHF (Fig. S7).

The second method we use is partial dependence plots,

a technique to visualize the partial dependence of the pre-

dictions on an individual input variable (Friedman, 2001).

Partial dependence plots further the analysis of permutation

feature importance tests by helping to illuminate why a cer-

tain parameter is important (McGovern et al., 2019; Molnar,

2019). These plots show where in the uncertainty range a

given parameter is most important to the skill of the emula-

tor. To visualize these results, we first generate a set of 10

fixed values for each parameter by evenly sampling its un-

certainty range. Taking one parameter and one fixed value at

a time, we then replace all the values for that parameter in the

original LHC-generated parameter sets with the fixed value.

In this way we are removing any skill from that parameter

across the entire ensemble. We then generate predictions us-

ing the trained emulator where we have artificially fixed one

parameter to the same value across all ensemble members.

We repeat for each fixed value and each parameter and cal-

culate separately for GPP and LHF. We then average the pre-

dictions across the emulator output to average out the effects

of the other predictors. We plot the PC1 results for each pa-

rameter in Fig. 8, where each line represents the average pre-

diction across emulator output for the 10 fixed values (shown

as points on the bold lines). In this way we can see how the

predictions vary across the uncertainty ranges for each pa-

rameter. Regions of non-zero slope in the partial dependence

plots indicate where in the parameter range the emulator is

most sensitive. For example, we see that it is the low end of

kmax values that has the greatest impact on the skill of the

emulator for PC1 GPP. For PC1 LHF, the parameter med-
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Figure 5. Scatterplot of predicted PC1, PC2, and PC3 for GPP (a, b, c) and LHF (d, e, f) from the neural network emulators versus actual

values from CLM output. The one-to-one line is shown in each panel as a dashed black line, and r2 values from a linear regression fit are

included in each panel in the upper left corner.

lynslope is important fairly consistently across its range of

values. As with feature importance, these results change for

the higher modes and highlight the importance of different

parameters (Fig. S8 and S9).

3.3 Ensemble inflation

As an additional test of the emulation performance, we uti-

lize the trained neural networks to artificially inflate the PPE

ensemble size. Here we are exploiting the full power of em-

ulation, in that we can quickly predict CLM output given

new and unseen parameter values. To test the emulation, we

generate 1000 random parameter sets using Latin hypercube

sampling to more densely span the uncertainty ranges for the

six parameters of interest. These parameter sets are fed into

the trained emulators to produce predictions for the first three

modes of variability for GPP and LHF. The emulation pro-

cess takes seconds, whereas running CLM globally with this

setup to test a given parameter set would take several hours

per simulation. The distributions of predictions from the in-

flated ensemble relative to the original PPE for GPP and LHF

are shown in Fig. S10. We see that the predictions with the in-

flated ensemble replicate both the overall range and the char-

acteristic shape of the original CLM PPE distributions (see

also Fig. 3 for the original PPE distributions).

4 Parameter estimation

We next apply our trained emulator of CLM to globally opti-

mize parameter values based on best fit to observations. The
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Figure 6. Scatterplot of root mean squared error (RMSE) across spatial grid points for GPP (a, c) and LHF (b, d) from the reconstructed EOF

approximation relative to observations (a, b) and the reconstructed neural network (NN) predictions relative to observations (c, d) versus

RMSE from CLM PPE relative to observations. Panel (e) shows the combined GPP/LHF normalized error relative to observations for the

NN predictions versus the CLM PPE. The error threshold for the history matching experiment described in Sect. 4.2 is shown as a vertical

magenta line. The errors resulting from the model with default parameters are shown as a black x in each panel. The one-to-one line is shown

in each panel as a dashed black line, and r2 values from a linear regression fit are included at the top of each panel.

