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_________________________________________ 

The accurate description of the energy of adsorbate layers is crucial for the understanding of 

chemistry at interfaces. For heterogeneous catalysis not only the interaction of the adsorbate 

with the surface, but also adsorbate-adsorbate lateral interactions significantly affect activation 

energies of reactions. Modeling the interactions of adsorbates with the catalyst surface and with 

each other can be efficiently achieved in the cluster expansion Hamiltonian formalism, which 

has recently been implemented in a graph-theoretical kinetic Monte Carlo (kMC) scheme to 

describe multi-dentate species. Automating the development of the cluster expansion 

Hamiltonians for catalytic systems is challenging and requires the mapping of adsorbate 

configurations for extended adsorbates onto a graphical lattice. The current work adopts 

machine learning methods to reach this goal. Clusters are automatically detected based on 

formalized, but intuitive chemical concepts. The corresponding energy coefficients for the 

cluster expansion are calculated by an inversion scheme. The potential of this method is 

demonstrated for the example of ethylene adsorption on Pd (111), for which we propose several 

expansions, depending on the graphical lattice. It turns out that for this system the best 

description is obtained as a combination of single molecule patterns and a few coupling terms 

accounting for lateral interactions. 

_______________________________________ 

I. INTRODUCTION 

 Many chemical production processes for fuels, plastics, fine chemicals, fertilizers and pharmaceuticals 

are catalytic in nature.1 Catalyst development remains crucial to reduce the energy intensive nature of the 

processes and improve the chemical selectivity of the reaction. Three performance criteria can be identified: 

activity, selectivity, and stability. While catalyst development is mostly driven by experiments, computational 

studies provide valuable insights into the nature of the active sites and the reaction mechanism. They have become 

reliable over the last decade with respect to predictive power, computational speed and can now actively 

participate in the catalyst design.2–7  

Single crystal surfaces, approximated as a periodic repetition of a unit cell (typically in the order of 10-

20 surface atoms) are commonly applied to modeling heterogeneous catalysts and their energy is often described 

by Density Functional Theory (DFT).8,9 This approach provides a fair trade-off between accuracy and 
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computational speed. Surface structures, adsorption energies and reaction mechanisms can be investigated rather 

easily at low coverage, e.g., one adsorbate per surface unit cell. At higher coverage, however, lateral interactions 

between adsorbates develop and cause adsorbate rearrangements on the surface, requiring larger and therefore 

more complex model supercells.10 The ordering of adsorbate structures depends on the adopted supercell. For 

instance, consider the adsorption of 3 molecules on 4 indistinguishable sites.11 Only one (symmetry distinct) 

arrangement is possible in the smallest unit cell. However, a supercell with 16 sites and 12 adsorbates suggests a 

much higher number of possible arrangements, making the calculations much more complex especially when 

chemical kinetics are involved. As this task becomes insurmountable for explicit first principles models, 

approximate methods are recommended for this endeavor. 

Recent years have witnessed a surge of lattice based (kinetic) Monte Carlo (kMC) methods which rely 

on model Hamiltonians parameterized by DFT.12–14 The advantage of model Hamiltonians is that they yield results 

much faster than the underlying DFT computations, while they are able to properly assess the configurational 

average and evolution of a surface under reactive conditions. In principle, the model Hamiltonian needs to account 

for three energy contributions: i) The energy of the surface, which includes deformation energies, ii) the 

interaction of adsorbates with the surface and iii) the interaction between adsorbates (also called lateral 

interactions). In this work, we focus on ii) and iii), with the surface distortion energy being implicitly incorporated 

in the interaction energies. Such a model is appropriate for surfaces that do not significantly restructure under 

reactive conditions. The interaction model for adsorbate-surface systems aimed at in this work is rather general 

and could be applied to surface reconstruction as well. 

A two-dimensional Ising-type model is typically selected as the basic model Hamiltonian.15,16 An Ising-
type model is defined as a set of lattice points in a given spatial arrangement which are mapped onto a set of spin-
like values. The energy is derived from an effective Hamiltonian, which incorporates the effect of an external field 
and the coupling between different spins, e.g. given a positive coupling constant, if a site has positive spin, the 
neighboring site “prefers” a negative spin. The energy thus depends on the configuration of spins within the lattice 
and on the intensity of an external field. Such Ising-type models (and the closely related lattice-gas Hamiltonians) 
are very effective in the description of phase transitions of multicomponent materials.17,18 They have also been 
employed to represent statistical models of adsorbed layers.19 In general, the partition function of Ising-type 
models is not known analytically except in special cases.20 Yet, Monte Carlo algorithms have been found to be 
very effective in converging to the ground state, or in evaluating ensemble averages. The parameters of the model 
Hamiltonian have to be known beforehand and are either determined from truly ab initio energy evaluations or, 
in some systems, fitted to reproduce experiments. 

Model Hamiltonians with good accuracy can be established for many problems, especially bulk 
materials. They are also applicable to systems larger than the scope of direct DFT computations. The well-known 
ATAT suite of programs by Ceder and co-workers automatically computes phase diagrams of alloys, based on 
model Hamiltonians that are fitted to DFT data.21,22,23 The ATAT tool pertains to equilibrium phenomena, not to 
the kinetics of a system. However, for catalysis, both the surface structure, i.e., coverage under realistic conditions, 
and the kinetics of the corresponding processes are of great significance. kMC has proven its potential in this 
respect having been successfully applied to a large variety of catalytic systems.24–37 A recent kMC framework is 
the graph-theoretical Zacros code of Stamatakis et al.38,39 which is particularly suited for applications in catalysis, 
since it is able to deal with multidentate species, complex elementary steps (e.g. involving more than two sites in 
specific geometric arrangements), and reaction barriers changing in the presence of spectator species that exert 
lateral interactions. As is common in lattice-based kMC, the evolution of the system in time is represented as a 
set of transformations of a graph. The structural parameters of a catalytic surface are mapped to the graph’s 
vertices, with occupation variables representing the presence of adsorbates.  

Establishing the model Hamiltonian of such a complex system is more difficult than for a bulk alloy 

because the number of possible configurations is enormous (even though finite). Molecular species bond 

specifically to a surface layer and can adopt many geometries. Furthermore, the link between the adsorbate 

geometry and its pattern on the graphical lattice (synonymously called “cluster” herein) is not trivial. In the past, 

users had to construct a model Hamiltonian by carefully analyzing the computed configurations, tracking the 

system’s relevant features, and mapping them to a graphical lattice. Herein, we instead rely on a machine 

learning
40 approach which is based on pattern recognition. Once the recognition selection process has been 
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defined, the state of the lattice is inferred automatically without significant knowledge on the system. Our 

contribution first sketches the theoretical background and then proposes a chemically meaningful, operative 

framework to automatically determine model Hamiltonians in terms of a cluster expansion, given a set of 

configurations, their adsorption energies and a graphical lattice. We apply our approach to the adsorption of 

ethylene on Pd(111) as a particularly important model system in heterogeneous catalysis. 

