
A Machine Learning Approach to Performance Prediction
of Total Order Broadcast Protocols(∗)

Maria Couceiro
INESC-ID / IST

mcouceiro@gsd.inesc-id.pt

Paolo Romano
INESC-ID

romanop@gsd.inesc-id.pt

Luı́s Rodrigues
INESC-ID / IST

ler@ist.utl.pt

Abstract—Total Order Broadcast (TOB) is a fundamental
building block at the core of a number of strongly consistent,
fault-tolerant replication schemes. While it is widely known
that the performance of existing TOB algorithms varies greatly
depending on the workload and deployment scenarios, the
problem of how to forecast their performance in realistic
settings is, at current date, still largely unexplored.

In this paper we address this problem by exploring the
possibility of leveraging on machine learning techniques for
building, in a fully decentralized fashion, performance models
of TOB protocols. Based on an extensive experimental study
considering heterogeneous workloads and multiple TOB pro-
tocols, we assess the accuracy and efficiency of alternative
machine learning methods including neural networks, support
vector machines, and decision tree-based regression models.
We propose two heuristics for the feature selection phase that
allow to reduce its execution time up to two orders of magnitude
incurring in a very limited loss of prediction accuracy.

Keywords-Total Order Broadcast; Performance Prediction;
Machine Learning

I. INTRODUCTION

Total Order Broadcast (TOB) [5] is a fundamental build-
ing block for developing strongly consistent replicated sys-
tems. TOB greatly simplifies the development of fault-
tolerant applications by ensuring that messages are delivered
at all replicas in the same order despite variable commu-
nication delays and the occurrence of failures, hiding the
issues associated with enforcing system-wide agreement on
the streams of updates generated by the replicas. TOB
is, in fact, at the heart of the classic, general-purpose,
active replication scheme [25], as well as of a number of
specialized replication protocols tailored for, e.g., database
systems [19] and transactional memories [3].

Over the last decades, a wide body of literature has been
devoted to the design and evaluation of TOB protocols
(extensively surveyed by Defago et al. [5]). However, we
are not aware of any work proposing engineering methods
and tools capable of providing real-time, fine-grained (i.e.
on a per message basis) forecasts of the performance of
TOB protocols, when deployed in real systems and subject
to complex workloads.

(∗) This work was partially supported by FCT (INESC-ID multian-
nual funding) through the PIDDAC Program funds and Aristos project
(PTDC/EIA-EIA/102496/2008) and by the European Commission through
the Cloud-TM project (FP7-257784).

In this paper, we investigate, to the best of our knowledge
for the first time in literature, the challenges associated
with using machine learning techniques to derive fine-
grained performance prediction models of TOB protocols.
The machine-learning based approach proposed in this paper
allows forecasting the TOB’s latency on a per message basis,
providing a fundamental building block for architecting self-
optimizing replication schemes [23]. This is a promising
research area that is, at current date, still largely unexplored
precisely because of the unavailability of effective TOB’s
performance predictors.

We start by presenting a semi-opaque self-monitoring
architecture that relies on the tracing of a basic set of proto-
col independent performance metrics, possibly augmented
with protocol specific context information in a modular
fashion via the use of standard programmatic interfaces. Our
generic (i.e. protocol independent) monitoring tools track the
usage of system resources (such as network bandwidth, CPU
and memory) across multiple time scales spanning several
orders of magnitude. This allows to combine information
representative of stationary phenomena (captured by long
term averages) as well as transient burstiness (captured
by short term averages) which can significantly affect the
latency of ongoing TOBs.

Next we discuss the results of an extensive experimental
study based on:

• three machine learning methods, namely neural net-
works [12], support vector regression [26], and regres-
sion decision trees [21].

• three highly heterogeneous and demanding (in terms
of amount of injected traffic) workloads, consisting of
a synthetic traffic generator that allows us to widely
span in the workload’s parameters space, and two com-
plex applications running on top a distributed software
transactional memory platform [3] that generate high
contention on the computational and memory resources
locally available at each node.

• two different TOB algorithms relying on radically dif-
ferent approaches for establishing agreement on the
delivery order (centralized vs distributed) and aiming
at optimizing distinct performance metrics (latency vs
throughput).