Figure 7. Permutation feature importance test of PC1 for GPP and LHF from the neural network emulators. The top bar (in orange) shows

the mean squared error without any permutation (original model skill), and each row (in blue) shows the emulator performance when the

information from each parameter is removed, one at a time.
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Figure 8. Partial dependence plots of PC1 for GPP (red) and LHF

(blue) from the neural network emulators. Circles and triangles de-

note the fixed values used for predictions with each parameter. The

x axis shows the parameter scaling values, and the y axis shows the

average prediction of PC1.

neural network emulator can quickly produce predictions of

CLM output for a given parameter set, and we aim to opti-

mize the emulation process with the goal of reducing model

error. In this section we outline the procedure for producing

optimized parameter sets, including details of the observa-

tional datasets, construction of the cost function to minimize

model error, and optimization results including testing pa-

rameter estimates with CLM.

4.1 Observational data

Here we use the FLUXNET-MTE product (Jung et al., 2011)

to provide observational targets for our parameter estima-

tion. This dataset includes globally gridded GPP and LHF

estimates at 0.5◦ resolution from 1982 to 2008. We begin

by sampling FLUXNET monthly GPP and LHF values from

2000 to 2004 to match the years of the CLM simulations. We

regrid the observations to match the CLM output resolution

of 4◦ latitude by 5◦ longitude using bilinear interpolation.

We then calculate area-weighted anomalies for the observa-

tions, where the anomalies are calculated relative to the CLM

PPE mean. The observed anomalies are then projected into

the same EOF space as the PPE to produce observational es-

timates consistent with the output metrics used to train the

neural network. This calculation is detailed in Eq. (5), where

Xobs represents the observed anomalies, s and V are taken

from the SVD calculation for the PPE (Eq. 3), and Uobs rep-

resents the observational targets projected into the same SVD

space. We also calculate, as a reference, the default CLM

state without any variations in parameter values, where the

default values are calculated in a similar manner to the obser-

vations. We can then optimize for parameter values that min-

imize the error with respect to the observational estimates,

looking across output variables and modes of variability.

Uobs = Xobs × (s × V)−1 (5)

4.2 Cost function

With two output variables (GPP and LHF) and three modes

of variability for each, we have six targets for parameter

calibration. A key question is how to combine them into a

single cost function representing model predictive skill rela-

tive to observations. Here we calculate the normalized mean

squared error of the model predictions relative to observa-

tions, with a weighted sum over modes and a separate term

for each output variable. The cost function J (p) is detailed

in Eq. (6), where Ûv,m(p) represents the predictions from

the neural network emulator for output variable v and mode

m as a function of parameter values p. Uobs, v,m are the ob-

servational targets calculated in Eq. (5), and we normalize by

the standard deviation across all observational years (1982–

2008, represented by σ (Uobs∗, v,m)) in order to account for

natural variability using as many years as possible in this

dataset. The sum for each variable is weighted by the per-

cent variance explained by each mode (λv,m).

J (p) =

2
∑

v=1

[
3
∑

m=1

λv,m

(

Ûv,m(p) − Uobs, v,m

σ (Uobs∗, v,m)

)2
]

(6)

To explore parameter response surfaces of this cost

function, we perform a history matching type experiment

(Williamson et al., 2015). We generate an additional large

Latin hypercube parameter set with 10 million members and

predict the PCs for each member using the trained emulators.

We then compute the cost function J (p) following Eq. (6) for

each member using the emulated PCs. We subset the results,

selecting the 1000 members with the smallest normalized er-

ror as computed by the cost function. (For reference, the er-

ror threshold for this subset of parameter solutions is shown

as a vertical magenta line in Fig. 6e.) We then take each pa-

rameter pair and plot the distribution of the parameter scaling

values. Fig. 9 shows the resulting parameter space, highlight-

ing the regions where the optimal solution would apply. The
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diagonal panels show the distributions of optimal parame-

ter scaling values for each parameter. For certain parameters

(notably dleaf and baseflow_scalar), the range of values is

not well constrained by selecting parameter sets with small

normalized errors. Other parameters such as fff and dint fa-

vor the edges of their uncertainty bounds and also may not be

as well constrained by this exercise. However, for the med-

lynslope and kmax parameters, these plots show where the

optimal solutions sit relative to their uncertainty ranges, as

well as their relationships with other parameters.