II. THE CORRESPONDENCE BETWEEN REAL AND GRAPHICAL INTERACTIONS 

Consider a system of M atoms. Graph theory implies that the total energy of the system can be expanded 

in a series of atomic interaction energy terms between n atoms, with n ≤ M,41 taking the form of the following 

equation 

𝐸#$#
%#& 𝒓𝟏, 𝒓𝟐, … , 𝒓𝑴

= 𝑊/(𝒓𝒊)

/

+ 𝑊/4 𝒓𝒊, 𝒓𝒋
/64

+ 𝑊/47 𝒓𝒊, 𝒓𝒋, 𝒓𝒌
/6467

+ 𝑊/479

/646769

𝒓𝒊, 𝒓𝒋, 𝒓𝒌, 𝒓𝒍

+⋯ 

(1) 

where the indexes i,	j,	k,	l… go from 1 to M, 𝑊/ 𝒓𝒊  is the (electronic or potential) energy of a given atom at 

location 𝒓𝒊, and Wijkl… is the energy contribution of the i,	 j,	k,	 l… group of atoms which is a function of their 

location in (continuous) space , 𝒓𝒊, 𝒓𝒋, 𝒓𝒌, 𝒓𝒍, …. These groups of atoms are also called “clusters”. 

Though this expansion is exact, it is not well suited to describe molecular systems. It can, however, be transformed 

from an atomic to a molecular expression. As an example, consider the interaction of two molecules (Figure 1 

depicts the case of two diatomics). The energy Uα of a molecule or ‘body’ α is obtained as the sum of all terms 

involving atoms from that body: 

 

Figure 1. From atomic to molecular cluster expansions. Two top rows: 1-body clusters, bottom two rows: 2-body clusters, 
where “body” refers to a molecule. 
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𝑈F 𝒓 𝜶 = 𝑊/

/∈F

+	 𝑊/4

/∈F,4∈F

+	⋯ ;					 (2) 

where we use curly brackets to indicate the set of atomic coordinate (r) belonging to molecule a and we 
dropped the argument (ri) for sake of clarity. The interaction energy between two molecules α and β is 
similarly given by: 

 

𝑈FJ 𝒓 𝜶, 𝒓 𝜷 = 𝑊/4

/∈F,4∈J

+	 𝑊/47

/∈F,4∈F,7∈J

+	 𝑊/47

/∈F,4∈J,7∈J

+	⋯ (3) 

This allows us to express the total energy of a system in terms of molecular cluster energies, i.e., in this case a 

“cluster” refers to a group of molecules:   

𝐸#$#
&$9 𝒓𝟏, 𝒓𝟐, … , 𝒓𝑴 = 𝑈F( 𝒓 𝜶)

F

+ 𝑈FJ 𝒓 𝜶, 𝒓 𝜷

J6F

+⋯ (4) 

where the first term accounts for the energy of each molecule a in the particular geometry	 𝐫 𝛂 , the second for 

the interaction energy between all pairs of molecules, the following term for triplets, and so on. This formulation 

was also deduced in dedicated books.42  

The present approach is now specifically applied to adsorption energies. We divide atoms into two sets: the ones 

of adsorbates (ads, N atoms) and those of the catalyst surface (cat, M-N atoms). The adsorption energy is then 

given by 

∆𝐸%OP = 𝐸#$# 𝑎𝑑𝑠@𝑐𝑎𝑡 − 𝐸#$# 𝑎𝑑𝑠 − 𝐸#$# 𝑐𝑎𝑡  (5) 

For adsorption on relatively rigid surfaces, we assume the coordinates of the catalyst as fixed during the adsorption 

event. This assumption is standard in the theory of lattice statistics.43 It is not compulsory and surface 

reconstructions can be described even with lattice based model Hamiltonians.44 Furthermore, we account for the 

deformation energy of both the catalyst and the molecules in their respective interaction energy, as these 

deformations are rather local. Doing so, we can focus on the adsorption energy only: 

∆𝐸%OP 𝒓𝟏, 𝒓𝟐, … , 𝒓𝑵 ≈ 𝐸( 𝒓 𝜶, … , 𝒓 𝝎) (6) 

where 𝐫𝟏, 𝐫𝟐, … , 𝐫𝐍 are the coordinates of the atoms within adsorbed molecules labeled by a … w. In this case, the 

interaction energy is given by formally two or more body terms: 

𝐸( 𝒓 𝜶, … , 𝒓 𝝎) = 𝑈F\
/]# 𝒓 𝜶

F

+ 𝑈FJ\
/]# 𝒓 𝜶, 𝒓 𝜷

J6F

+⋯ (7) 

where t stands for the catalyst. In this equation the first term accounts for the adsorption energy of “isolated” 

molecules and the second term for lateral interactions.  

In the following, we describe how equation 7 is transformed into a cluster expansion on a fixed lattice 

and how its energy coefficients are determined. The first essential step is mapping Equation 7 from real space 

onto a lattice in order to build Ising-type (or lattice gas) Hamiltonians. This coarse-graining is performed by using 

a two-dimensional lattice of points in real space. In the framework of the Zacros code, strictly positive occupation 

variables are used instead of pseudo-spins to identify what kind of species occupy which lattice point, so that 

molecular configurations have a lattice representation. Let 𝑆	be the set of occupation variables s assigned to each 

molecular adsorption mode, i.e., di-s and p-bound ethylene have a distinct occupation variable. Then, a mapping 

ℳ from the lattice coordinates to the set of occupations will generate the lattice configuration. Let	𝑠𝒗 be the 

occupation variable relative to the lattice point at positions	𝒑𝒗, where 𝑣 runs over all lattice points; then, we can 

write the energy of each configuration as: 
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𝐸 𝑠c, 𝑠d, … , 𝑠e ≈ 𝑈F\
/]# ℳ( 𝒓 𝜶)

F

+ 𝑈FJ\
/]# ℳ( 𝒓 𝜶, 𝒓 𝜷)

J6F

+⋯ (8) 

Where we have used the hat to indicate the transition from continuous (r) to discrete (p) space. The approximate 

equality comes from the “coarse-graining”, i.e., several configurations in real space can be projected into the 

same 𝒔 vector, which results in an average energy for E(𝒔): 

𝐸(𝒔) = 𝐸(ℳ 𝒓 ) {ℳ 𝒓 h𝒔} (9) 

 

 

where the brackets indicate the average over all acceptable realizations of a given configuration mapped into the 

same coarse-grained occupation vector representation, see curly brackets. As a result, the total energy may be 

written as: 

𝐸 𝑠c, 𝑠d, … , 𝑠e = 𝑈j
/]#

j

𝒔 = 𝜀j
j

 (10) 

Where the index µ stands for a collection of molecular indices (a, b …, ab …), i.e., for the clusters that are 

encoded in 𝒔, and	𝜀j	is the cluster energy coefficient relative to µ.  