Our experimental results highlight that the set of context
information (also called features in the machine learning
literature and in the remainder of this paper) that maximizes
the machine learners accuracy varies significantly when
one considers heterogeneous, realistic workloads. We also
evaluate to what extent incorporating time series, protocol
dependant information and garbage collection metrics can
allow enhancing the accuracy of the machine learners.

We then focus on the issue of feature selection, a problem
of combinatorial nature that becomes rapidly intractable in
scenarios, such as the one evaluated in this paper, char-
acterized by a large abundance, and redundancy, of input
variables. Our experimental data highlights that, while being
certainly more efficient than an exhaustive exploration of
the feature space, existing heuristics approaches [11] to
the feature selection problem still have prohibitively high
execution times. This can represent a major impairment in
scenarios demanding frequent re-training of the performance
predictors, due to, e.g., workload fluctuations or alterations
of the group size caused by failures or dynamic expan-
sions/contractions triggered by spikes of the load pressure.
To tackle this issue we propose and evaluate two alternative
solutions:

1) An optimized search heuristic, whose search trajectory
in the features’ power set is drastically restricted with
respect to classical greedy search heuristics. This is
achieved by exploring exclusively the combinations of
features which were found to generally maximize the
accuracy of the machine learners. Such a specialization
allows reducing the feature selection execution time
on average by a factor 10x at a negligible cost in
terms of accuracy degradation (<2%) across the whole
spectrum of considered workloads.

2) A technique based on the ensemble of a small set
of models, each one relying on different (and largely
non-overlapping) subsets of features, and whose pre-
dictions are combined on the basis of the expected
confidence intervals of the individual models to op-
erate in the corresponding region of their features
space. When compared with classical greedy heuristics
for feature selection, this ensemble technique allows
boosting feature selection by two orders of magnitude,
at the cost of an average 10% degradation of the
prediction accuracy.

The remainder of this paper is structured as follows.
In Section II we present the architecture of our system,
discussing the key implementation issues of our real-time
monitoring tools. Section III overviews the machine learners,
the workloads and the TOB algorithms used in our evalu-
ation study. The results of the experimental evaluation are
discussed in Section IV. In Section V we discuss related
work. Finally, Section VI concludes the paper.

!""#$%&'()*+,"#$%&'()-.&/,0-

1&2&-
"0,3"0(%,44(0-

5&%6$),-#,&0)$)7-2((#4-
81,%4()-20,,49:5;9),<0&#-),24===>-

?(1,#4-
0,"(4$2(0/-

5()$2(0$)7-.&/,0-

@(2&#-;01,0-.&/,0-

A$02<&#-:/)%60()/-.&/,0-

B-

@0&)4"(02-.&/,0-C5D-

C5D-%0(44--
#&/,0-

?()$2(0$)7-

!""#$%&'(%

@;3E%&428?47>- @;31,#$F,08?47>-

.&2,)%/--
"0,1$%'()-#&/,0-

"0,1$%28?47>- "0,1$%2,1-
#&2,)%/-

• -20&$)*2,42-1&2&-
• -%()2,G2<&#-$)H(-
• -&%2<&#-#&2,)%$,4-
• -,F,)2-)('I%&'()-

:2&)1&01-!""$&-!JK-

),2L(0M-2(-(26,0-70(<"-)(1,4-

)*+,%#%

Figure 1. Architectural Overview (Single Node Perspective).

II. SYSTEM ARCHITECTURE

The architecture of our system is depicted in Figure 1. It
considers a distributed application, such as a transactional
database replication manager [19] or a distributed transac-
tional memory [3], which is supported by a group communi-
cation service (GCS) [15]. The system is augmented with a
monitoring layer and a latency predictor, which are the key
contributions of this work. Before detailing the description
of these components, we will first provide a brief overview
of the interdependencies among the system components and
discuss some key principles underlying their design.

In our system, each node develops, in an independent
and fully distributed fashion, predictive models of the TOB
latency as observed by applications residing on that same
node. More specifically, the latency predictor component
provides the client of the TOB service with a latency
estimator. The predictor is able to forecast the time it takes
to self-deliver (after being totally ordered) a message of a
given size sent by the application.