4.3 Nonlinear optimization

We use the SciPy optimize function in Python to min-

imize the cost function J (p) and find optimal parameter

values (https://docs.scipy.org/doc/scipy/reference/optimize.

html, last access: October 2020). There are many different

nonlinear optimization and root finding methods available

through this package, and we test several of these algorithms

to explore their effectiveness at finding optimal parameter

values. In particular, a bounded global nonlinear optimiza-

tion approach using differential evolution produces the best

results by quickly and efficiently searching the solution space

(Storn and Price, 1997). We use random initial conditions

to initialize the algorithm and impose bounds of [0,1] for

each parameter scaling factor, representing the minimum and

maximum of the uncertainty ranges.

We also utilize other global methods such as dual anneal-

ing (Xiang et al., 1997) and simplicial homology global op-

timization (SHGO) (Endres et al., 2018) to verify the re-

sults. SHGO fails to converge on an optimal solution, while

dual annealing produces a similar result to differential evo-

lution but takes several orders of magnitude more iterations

and function evaluations. Local optimization methods such

as sequential least squares programming (SLSQP), limited-

memory bounded Broyden–Fletcher–Goldfarb–Shanno (L-

BFGS-B), truncated Newton (TNC), and trust-region con-

strained tend to get stuck at a local minimum and do not suf-

ficiently explore the parameter space. All of the above meth-

ods are referenced in the SciPy package.

To test the sensitivity of our cost function formulation, we

repeat the optimization process using an alternate cost func-

tion that removes the weighting by modes of variability (λv,m

in Eq. 6). The resulting parameter values are very similar

to the approach using a cost function with mode weighting,

demonstrating that this aspect of the cost function is not a

significant factor in finding an optimal parameter set in this

context.

4.4 CLM test case

Using the optimization results, we translate the parameter

scaling factors back to parameter values and run a test sim-

ulation with CLM. We use the same model setup as before,

spinning up the model for 15 years and using the subsequent

5 years for analysis. The results for the first three modes of

GPP and LHF are summarized in Fig. 10. The results for PC1

show that the emulator predictions (blue bars) are very close

to the results of the test case (green bars), particularly for

PC1 GPP. This feature is less apparent for PC2-3 GPP and

PC3 LHF, where the CLM test case is not able to capture the

optimized predictions as accurately, possibly due to the noisy

nature of the higher modes. Despite this mismatch, these re-

sults demonstrate another out-of-sample test of the emulator

in predicting CLM output. From the first mode of GPP and

LHF we also see that the optimized predictions do indeed

match the observations (red bars), suggesting that the emu-

lator has been successfully optimized to match observations

for this mode. Furthermore, by using the optimal parameter

values in CLM we are able to capture the predictive skill of

the emulator and minimize model error. The results for the

higher modes vary, but in general the CLM test case with op-

timal parameters moves the model closer to observations, es-

pecially when compared with the default model performance

(black bars).

To further investigate the spatial response, we compare the

mean bias maps for the optimized CLM test case and the de-

fault CLM configuration relative to observations (Fig. 11).

We also calculate the global and regional mean biases for

GPP and LHF and summarize these in Table 2. We see that

the optimized model has some areas of improvement and

some areas of degradation when comparing these results with

the default model bias. For GPP we are able to decrease the

positive biases in the Sahel and other parts of Africa, but in

turn the negative bias in the Amazon increases. Positive bi-

ases in LHF become negative in the calibrated model, though

some areas do show decreases in the bias magnitude. We

also calculate the differences for sensible heat flux (FSH),

an output variable that we did not calibrate to using the CLM

emulator. Encouragingly, we see that areas of negative FSH

bias in India and Africa decrease in magnitude with the op-

timized model, though some areas of positive bias increase.

This result demonstrates we are able to achieve some cross-

variable benefits to parameter calibration beyond the objec-

tives that were selected for emulation. We also include the

mean bias maps for the optimized CLM test case using the

alternate cost function formulation that removes weighting

by modes of variability (Fig. S11). As stated above, the re-

sults are nearly indistinguishable due to the close similarity

in the optimal parameter values selected with this alternate

cost function.