Notice that redundancies may appear in equation 10, i.e., some of the clusters nested in the sums may be equal. 

Combining identical terms together, equation 10 is converted into equation 11 

𝐸 = 𝜉m𝜀m
m

 (11) 

Where x is the cluster multiplicity and	𝜅 runs over non-identical molecular clusters (also called patterns herein); 

in this scheme, x plays the role of a cluster basis function. Thus, 𝜅 ranges from 1 to |P|, the number of unique 

clusters detected in the set of configurations analyzed. The next section discusses the identification of the different 

clusters, with the following section devoted to the determination of the cluster energies (e) through inversion. 

 

 

Figure 2. Illustration of ℳ, the projection of adsorbate coordinates {r} on the lattice points at {p}, applied to the case 
of ethylene adsorption on a Pd surface. 
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III. A RECOGNITION MEASURE TO MAP MOLECULAR CONFIGURATIONS INTO PATTERNS 

ON THE GRAPHICAL LATTICE 

 The projection of molecular coordinates onto the graphical lattice and the associated coarse-graining of 

the energy require the function	𝜑. In other words, the projection 𝜑 allows us to assign the binding mode of 

molecules without arbitrary choices by the user, simply by applying a set of rules to identify the clusters, to which 

we also refer as patterns, on the lattice which correspond to a given adsorption mode (see Figure 2).  In our case, 

we treat flat surfaces; hence, each vertex of the lattice is identified in Euclidean space by a 2-dimensional 

vector	𝒑p = (xp , yp). Then, the coordinates of the atoms are projected on this plane. However, in general the atom 

will not be projected exactly on top of one of the vertexes, but only in its vicinity. Additionally, depending on the 

spacing of the lattice, a single atom might be large enough to occupy more than one site. Hence, we need to assign 

a size to the atoms and the vertexes to reliably identify the occupied vertexes by computing the overlap between 

the area of the atom and the vertex. Many ways for estimating the size of an atom exist.45 Two extreme, but simple, 

choices are available: Van der Waals radii46 (Rvdw) provide an upper limit on the size of an atom and therefore 

impose significant separations between neighboring adsorbates.  Covalent radii47 (Rcov), on the other hand, provide 

a lower limit of the size of atoms, which ensures that high coverages are accessible without leading to overlapping 

patterns. The area of the vertex could be chosen as the Wigner-Seitz cell which is obtained by connecting the mid-

points between vertexes by straight lines. However, the overlap between the atoms and the Wigner Seitz cell and 

the atoms would be cumbersome to compute.  Hence, we decided to use the largest, non-overlapping circles to 

approximate the Wigner Seitz cells as illustrated in Figure 3. Together with the circular atoms, the overlap 𝐴/,t	of 

atom i with a given site v can be evaluated analytically: 

𝐴/,p = 𝐴 𝒓/ , 𝒑p

= 𝜌/
d cosyc

𝒓/ − 𝒑p
d + 𝜌/

d − 𝜌p
d

2𝑑𝜌/
+ 𝜌p

dcosyc
𝒓/ − 𝒑p

d − 𝜌/
d + 𝜌p

d

2𝑑𝜌p

−
1

2
(𝜌/ − 𝒓/ − 𝒑p + 𝜌p)( 𝒓/ − 𝒑p − 𝜌/ + 𝜌p)(𝜌/ + 𝒓/ − 𝒑p − 𝜌p)(𝜌/ + 𝒓/ − 𝒑p + 𝜌p) 

(12) 

where ri and rv are the radii of the atom and the vertex, respectively. To obtain a transferable measure, the overlap 

of each atom with vertexes is expressed as the fraction of the vertex that is covered by the atom: 

  

Figure 3. Illustration the construction of the different lattices: the size of the sites are chosen at the largest, non-
overlapping circles, i.e., they touch at the midpoints. Therefore, the size of the top sites (in red) are largest in the T lattice 
and smallest in the TB lattice. 
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𝐴/,p =
𝐴/,p

𝐴p
 (13) 

where	𝐴p is the area of the circle associated to vertex v, and	𝐴/,p the overlap with atom i. Note, that this framework 

only addresses the case of direct interaction with the catalyst surface and is not adapted for multi-layer adsorptions 

(e.g., adsorption on a H pre-covered surface), except if the definition of the catalyst lattice includes the information 

of, for example, an add-layer of hydrogen. 

With a measure at hand, a recognition criterion can be finally cast on a quantitative basis. The [0, 1] 

range of fractional overlap must be divided into classes: occupied and unoccupied. The criterion is stated as 

follows: a molecule a recognizes and therefore occupies a site v if at least one of its atoms generates an overlap 

percentage greater than 50%, i.e. a vertex is assigned to a given molecule if at least one atom of that molecule 

produces a 𝐴/,p > 0.5. Figure 4 shows the evolution of the overlap for the recognition of a site (circle in broken 

line) of radius 1.0 Å by an atom of identical size (full line circle) and by a carbon atom of van der Waals radius 

of 1.7 Å (left and right part of the scheme, respectively). The x-axis describes the distance between the centers of 

the site and the atom, with negative and positive values indicating that the site is on the “left” and “right” of the 

atom, respectively. The role of the radius of recognition is clearly captured, as the carbon atom shows an earlier 

recognition threshold (center separated by 1.6 Å; indicated by the red line) than the smaller site (centers separated 

by 0.8 Å). Of course, the size of the atoms and the vertexes need to be compatible, i.e., if ri <√(2)/2 rv then the 

vertex cannot be recognized.  

 The recognition process can be summarized as a sum over the atomic coordinates of Heaviside functions 

of the overlap-threshold difference, 𝛩(𝐴/,p − 0.5). Note that the geometrical threshold of 0.5 is a “logical” choice, 

but implies that the size of the atoms need to be compatible with the size of the sites. Since the size of the atoms 

is not uniquely defined anyway, we will test several linear combinations between Rvdw and  Rcov  in the later 

sections. In practice, one probably would like that a hydrogen atom can be recognized by the smallest site in the 

lattice, but does not occupy more than one site, which gives quite simple geometric rules for the minimum and 

maximum combination of (x*Rvdw+(1-x)* Rcov), given that the covalent and vdW radii of hydrogen are 0.32 and 

1.2 Å, respectively. Thus, the occupation variable assigned to lattice point 𝑣  (𝑠p) is built as: 

𝑠� = 𝜎Fmax
/∈F

𝛩 𝐴/,p − 0.5

F

 (14) 

 

Figure 4. Normalized overlap as a function of relative position, starting at circles that touch each other, indicated by the 
green line. The red line indicates the 0.5 threshold. The scheme on the left refers to two circles with a radius of unity, the 
one on the right to one circle with a unity radius and one of 1.7 Å (vdW radius of carbon). 
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Where 𝒓	represents the collective vector of positions of all adsorbed atoms, 𝒑𝒗 is the position of the vth vertex, a 

indexes the different adsorbates which are represented by the occupation variable	𝑠F, and 𝜎F 	is the occupation 

value associated to adsorbate	𝛼. While equation 14 formally contains a sum, in the lattice gas description no vertex 

can be shared by two different adsorbates. In cases where such a sharing is chemically meaningful, the 

corresponding (pair of) species needs to be treated as a distinct molecule. In other words, the sum simply stands 

for the loop over molecules, which is necessary to perform the assignment of occupation variables to vertexes.  