The monitoring layer is the component responsible for
collecting training data for the machine learners, as well as
to provide the latency predictor with information concerning
the actual workload characteristics and resource utilization
levels. Additionally, it provides feedback to the latency
predictor component regarding the accuracy of its forecasts,
as well as notifications on the occurrence of relevant changes
in the system configuration that may affect the quality of the
currently employed predictive model, for instance, a change
in the number of active replicas (as the performance of TOB
is typically a function of the number of participants).

A. Monitoring Layer

Our monitoring layer has been developed for the Ap-
pia [15] GCS. Appia follows an architectural design that
allows to compose layered stacks of micro-protocols accord-
ing to the application needs. The flow of information among
the layers of the Appia stack is supported by the exchange of
events that are propagated upwards and downwards through

the stack. In Appia, this flow of events is regulated by
a single, dedicated thread which we will refer to in the
following as Event Scheduler (ES) thread.

The monitoring mechanisms are implemented as a layer
that can be transparently disabled/enabled at run-time, en-
suring that there is no monitoring overhead when the tracing
functionality is disabled. As depicted in Figure 1, the mon-
itoring layer sits between the TOB layer and the interface
towards the application. This allows to achieve total trans-
parency for the application, as well as to straightforwardly
trace any event generated by or delivered to the application.
Thus, the monitoring later is able to intercept TO broad-
cast/delivery events and events notifying of changes in the
group membership. As noted before, membership changes
may have a significant impact on the TOB performance,
thus they can be used to trigger the generation of a new
performance model.

When the monitoring layer is enabled, it collects context
information using the following set of metrics:

1) Network related metrics: moving averages across mul-
tiple time scales of i) the number of TO broadcast/delivery
events, and of ii) the amount of bytes sent/received by
the TO layer; additionally it keeps track of the number of
TO broadcast events generated by the application layer and
for which it has not been generated the corresponding TO
delivery event yet.

2) CPU related metrics: moving averages across multiple
time scales of the total CPU utilization, and of the CPU
utilization of Appia’s ES thread.

3) Memory related metrics: the free memory in the Java
Virtual Machine (JVM), as well as two metrics describing
the activity of the JVM’s Garbage Collector (GC) thread
namely, i) the time occurred since the last garbage collection
cycle, and ii) the percentage of time elapsed since the last
garbage collection cycle with respect to the time between
the last two garbage collection cycles. Note that, since there
is no standard Java API to directly track the status of the
GC thread, to trace the GC activity in a portable manner we
extended the finalize() method of a dummy object to keep
track of the time in which the GC thread is activated (and
re-instantiate the dummy object).

In addition to the above context information, the mon-
itoring layer has been designed to support also cross-
layer tracing in a modular fashion. Specifically, at system’s
bootstrap, and upon any alteration of the Appia stack, the
monitoring layer queries the whole set of Appia’s layers via
the standard Java Management Extensions (JMX) interface
to determine whether there are any layers that externalize
information related to their internal state that could be
exploited by the machine learners to generate more accurate
performance models. Our approach allows developers to
specify which attributes, among those monitorable via the
JMX interface, should be traced by our monitoring layer
as deemed potentially beneficial to enhance the machine

Metric Description
freeMem Free memory in the Java Virtual Machine
tLGC The time since the last garbage collection
pLGC % of time since the last GC cycle w.r.t. the time

between the last 2 GC cycles
undelivMsgs #TO Broadcast msgs and not yet self-delivered
bytesUpx #Bytes received over a x msec. time window
bytesDownx #Bytes sent over a x msec. time window
TOBUpx #TOB deliver events over a x msec. time window
TOBDownx #TOB broadcast events over a x msec. time window
totCPUx % total CPU utilization over a x msec. time window
esCPUx % CPU utilization by ES thread over a x msec. time window
esCPUx % CPU utilization by ES thread over a x msec. time window
TCPqueue Outgoing messages queued at the Transport Layer

(protocol dependant metric traced via JMX interface)
toTime Elapsed time since the token was last owned

(protocol dependant metric traced via JMX interface)

Table I
LIST OF METRICS COLLECTED BY THE MONITORING LAYER.

learners’ accuracy. As we will further discuss in Section III,
in our experimental analysis we exploit this mechanism to
monitor the number of outgoing message queued at the lower
layer of the Appia’s stack (namely the Transport Layer),
as well as to track the state of internal variables of TOB
algorithms. We report the whole set of metrics gathered by
the monitoring layer in Table I.