To highlight the responses in different regions, we also cal-

culate the monthly climatology of GPP and LHF for four

different regions representing different biomes (Figs. S12

and S13). The results for the Amazon show that we are un-

able to capture the phase of the seasonal cycle for GPP with

either the default or optimized model, and in fact the seasonal

cycle in the optimized model shifts further away from the ob-

servations. The seasonality of LHF in the Amazon is better

captured, but the overall magnitude in the optimized model is
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Figure 9. The parameter space of optimal solutions from an additional large emulated ensemble. Here we show a subset of 1000 parameter

sets with the smallest predicted normalized error from that ensemble. The axes of these figures show the parameter scaling values, except for

the y axes of the diagonals which show the distributions of optimal scaling values for each individual parameter.

too low. The other regions show some marginal improvement

with the optimized model relative to the default model, par-

ticularly for the spring and fall in the Sahel and the summer

in the eastern US for LHF. LHF in Siberia does not change

much at all with the optimized model, though summer GPP

does marginally improve there. Winter GPP in the Sahel im-

proves, and while summer GPP gets closer to observations,

it is still biased high.

5 Discussion and conclusions

In this study we utilize machine learning to explore parame-

ter uncertainty in a global land model (CLM5). We begin by

narrowing the parameter space within our domain of interest,

using one-at-a-time sensitivity simulations to identify impor-

tant biogeophysical parameters in CLM. We utilize multiple

methods to assess importance, including global mean sensi-

tivity to multiple model outputs and spatial pattern correla-

tions between parameters across outputs. Our goal is to select

overall important parameters that exert control on outputs
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Figure 10. PC1, PC2, and PC3 for GPP (a) and LHF (b) comparing observations, model simulations, and emulator predictions. Observational

estimates from FLUXNET are shown as red bars, CLM default values are shown as black bars, the optimized NN predictions are shown as

blue bars, and the results of the CLM test case with optimal parameters are shown as green bars.

Table 2. Global and regional mean biases for GPP and LHF comparing CLM with optimized parameters and the CLM default configuration

with observations.

Spatial region Comparison GPP LHF

(gC m−2 d−1) (W m−2)

Global mean Optimized CLM – observations −0.042 −2.304

Default CLM – observations 0.359 3.905

Amazon (0–10◦ S, 70–50◦ W) Optimized CLM – observations −1.425 −7.069

Default CLM – observations −0.605 8.164

Sahel (5–15◦ N, 0–20◦ E) Optimized CLM – observations 0.614 −4.228

Default CLM – observations 1.448 6.691

Eastern US (35–45◦ N, 100–80◦ W) Optimized CLM – observations −0.264 −3.386

Default CLM – observations 0.008 1.011

Siberia (60–70◦ N, 90–110◦ E) Optimized CLM – observations 0.132 −2.022

Default CLM – observations 0.220 −2.251

that cover as much of the planet as possible. By perturbing

parameters one at a time we do not include potential param-

eter interactions, which are a known factor in complex land

models (Rosolem et al., 2012). However, by utilizing spatial

pattern correlations as a metric for parameter selection, we

weight our selection towards parameters without such strong

correlations. We also incorporate updated observational data

to better constrain uncertainty ranges of sensitive parame-

ters that vary with plant functional type. While it is difficult,

in such a process-rich model, to completely avoid relying on

expert judgement to identify parameters and their uncertainty

ranges, we use this multi-step assessment process in order to

be as objective as possible in parameter selection. By iden-

tifying important biophysical parameters in CLM5, our ap-

proach helps identify which processes are important for accu-

rate land modeling and can help inform observational studies

that aim to better quantify these parameters.

With our narrowed set of six parameters, we generate a

perturbed parameter ensemble with CLM to span the un-

certainty ranges of all parameters and explore parameter in-

teractions. The results of this ensemble show that there are

a variety of linear and nonlinear relationships evident be-

tween parameters and output fields, highlighting the impor-

tance of capturing these diverse relationships. This ensemble

is then used to train a set of feed-forward artificial neural

networks to act as emulators of CLM. Hyperparameter tun-

ing along with techniques like regularization, early stopping,

and resampling of the training data help instill confidence

that the neural network is generalizable and not overfitted.