IV. THE OCCURRENCE MATRIX AND ITS INVERSION 

 Going one step back, we can recognize that equation 11 is a dot product between a vector 𝝃	that counts 

the number of instances of each cluster in a given lattice configuration, and a vector of cluster interactions	𝜺. For 

instance the given configuration contains 𝜉cinstances of cluster 1 (which could e.g. be a single-body term), 

𝜉dinstances of cluster 2, etc. To determine the energy contribution of each of these clusters we need to compute 

the energy of several configurations (e.g. from DFT) and solve an inverse problem to determine	𝜀c, 𝜀d, … Let us 

thus, consider a set 𝐶 of such configurations, having energies 𝐸c, 𝐸d, …  𝐸 �  (recall that 𝐶  is the cardinality of 

set 𝐶, i.e. the number of configurations). Since we use “cluster” and “pattern” as synonyms herein, we call the 

number of distinct clusters |P| as stated in the context of equation 11. Let us further denote with 𝜉&m the number 

of instances of pattern 𝜅 in configuration m. The energies 𝐸c, 𝐸d, …  𝐸 �  will then be given by equations 15: 

𝜉𝟏𝟏𝜀c + 𝜉𝟏𝟐𝜀d +⋯+ 𝜉c � 𝜀 � = 𝐸c
𝜉𝟐𝟏𝜀c + 𝜉𝟐𝟐𝜀d +⋯+ 𝜉d � 𝜀 � = 𝐸d
………………………………………
𝜉𝒄𝟏𝜀c + 𝜉𝒄𝟐𝜀d +⋯+ 𝜉� � 𝜀 � = 𝐸�
………………………………………

𝜉 � 𝟏𝜀c + 𝜉 � 𝟐𝜀d +⋯+ 𝜉 � � 𝜀 � = 𝐸 �

 (15) 

This system of equations is more conveniently casted in the matrix form: 

𝑬 = 𝜩 ∙ 𝜺 (16) 

Where Ξ is a 𝐶 × 𝑃  matrix; its entry 𝜉��	is the occurrence of pattern	κ in configuration	𝑐.  

Although |C| and |P| can be chosen to be equal, the Ξ matrix is in general a rectangular matrix. Whenever 

there are less patterns than configurations, the system is overdetermined and invertible “in the sense of the least 

squares.”  Operatively, systems are commonly inverted by the most general definition of matrix inverse, that is, 

the Moore-Penrose pseudoinverse.
48,49 The left pseudoinverse of the occurrence matrix is written as   

𝜩� = 𝜩� ∙ 𝜩 yc ∙ 𝜩� (17) 

Multiplying equation 16 by the right-hand side of equation 17 and simplifying terms, the following solution for 

the pattern coefficients is obtained in the form of equation 18 

𝜺 = 𝜩� ∙ 𝑬 (18) 

The solution of equation 18 gives a set of coefficients to represent Hamiltonians of adsorbed layers.  

The cardinality of the set P could be, in principle, very large; this has the effect of requiring an even 

larger set of configurations to be computed. Cluster expansions are, however, known to converge fast, so that the 

expansion can be truncated at a finite distance and at low orders of many-body patterns.50–53 Additionally, the 

system of equations is likely to contain linear dependencies: for instance, there could exist a configuration whose 

pattern count 𝝃	is a linear combination of the counts of two other configurations. This may, in principle, be tackled 

by avoiding superposition of configurations while sampling. However, in terms of statistics and recalling that we 

map a continuous space (adsorbates on the surface) into a discrete space (lattice occupations), removing such 

“redundancies” would preclude to being able to assess the soundness (introduced) error due to this discretization. 

The other source derives from the truncation of the expansion: removal of long-range pattern may in fact generate 

identical (short-range) configurations. Since no a priori knowledge of the cutoff or of the expansion order is 



9 

 

available for an arbitrary catalytic system, this second source of linear dependencies can hardly be avoided. A 

singular value decomposition (SVD) during the Moore-Penrose pseudo-inversion is capable of circumvent the 

issues related to the linear dependencies.54 SVD (with eigenvectors corresponding to an eigenvalue below machine 

precision being removed) was employed for all of the selected applications discussed in Section V.    

While the Moore-Penrose pseudoinverse identifies a unique matrix corresponding to the solution with 

the least squares of the residuals (𝑬 − 𝜩 ∙ 𝜺), one would like to find that the parameters have chemically reasonable 

values, since it would give confidence that the parameters are “transferable” to new configurations. In particular, 

we expect significant stabilizing single body patterns for chemisorbed molecules and less important, but repulsive 

two-body patterns. For this reason, we will also report maximum and minimum values for the one- and two-body 

contributions. In our experience, this expectation is satisfied for systems of equations that have a rank greater or 

equal to |P|. 

A first step towards assessing the reliability, or rather the trustworthiness of a given least squares fit can 

be done “internally”. Since, as mentioned above, the “sampling problem” does not have an a priori solution, the 

importance of each point/configuration for the fit is an important measure. For example, if one parameter of the 

fit is connected to only one configuration, then this configuration is highly important (in statistics we would call 

it an outlier) for the fit and the value of this parameter is uncertain. The only way to properly deal with such a 

situation is to increase the sampling set to include more configurations, allowing us to define this specific 

parameter. The Cook’s distance
55,56 of a configuration is convenient to measure its influence on the fit. The Cook’s 

distance can readily be obtained from the Moore-Penrose pseudoinverse. Firstly, the so-called hat matrix of the 

system	𝑯, is defined as: 

𝑯 = 𝜩 ∙ 𝜩� (19) 

The diagonal element of the hat matrix	𝐻//, is known as the leverage of point	𝑖; it measures how far a configuration 

stands from the average pattern occurrence. The leverage is used to standardize the differences between the 

configurational energy predicted by the model and the ones known from raw data; these normalized differences 

are known as standardized residuals 𝑒/ 	and are defined by the following equation 

𝑒/ =
𝐸/ − 𝜉/44 𝑝4

1 + 𝐻//
 (20) 

The Cook’s distance	𝐷/, of a given configuration is obtained as: 

𝐷/ =
𝐻//𝑒/

d

𝑃 𝜎d(1 + 𝐻//)
d
 (21) 

Where	𝜎d	is the mean squared prediction/raw data residual. The Cook’s distance is a tool to highlight the need for 

a more thorough acquisition of data/sampling. Rigorously, one should perform an F-test to identify the influential 

points and then analyze these points in order to decide whether or not they are to be included in the final analysis. 

While some authors suggest that 4/n (with n being the number of samples) should be the maximum Cook’s 

distance,57 others suggest to simply remove samples with Cook’s distances above one.58 In the following, we adopt 

the later cutoff. Since our data points are obtained from optimized DFT geometries, high Cook’s distances cannot 

be equated to regular outliers: they still are physically meaningful. However, they can be considered outliers with 

respect to the training set. Hence the user has the choice to either increase the sampling around these points or to 

remove them, if he considers them irrelevant for his specific application. 

 Cook’s distances measure the sparseness of the available sample. A more frequently resorted tool to 

analyze interpolation reliability is cross-validation.40 Cross validation schemes partition the sample into a training 

and a validation set; regression is then performed using data contained into the former, while the latter is employed 

to obtain a residual (error estimate). The scheme is iterated as to cover all the possible training/validation partitions 

of the sample and residuals are summed as to get validation scores for each of the model’s coefficients. Although 

no cross validation score was calculated in the present work, Cook’s distances and cross-validation scores are 
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complementary to address the robustness of models; assuming that clusters with high uncertainties and/or close 

to zero mean values during cross-validation should be either refined or removed, this would, indeed, help to 

“compress” the cluster expansions and making them more robust/transferable. Furthermore, this could be 

exploited to identify the configurations that require higher body patterns to be well described.  

Pattern detection and determination of the cluster energies as describe above is implemented in an in-

house FORTRAN90 code interfaced with LAPACK,59 and will be made public in the near future. 

V. APPLICATION TO THE ETHYLENE-PALLADIUM SYSTEM  

In the previous sections, a complete framework to recognize patterns and parameterize a cluster 

expansion for adsorbate layers was proposed. In this section, this scheme is applied to ethylene adsorption on the 

Pd (111) surface. 

Palladium is well-known in the catalysis community for its hydrogenation capacity, e.g., for fatty acid 

hydrogenation.60 The hydrogenation of ethylene over Pd is a widely studied model system.61–63 Previous 

theoretical studies have identified two single-molecule adsorption modes: The most stable mode is the di-s mode 

in which the molecule is bonded to two palladium atoms, distorting its geometry quite strongly according to the 

Dewar-Chatt-Duncanson model64,65. The latter model accounts for hydrocarbon-metal interactions in which a 

fraction of metal electron occupies the anti-bonding orbitals of the molecule.66 The carbon-carbon bond distance 

extends by 0.12 Å (9%) and the hydrogen atoms are tilted by 9 degrees instead of being co-planar. The other 

adsorption mode is the p mode. This mode induces no significant change in molecular structure. The molecule 

merely interacts with a single palladium atom around its center of mass.  

V.1 THE TRAINING SET 

Out of these two basic modes, we have constructed a diverse training set of 32 configurations on a p(4´4) 

slab supercell of Pd(111), that span different coverages (1/4 monolayer, ML to 1/16 ML) and different relative 

orientations. The most important ones are represented on Figure 5. We started with the low-coverage (1/16 ML) 

situation, where the di-s and p configurations are isolated in the surface unit cell (see configuration 7 and 29 in 

Figure 5). Then, we also included three configurations representative of the high coverage situation (1/4 ML): 4 

p bound, 4 di-s bound, and 2 p together with 2 di-s bound molecules on the p(4´4) cell. 31 configurations 

representative of intermediate coverage (1/8 ML) were constructed based on various combinations of di-s and 

p coordination and neighboring adsorption sites. Additionally, 10 configurations (3/16 ML) were constructed 

based on the 1/8 ML configurations by adding one molecule wherever possible. Note that the construction of this 

training set is merely exemplary and is neither complete nor ideal, but just serves to illustrate the application of 

the framework outlined above. In other words, some of the configurations included might rarely occur in reality 

while others, in particular high coverage structures, might be missing. We consider the question of the construction 

and validation of the training set as a separate topic, which will be addressed in the future. All configurations were 

optimized at the DFT level exploiting the PAW formalism.67,68 All computations were performed with VASP 

5.3.3.69,70 The functional of Perdew, Burke, and Ernzerhof (PBE)71 was used, with the dispersion correction of 

Steinmann and Corminboeuf (dDsC).72,73 The (111) surface was modeled by a p(4´4) unit cell with 6 metallic 

layers, 2 of which held fixed to simulate bulk properties. A vacuum layer of 15 Å was used. The plane waves 

basis set was chosen to have a cut-off energy of 400 eV. Brillouin zone integration was performed by a 3´3´1 

Monkhorst-Pack74 k-points grid and a Methfessel-Paxton smearing75 of 0.2 eV. The wavefunction and geometric 
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gradient were converged to 10-6 eV and 5´10-2 eV/A, respectively. As for our computational tools, van der Waals 

radii were taken from the work of Bondi,46 while covalent radii came from Pyykkö and Atsumi.47  

Figure 5 presents the adsorption energy per ethylene molecule for all investigated configurations ordered 

by increasing energy (configurations 1 and 32 are most and least stable, respectively) per ethylene molecule. The 

structures of the high (1/4 ML) and low (1/16 ML) coverage configurations are depicted as well. As expected, the 

di-s mode (configuration 7; Eads=-1.28 eV) is significantly more stable than the p mode (configuration 29; Eads=-

1.14 eV). In general, the through-surface and through-space lateral interactions between co-adsorbed molecules, 

should have a destabilizing effect either due to Pauli repulsion or by limiting electron donation to or from the 

surface. We therefore expect that the di-s mode at low coverage (1/16 ML) exhibits the lowest adsorption energy 

per molecule. Configuration 7 in Figure 5 corresponding to that mode is, however, surpassed by six other modes 

lower in energy. Considering configurations 1 and 2 that correspond to the high coverage (1/4 ML) di-s mode, 

we recognized slightly attractive lateral interactions as being responsible (in the order of 0.01 eV per molecule). 

The small stabilization originates from a subtle balance between repulsive and attractive London dispersion 

interactions. Indeed, we have checked that the results at the PBE level, i.e., without the explicit inclusion of 

dispersion interactions, are consistent with the expectation of purely repulsive lateral interactions. In other words, 

since the adsorbates in the high coverage regime not only experience repulsion, but are also stabilized by 

dispersion interactions, predicting the stability of high coverage structures is sensitive to the use of a dispersion 

correction. 