While there is still much debate about establishing a proce-

dure for this kind of hyperparameter optimization, we again
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Figure 11. Annual mean bias maps comparing the CLM with optimized parameters (left column) and the CLM default configuration (right

column) with observations. The differences are calculated for the calibrated output variables (GPP and LHF), along with sensible heat flux

(FSH), an additional model output that we did not calibrate to.

strive to be as objective and transparent as possible in the

construction, training, and validation of the neural network

emulators. It is possible our results would change if we had

utilized a single neural network emulator to simultaneously

predict GPP and LHF, and a single network may be better at

preserving correlations between output fields. However, we

would be less able to clearly identify which parameters are

important to the skill of predicting GPP and LHF individu-

ally, as we have shown here.

Our final network configurations provide good predictive

skill in emulating the first three modes of annual mean spa-

tial variability for GPP and LHF. We show that the EOF ap-

proximation of truncation at the first three modes does not

introduce much error, and the minimal error that is present

comes from the emulation of those modes by the neural net-

works. We see comparable performance using a second CLM

PPE with the trained neural networks, which gives us ad-

ditional confidence in the predictive skill of the emulator.

While our training dataset is small due to the limited en-

semble size, it is encouraging to see that the networks are

able to generalize to the second PPE with similar skill. We

also explore different interpretation methods such as fea-

ture importance and partial dependence plots to better un-

derstand the inner workings of the neural networks as emula-

tors for CLM. These methods help illuminate which param-

eters are most important to the predictive skill of the emu-

lator and why they are important. In particular, we find that

the parameter kmax, related to plant hydraulic conductivity

(Kennedy et al., 2019), is most important in the predictive

skill for the first mode of GPP. Furthermore, kmax shows a

strong nonlinear response in predictive skill where the em-

ulator is most sensitive to values at the low end of its un-

certainty range. The parameter medlynslope, or the slope of

the stomatal conductance–photosynthesis relationship (Med-

lyn et al., 2011), is important for the first mode of LHF,

roughly uniformly across its full uncertainty range. The med-
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lynslope parameter is also important for the second and third

modes of GPP, again somewhat consistently across its un-

certainty range. The kmax and medlynslope parameters both

relate to plant carbon and water use. Due to the strong in-

fluence of the tropics on the first modes of GPP and LHF it

is perhaps not surprising that these parameters are important

for their predictions. The nonlinear response of kmax indi-

cates the parameter range may be too wide and could be nar-

rowed by decreasing the maximum values or by developing

PFT-specific values. Plant hydraulic stress models are diffi-

cult to constrain due to a sparsity of observations, but work

is currently ongoing to address these parameter uncertainties

(Kennedy et al., 2019). The parameter dint is shown to be

important for the second mode of LHF and the parameter fff

for the third mode of LHF. These parameters relate to soil

hydrology, and thus they likely influence LHF through soil

evaporation and possibly soil water available for transpira-

tion (Swenson and Lawrence, 2014; Niu et al., 2005). The

parameter dint is important for PC2 LHF across its full un-

certainty range, but fff also shows some nonlinear behavior

for PC3 LHF, where the emulator is most sensitive to low

values. Again, this could indicate that the ranges of values

for fff could be narrowed by decreasing the maximum value,

though additional study is needed to better inform the values

of these soil hydrology parameters.