V.2 PATTERN RECOGNITION 

Pattern recognition is first carried out for the two low coverage (1/16 ML) adsorption modes (di-s and p 

in Figure 6). Clusters are shown as a function of the size of the atoms, expressed as the barycenter function of Rcov 

and Rvdw (x·Rvdw+(1-x)·Rcov), and the different sites distinguished by the graphical lattice. As mentioned in III, 

considering H adsorption as a limiting case, we can derive a minimal fraction of the vdW radius to be included, 

so that H is large enough to occupy the smallest site, as well as a maximal fraction, assuming that a H atom at a 

given site should not be recognized as occupying a neighboring site as well. Therefore, we show the results for 

the xmin and the xmax in Figure 6. The first line is a lattice only accounting for top sites and is denoted by T. Adding 

  

 

Figure 5. Adsorption energies per molecule in eV for all configurations considered. Geometries are given for the low (7 
and 37) and high (2,30,43) coverage limits and the most and least stable binding structure (1,46). The unit cell is given 
by red dotted lines, Pd (in grey) atoms of the first two layers are shown. Carbon is depicted in black and hydrogen in 
white. The structural representation has been produced by the MAPS software76 
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the 3-fold hollow sites (H) or two-fold bridge sites (B) represents a more detailed lattice (TH and TB lattice, 

respectively). Finally, combining all three sites together yields the TBH lattice in the bottom line. In these pictures, 

the position of the C and H atomic nuclei are given by black dots, the size of the atom by a black circle with the 

corresponding atomic radius and the occupied sites (overlap > 50%) are given by colored circles (T, B and H are 

red, blue and green, respectively). For the coarsest T lattice, the two adsorption modes (di-s and p) are readily 

distinguished as occupying two and one site, respectively, see Figure 6, top row. This accounts well for the 

expected bi- and mono-dentate adsorption mode and the dependence thereof on the chosen atomic radii is 

negligible. 

This significantly differs from the more detailed TH lattice: At xmin (30% Rvdw) a “top-top” mode is 

obtained for the di-s configuration, which intuitively corresponds to an ethylene p bond being transformed into 

two C-Pd bonds. Accordingly, for the p configuration a top mode is obtained. At xmax (70% Rvdw), however, the 

strongly overlapping sites, characteristic for the bond and represented by the top sites previously recognized, are 

now surrounded by a crown of (hollow) sites.  Recognizing that these sites are occupied by ethylene is important, 

in the sense that it excludes other molecules to adsorb on these sites. In the case of xmax, this excludes, for instance, 

that a second di-s mode adsorbs in the immediate neighborhood without distortion (the top site in the empty 

corner delimited by the green hollow sites cannot be occupied without an overlap with the already occupied H 

sites). The TB lattice, which in general is less relevant than the TH lattice, as several small adsorbates such as H 

or CO strongly interact with the hollow sites, overall provides a similar description, with patterns that account 

well for the elongated shape of the molecule. In contrast to the TH lattice, at xmin (20% Rvdw), the bridge sites 

already play a role and are recognized as being occupied by the molecule, which makes, of course, perfect sense, 

 

 

Figure 6. Recognition of the di-s (left, configuration 7) and p (right, configuration 37) as a function of the atomic radii 
(x·Rvdw+(1-x)·Rcov) and the four different lattices. C and H atomic nuclei and radii are indicated as black dots and 
circles, respectively. Recognized top, bridge and hollow sites are given by red, blue and green circles, respectively. Xmin 
and xmax are 0.8 and 1.0 for the T lattice, 0.3 and 0.7 for the TH lattice, 0.2 and 0.5 for the TB lattice and 0 and 0.15 for 
the TBH lattice, respectively. 
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since they are in the middle of the C-C and between the H atoms of the CH2 group for the di-s and p configuration, 

respectively.  The TBH lattice turns out to be least useful for our purpose, mostly because of the large imbalance 

of the size of different sites: since the smallest sites have a radius of only 0.4 Å, xmin and xmax are 0 and 0.15, 

respectively, which does not allow for a reliable recognition of the different adsorption modes. Therefore, we will 

not discuss results for this lattice in later sections. In conclusion, the chemically most intuitive patterns are 

 

Figure 7. Illustration of pattern recognition mode (configuration 46) as a function of the atomic radii (x*Rvdw+(1-x)* 

Rcov) and the four different lattices. Atomic nuclei and radii are indicated as black dots and circles, respectively. 
Recognized top, bridge and hollow sites are given by red, blue and green circles, respectively. Xmin and xmax are 0.8 and 
1.0 for the T lattice, 0.3 and 0.7 for the TH lattice, 0.2 and 0.5 for the TB lattice and 0 and 0.15 for the TBH lattice, 
respectively. 
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obtained on the T lattice, independent on the atomic radii. On the TH lattice, only with the larger radii (70% Rvdw) 

reasonable patterns are obtained that reflect well the space occupied by ethylene and the role hollow sites could 

play in this case. However, in this case adsorption on sites close by is not possible without distortion, a topic on 

which we will come back in the next section. On the TB lattice, already at xmin the picture is “reasonable”, although 

just like on the top lattice the different adsorbates can in principle approach each other very closely. Finally, the 

sites in the TBH lattice are so small, that the recognition is very sensitive to the atomic radii and no particularly 

suitable patterns are obtained.  

Having discussed the low coverage patterns, we now address the following question: Do lateral 

interactions lead to detectable distortions? To do so, Figure 7 addresses the extreme case of configuration 46, 

which is the least bound configuration at the per ethylene molecule basis and is therefore subject to the most 

significant lateral interactions. While the T lattice remains insensitive to the atomic radii and simply identifies two 

p modes, the TH and TB lattices clearly illustrate the distortion of the p mode due to lateral interactions (compared 

to the two left columns of Figure 6): instead of simply a top site or a linear bridge-top-bridge pattern obtained at 

low coverage for xmin, the lateral interactions induce a distortion which leads to bent, asymmetric structures. In 

fact, the distortions due to the lateral interactions are actually seen both by the loss of some sites and the gain of 

others. In other words, distortion arises only when molecules are arranged in such a way that their van der Waals 

contours overlap; consequently their graphical representation is reshaped. This implies that the distorted single-

body patterns should not occur “alone”, but only in the vicinity of other patterns. Hence, we can expect that there 

are some two-molecule patterns that should be treated as a single entity, as opposed to two independent molecules, 

simply because the distorted patterns cannot exist “alone”. This is also the only way of dealing with situations 

where neighbouring molecules start to actually overlap, since this is unacceptable for the graph theoretical 

representation unless they are merged into a single entity. 