We next use the trained emulators to produce globally opti-

mized parameter values for our six parameters based on best

fit to observations of GPP and LHF. There are many ways

to formulate a cost function to assess model error relative to

observational targets (Trudinger et al., 2007). Our approach

uses a weighted sum over the first three modes of the squared

differences between emulator predictions and observations,

normalized by variability in the observations and with sepa-

rate error terms for GPP and LHF. Our sensitivity test with an

alternate cost function shows that the mode weighting is not

important to determining the optimization results. We rep-

resent observational uncertainty through the normalization

term as a substitute for measurement uncertainty or other

sources of uncertainty that might arise in the creation of the

globally gridded observational products, which are not quan-

tified (Jung et al., 2011; Collier et al., 2018). We do not ex-

plicitly include emulator uncertainty in our cost function, or

the idea that the emulator is not a perfect representation of

CLM (McNeall et al., 2016; Williamson et al., 2015). While

we do not expect this uncertainty to be zero, we can begin to

quantify it by comparing the emulator predictions for opti-

mized parameters and the results from the model tested with

those estimated parameter values. Our test simulation with

CLM shows that we can capture the behavior of the opti-

mized predictions for PC1 by using the optimized parameter

values in the land model, though the higher modes are not as

well captured. This implies there is some uncertainty present

in the emulation of PC2 and PC3, perhaps due to the sample

size in conjunction with the lower variance associated with

these modes. Despite this uncertainty, the CLM test simula-

tion moves the model closer to observations relative to the

default for all modes (with the exception of PC3 LHF).

We also explore parameter relationships by visualizing the

optimal parameter space for a subset of parameter values

where the predicted normalized errors are small. Some pa-

rameters are not well constrained by this exercise, and these

parameters (dleaf and baseflow_scalar) are also not shown to

be important to the predictive skill of the emulators. Other

parameters (fff and dint) are shown to sample the edges of

their uncertainty bounds, indicating that the range of values

chosen for these parameters may not be sufficient to cap-

ture optimal solutions. This result echoes what was found

utilizing the partial dependence plots for the higher modes

of GPP and LHF. Two parameters (medlynslope and kmax)

appear to be more constrained by the optimization process

and are consistent with parameters found to be important

through the permutation feature important tests for different

output modes. These parameters will be the focus of further

study to better define their range of values and quantify un-

certainty. In particular, the relationship between medlynslope

and kmax is well constrained by the optimization and relates

to the coupling of plant water stress and stomatal conduc-

tance. The new plant hydraulic stress formulation in CLM5

implements this coupling through a water stress factor to bet-

ter incorporate theory of plant hydraulics (Kennedy et al.,

2019). Future process-based modeling could further this ap-

proach by directly modeling hydraulic limitation as part of

stomatal conductance (Anderegg et al., 2018).

For the optimized model relative to the default configu-

ration, we find that mean spatial biases persist and in some

cases worsen. For example, we cannot simultaneously cor-

rect mean GPP biases in the Amazon and Congo, similar

to results shown in McNeall et al. (2016). This is sugges-

tive of additional sources of uncertainty and structural bi-

ases present in the default model configuration (e.g., forc-

ing uncertainty, epistemic uncertainty, or additional para-

metric uncertainty), which cannot be tuned with the lim-

ited set of parameters we have selected for this analysis. It

has also been shown previously that it is difficult to find

global optimal parameter values which consistently improve

skill in a climate model (Jackson et al., 2008; Williamson

et al., 2015; Li et al., 2018), and we find a similar outcome

when studying biophysical processes with a land model. Cai

et al. (2019) calibrated evapotranspiration (ET) across multi-

ple paired FLUXNET sites in the Energy Exascale Earth Sys-

tem Model Land Model and found a reduction in the mean

annual bias of ET when the global model was tested with the

optimized parameters. This study demonstrates the potential

for site-level calibration to improve a global model simula-

tion. They also highlighted the importance of stomatal con-

ductance and soil moisture related parameters, similar to the

parameters we found to be most sensitive in CLM5. Li et al.

(2018) found a reduction in GPP and LHF error using opti-

mized parameter values in the CABLE and JULES land mod-

els; however, this reduction was not consistent across PFTs

https://doi.org/10.5194/ascmo-6-223-2020 Adv. Stat. Clim. Meteorol. Oceanogr., 6, 223–244, 2020
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nor was it consistent across all land area. Furthermore, the

differences between the land models increased when both

were calibrated to the same observations. Both studies re-

iterate the difficulty of globally calibrating a limited set of

land model parameters and discuss additional sources of un-

certainty contributing to model biases and inter-model differ-

ences.

Parameter estimation results will always be sensitive to the

choice of cost function and how additional sources of un-

certainty are accounted for (Fer et al., 2018; Jackson et al.,

2008; Li et al., 2019; Ray et al., 2015). Though we account

for multiple CLM outputs in the form of GPP and LHF, we

combine them into a single objective cost function whereas

a multi-objective approach could help avoid introducing ad-

ditional biases into the calibration process (Rosolem et al.,

2013). In the future we plan to explore different versions

of cost functions to account for sources of uncertainty that

we do not sample with this study, including structural uncer-

tainty. Structural uncertainty relates to uncertainty in process

representation, including how model equations are formu-

lated. While parametric uncertainty can be explored through

scrutinizing choices of parameter values, quantifying struc-

tural uncertainty is less clearly defined. The United Kingdom

probabilistic climate projections (Murphy et al., 2009, 2007)

define structural uncertainty using a multi-model ensemble

(MME). The reasoning is that the MME represents a variety

of structural choices and can represent this source of uncer-

tainty outside of what a single model can achieve, assum-

ing the MME is made up of “state-of-the-art” climate mod-

els that have been validated against historical observations

(Sexton et al., 2012; Sexton and Murphy, 2012). However,

this approach relies on the assumption that the MME is com-

posed of climate models which are all unique representations

of the true climate, while there is evidence that state-of-the-

art climate models such as those participating in the Coupled

Model Intercomparison Project (CMIP) share components

and model development processes, which implies that they

may also have common limitations (Sanderson and Knutti,

2012; Eyring et al., 2019).

There are a variety of limitations to our model setup. For

the purposes of fully exploring the dynamics of the biogeo-

physics domain of CLM, we use offline CLM simulations

without active biogeochemistry, land use change, or vegeta-

tion dynamics and thus are limited to a specific set of pro-

cesses. We also do not account for cross-PFT interactions

within parameters which vary across PFTs. While our ap-

proach using consistent scaling factors still allows for dif-

ferent uncertainty ranges for PFTs, our calibration results do

not reflect possible variations in the sampling of PFT-specific

values for a given parameter. This is primarily due to compu-

tational challenges in properly sampling PFT-varying param-

eters as demonstrated in prior work, though future study will

consider possible approaches to better account for interac-

tions between different PFTs. Our offline CLM simulations

use a specific 5-year period of atmospheric forcing data, and

our results could be dependent on the choice of time period.

This choice is somewhat constrained by available observa-

tional years, though we could also test additional 5-year or

longer periods where we have observations to calibrate the

model. The choice of atmospheric forcing data is based on

best performance with CLM5 (Lawrence et al., 2019). While

our model resolution is low and the simulation length is rela-

tively short, these tradeoffs allow us to perform a global sen-

sitivity analysis and parameter estimation with greater com-

putational efficiency.

Our methodology also uses a smaller subset of output

variables (GPP and LHF) for parameter calibration than the

larger set of seven biophysical output variables used dur-

ing the parameter selection stage. For the calibration we are

somewhat limited by the availability of globally gridded ob-

servational products. However, we expect the results to de-

pend on exactly which output variables are used in the cali-

bration (Keenan et al., 2011). We are able to capture some

additional benefits to calibration by reducing regional bi-

ases in sensible heat flux, despite not explicitly tuning to

this output variable. It is an open question as to how many

and which calibration fields should be utilized in a model

tuning exercise, along with what metrics should be used to

assess model biases and changes in model skill (Mendoza

et al., 2015; Fer et al., 2018). Here we use annual mean spa-

tial variability as determined by EOF analysis and thus do

not consider seasonal cycle changes or interannual variabil-

ity. As our monthly climatology results show, we gain some

marginal improvement in certain regions and seasons, but we

would not expect to see significant improvements due to not

calibrating specifically to the seasonal cycle in these loca-

tions. In the future we plan to explore additional observa-

tional datasets and assessment metrics using the International

Land Model Benchmarking (ILAMB) system (Collier et al.,

2018).

As model sophistication and process representation in-

crease, it is important to acknowledge there is a tradeoff be-

tween model complexity and model error (Saltelli, 2019).

Our study provides an example of a mechanistic framework

for evaluating parameter uncertainty in a complex global land

model. By utilizing machine learning to build a fast emulator

of the land model, we can more efficiently optimize param-

eter values with respect to observations and understand the

different sources of uncertainty contributing to predictions in

terrestrial processes.
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