Overall, we find that rather small atomic radii are most promising, although they can lead to adsorptions 

on the graphical lattice which are “too close”, i.e., leading to excessive lateral interactions. These situations can, 

however, be taken care of separately by introducing the corresponding prohibitive penalty terms. 

V.3 CLUSTER EXPANSION OF THE INTERACTION ENERGY 

We have parameterized a variety of cluster expansions (CE) as a function of the lattice type and of the 

atomic radii and nearest neighbour interactions. For each value of the atomic radii, and each 46 configurations, 

we first detect the patterns for the molecule/surface interaction as explained above in section III and with results 

discussed in section V.2. 1-Body patterns are associated with a single molecule (or a “super molecule”, composed 

of molecules which would overlap otherwise) while patterns corresponding to the interaction of a given pair of 

molecules are called 2-body patterns. The energy contributions for these 1-body or 2-body patterns are then 

calculated from the energy of the configurations by applying the inversion procedure of section IV.  

Table 1. Summary of cluster expansions using all 46 configurations as a function of the graphical lattice, the size of the atoms 
and the inclusion of interactions with neighbors (2 body patterns: NN: nearest neighbors). The number of unique patterns and 
their size is reported, and the minimum and maximum of single and two body pattern energies, together with the RMS and 
maximum error and the maximum Cook’s distance. The value in square brackets indicates the number of linear dependencies, 
which is roughly equal to the number of patterns that should treat two molecules in one 1B pattern. A star (*) is used to 
indicate that linear dependencies between 1B and 2B patterns prohibit the definition of 2B interaction energies. 

Lattice	 %Van	

der	

Waals	

Neighbours	

included	

#	of	

Patterns	

#	of	

Sites	

min,max	

Min,max	

E(1B)	

Min,max	

E(2B)	

Error	

(RMS,	

MAX)	eV	

Max		

Cook’s	D	

T	 80	 none	 2	 1,2	
-1.25	

-1.11	
N.A.	

0.07,	

0.22	
0.22	

T	 100	 none	 2	 1,2	
-1.24		

-1.12	
N.A.	

0.10,	

0.33	
0.26	

TH	 30	 none	 7	 1,4	
-1.28		

-1.05	
N.A.	

0.03,	

0.12	
>	1000	
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TH	 70	 none	 11	[1]	 5,8	
-1.28		

-0.99	
N.A.	

0.02,	

0.05	
>	1000	

TB	 20	 none	 8	 2,4	
-1.27	

-1.06	
N.A.	

0.05,	

0.19	
>	1000	

TB	 50	 none	 17	[1]	 5,7	
-1.28	

-0.97	
N.A.	

0.02,	

0.10	
>	1000	

T	 80	 NN	 14	 1,4	
-1.28	

-1.12	

-0.01		

0.24	

0.03,	

0.13	
>	1000	

TH	 30	 NN	 27	[4]	 1,7	
-1.28		

-1.05	

-0.03	

0.16	

0.01,	

0.05	
>	1000	

TB	 20	 NN	 13	[3]	 2,8	
-1.27		

-0.91	
N.A.*	

0.04,	

0.19	
>	1000	

 

Table 1 provides a summary of the parameterizations, which describe all 46 configurations. Depending 

on the case a rank deficient system of equations is obtained. This can happen when, for instance, two 1-body 

patterns contained in a 2-body pattern are heavily distorted and, therefore, do not occur in any other configuration. 

The same can, actually, already occur at the 1-body expansion level. Mathematically, our inversion procedure 

using SVD still allows solving the system of equations, even though it is effectively rank deficient. However, it 

is impossible to separately calculate the energy contributions of the individual, linearly dependent patterns, since 

they will always appear together in any configuration. From a chemical physics point of view, this means that the 

corresponding arrangement should be treated as a single entity of two molecules: its energy is well defined. 

Furthermore, in this case the corresponding distorted single-molecule patterns are not supposed to occur alone, 

but only in the neighbourhood of another (distorted) molecule. Hence, the procedure where “primitive patterns” 

that are linearly dependent on each other are summed together in larger clusters (single body patterns of two 

molecules) makes both mathematical and chemical sense. The number of such patterns is indicated in square 

brackets in Table 1. 

We measure the quality of a given cluster expansion mainly by the root mean square error (RMSE) and 

the maximum error. In addition, Figure 8 shows selected parity plots. As mentioned above, we also report Cook’s 

distances, which indicate the presence (or not) of influential configurations. As it can be seen, there are many 

cluster expansions for which some configurations have Cook’s distances above 1, which is indicative of highly 

influential points. Indeed, patterns that are defined by only one configuration have automatically an infinite 

Cook’s distance, which simply reflects the fact that a given cluster is not present more than once in the training 

set. Since, however, all 46 configurations correspond to local minima on the DFT surface, these cluster energies 

are still physically meaningful. Nevertheless, we have also established a second family of cluster expansions (see 

Table 2), where we have adopted the common practice58 to exclude configurations that lead to Cook’s distances 

greater than 1.0, as these points clearly are highly influential for the least squares fit. Of course, it would be 

preferable to increase the training set further, in order to probe similar configurations. But as the optimal 

construction of a training and validation set is out of the scope of the present work and is likely to depend on the 

target (e.g., low vs. high coverage), we do not follow this computationally much more expensive strategy. 

Exclusion of configurations necessarily means that the training set is less diverse and that some of the 

configurations can no longer be described. The parity plots (Figure 8), however, demonstrate that we still span a 

similar range of adsorption energies per molecule, by excluding between 1 and 20 configurations. In Figure 8 we 

also see that the R2 values are barely affected by this procedure, suggesting that our training set is reasonably 

diverse. 

Table 2. Summary of cluster expansions using a subset of configurations as a function of the graphical lattice, the size of the 
atoms and the inclusion of interactions with neighbors (2 body patterns: NN: nearest neighbors). The number of unique 
patterns and their size is reported, and the minimum and maximum of single and two body pattern energies as determined by 
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the least squares fit, together with the RMS and maximum error. Configurations leading to Cook’s distances larger than 1 
have been excluded and the resulting number of configurations used in the fit is given in the last column 

Lattice	 %Van	

der	

Waals	

Neighbours	

included	

#	of	

Patterns	

#	of	

Sites	

min,max	

Min,max	

E(1B)	

Min,max	

E(2B)	

Error	

(RMS,	

MAX)	eV	

#	

Configurations	

TH	 30	 none	 6	 1,3	
-1.28		

-1.06	
N.A.	

0.03,	

0.12	
45	

TB	 20	 none	 4	 2,3	
-1.27	

-1.06	
N.A.	

0.03,	

0.07	
38	

T	 80	 NN	 10	 1,4	
-1.28	

-1.12	

-0.01	

0.24	

0.03,	

0.13	
41	

TH	 30	 NN	 9	[1]	 1,7	
-1.28		

-1.05	

-0.03	

0.16	

0.01,	

0.02	
29	

TB	 20	 NN	 5	 2,7	
-1.27		

-1.14	

0.01	

0.08	

0.02,	

0.05	
27	

Starting with the simplest approximation, the single body expansions on a T lattice, where only di-s and 

p modes are recognized we find large maximum errors (>0.2 eV), given the range of interaction energies. Without 

much surprise, the simple picture with only two modes and no lateral interactions is insufficient. Reassuringly, 

however, the di-s and p mode have an energy of -1.25 and -1.11 eV, respectively, which compares very well to -

1.28 and -1.14 eV for the low coverage (1/16 ML) configurations. This observation actually holds for all CEs 

presented, i.e., the minimal (p) and maximal (di-s) energy coefficients obtained for the single body patterns (6th 

column of Table 1) are consistent with the corresponding low-coverage adsorption energies. Increasing the atomic 

radii to 100% Rvdw can lead to “miss-assignments” on the T lattice (e.g., a p becomes a di-s), which explains the 

larger RMSE. Adding the 2-fold bridge or 3-fold hollow sites in the pattern recognition procedure increases the 

number of unique 1-body patterns and allows to improve the quality of the cluster expansion: these topological 

features allow for a detailed description of single modes even at small intermolecular distances, accounting for 

the deformation energy induced by the lateral interactions (without explicitly considering these interaction in the 

expansion). Indeed, the TH and TB lattices are characterized by 7 and 8 single body patterns at xmin. This more 

detailed description slightly reduces the RMSE from 0.07 to 0.03 - 0.05 eV and the maximum error lies now 

around 0.1 eV. However, without much surprise, some of the heavily distorted modes only occur in one (or few) 

configurations. Hence, Cook’s distance reaches very high levels. Folding the lateral interactions into 1-body 

energy terms for slightly deformed adsorption modes is, apparently, a successful way to improve the fit with 1-

body patterns exclusively. It is, however, unclear whether this would lead to a good energy prediction of 

configurations outside the training set; this question will be addressed in future work. 
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Figure 8. Parity plots of the interaction energy per molecule given by the cluster expansion (CE) compared to DFT values for 
four typical models of Table 1 (left), which describe all 46 configurations and of Table 2 (right) which account only for a 
subset of configurations. Single body (1B) expansions and 2-body (2B) expansions that take nearest neighbors (NN) into 
account are distinguished. The percentage of vdW radii and the R2 is given before and after the semi-colon, respectively. The 
bisector is indicated by a thin grey line. 

Including nearest neighbour interactions (2-body patterns) reduces the RMS and maximum errors from 

0.07 and 0.2 eV to 0.03 and 0.1 eV, respectively, for the coarse T lattice. These two body patterns are repulsive 

by up to 0.2 eV and visibly increase the accuracy of the cluster expansion significantly, which is also seen in the 

parity plot of Figure 8 (left hand side). On the other hand, the Cook’s distances identify highly influential 

configurations. For the more detailed TH and TB lattice, on the other hand, the inclusion of nearest neighbour 

interactions is of minor importance, although small improvements can still be seen in the overall performance. 

This slightly increased accuracy comes, however, at the cost of linear dependencies, which means that 

combinations of two single body patterns into one single body pattern describing two ethylene molecules would 

be not only more efficient, but also necessary from a mathematical point of view. Excluding highly influential 

configurations changes the overall picture only moderately (see Table 2 and Figure 8, right): for the 1-body 

expansions up to 8 out of the 46 configurations need to be excluded, which does not significantly affect the 

maximum and minimum cluster energies. The situation for the 2-body expansions is somewhat different, since, 

except for the T lattice, more configurations have to be excluded in order to have a well-balanced training set. 

Nevertheless, even in these cases we obtain CEs which span a reasonable range of configurations and adsorption 

energies. 

In summary, we find that a 2-body expansion (with about 10 clusters as displayed in Figure 9) on the T 

lattice is probably the most convenient parametrization for ethylene adsorption on Pd(111). However, in 

hydrogenation reactions, for instance, hollow sites are necessarily included in order to describe the adsorbed 

hydrogen atoms. Hence, expansions on the TH lattice also need to be considered. In this case, we find that in the 

case of ethylene on Pd(111) lateral interactions tend to be small enough to be incorporated in slightly deformed 

single body patterns or can be accounted for explicitly. The ultimate comparison of the two possibilities in order 

to decide which approach is more effective in the determination of the ground-state geometry, would require the 

application of the CEs to larger unit cells and validation of the obtained results against DFT. 

VI. CONCLUSIONS 

 This paper has proposed a set of machine-learning tools to produced unbiased cluster expansions of 

atomic and molecular adsorbed layers on a graphical lattice. A measure of site recognition was proposed by 

associating circles of maximum, non-overlapping radii to lattice points and projecting the molecular surface based 

on atomic radii onto the lattice plane. A molecule is assigned to a graphical site from an overlap of at least 50% 

on between the atoms of a molecule and a site. Mapping the recognized patterns into the configurational energy 

of the system finally retrieves the expanded Hamiltonian, to be calculated by pseudo-inversion.  

 The proposed scheme has been applied to the adsorption of ethylene on Pd(111). The cluster expansions 

reproduced the known adsorption features in an accurate way, with both di-s and p modes being clearly identified. 

Lattices, which are more detailed than just atop sites, were found capable of resolving important parts of 

interactions at short contacts, since the repulsion induces measurable distortions at the DFT level. 2-body patterns, 

on the other hand, are also an efficient approach to increase the accuracy of the cluster expansions. This 

contribution has not addressed the optimal construction of a training set and validation procedure, although we 

consider that these tasks are highly important and human-time intensive. However, for a given set of DFT 

configurations we have proposed a clear protocol to establish cluster expansions based on a set of configurations 

and their energy without any user input and without ambiguity. The later point is the more relevant since 

adsorption modes of somewhat flexible molecules such as ethylene are not trivially deduced from DFT 

computations at short contacts, which are typical for high-coverage situations. We suggest that around 30 

configurations are sufficient to have a statistically relevant sampling of the different adsorption modes and nearest 

neighbor interactions. Having this tool in hand allows one to construct cluster expansions for arbitrary systems in 

a black-box manner based on the corresponding DFT configurations. Hence, a lattice based kinetic Monte Carlo 

model for selective hydrogenation on Pd(111) of acetylene including one intermediate could, by now, be 
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constructed with about 300 DFT computations and minimal time for the determination of the cluster expansions. 

It also opens up the possibility to construct cluster expansions for more complex surfaces such as alloys, where 

the identification of the different adsorption modes is even more challenging. 

VII. SUPPLEMENTARY MATERIAL 

All ab-initio computed energies and geometries are provided in the supplementary material. 
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