Whenever a TO broadcast event for message m is inter-
cepted by the monitoring layer, the latter takes a snapshot
of the current state of the context information. As soon as
the monitoring layer intercepts the TO delivery event for
message m, it determines the self-delivery latency, logs the
associated context information (namely the context informa-
tion at m’s sending time along with its self-delivery latency)
asynchronously to a memory buffered file and propagates
the TO delivery event upwards. The choice of measuring
exclusively the self-delivery latencies allows to circumvent
the issue of ensuring accurate clock synchronization among
the communicating nodes, which would have clearly been a
crucial requirement in case we had opted for monitoring
the delivery latencies of messages generated by different
nodes. Preliminary experiments conducted in our cluster
have indeed highlighted that the accuracy achievable using
conventional clock synchronization schemes, such as NTP,
is often inadequate for collecting meaningful measurements
of the TO broadcast inter-nodes delivery latency, being the
latter frequently around or less than a millisecond.

B. Latency Predictor

The latency predictor is responsible for forecasting the
performance of the TOB layer when broadcasting a message
of a given size. In order to build the performance models
used to generate these forecasts, the latency predictor layer
triggers the pre-processing of the training data collected
by the monitoring layer. In this phase, the training data is
prepared (properly filtered and manipulated, e.g., to generate
time-series - see Section IV-A) to allow its successful

processing by the chosen machine learning tool. Our system
architecture in fact supports the modular integration of
alternative machine learning libraries.

The models output by the machine learners are stored in
a model repository, where they are associated with metadata
that captures the context in which these models were built
(such as the number of machines participating in the TOB
group and the TOB algorithm employed while generating the
training data). Furthermore, the models are ranked (e.g. for
feature selection purposes) and made available to the latency
predictor layer for generating performance predictions. Note
that the performance models output by the machine learners
take as input features not only the size of the message to be
broadcast, but also a (possibly quite large) set of system
metrics. These are obtained by querying at run-time the
monitoring layer. The latter makes also available information
on the actual self-delivery latencies of recently broadcast
messages, which can be used by the latency predictor to
assess the accuracy of its predictions and possibly trigger
the construction of a new model.

III. TESTBED DESCRIPTION

A. Overview of the Evaluated Machine Learning Methods
At current date, we have integrated in our system two

machine learning tools, namely Rulequest’s Cubist c� [20]
and Weka [8], enabling the user to choose which one to
use. We now briefly overview these two tools.

Cubist c� is a decision tree based regression commercial
tool developed by Quinlan, the author of C4.5 [22] and ID3,
two popular decision tree based classifiers. Analogously to
these algorithms, Cubist c� builds decision trees choosing the
branching attribute such that the resulting split maximizes
the normalized information gain (namely the difference in
entropy). Unlike C4.5 and ID3, which contain an element
in a finite discrete domain (i.e. the predicted class) as leafs
of the decision tree, Cubist c� places a multivariate linear
model at each leaf. An appealing characteristic of Cubist c�

is that the decision tree can be reformulated as set of
human-readable rules, where each rule identifies a region
in the feature space. Also, each rule contains a multivariate
linear model in the ”then” clause and is associated with
the expected average error in the prediction. Since Cubist c�

generates a piecewise regression model (each multivariate
linear model being applicable under certain rules), it can be
more powerful than a simple multivariate linear model as
it allows variables to be weighted differently as conditions
change. When two rules overlap, the values predicted by
using the models associated with each rule are averaged
with a weight that depends on the degree of confidence in
the prediction generated by the two rules.

Weka is an open-source framework providing a common
interface to a large number of machine learning algorithms.
In this work we evaluate two major regression techniques,
namely, Neural Networks [12] and Support Vector Machines

[26]. These methods are well-known and have been exten-
sively described in the machine learning literature, so, due
to space constraints, we will only briefly overview them.
The neural network algorithm implemented in the Weka
framework trains a multi-layered network using the classic
back-propagation algorithm [24] to determine the weights
that minimize the local error at each perceptron. We used
the default configuration in Weka, which generates a number
of hidden layers equals to half the number of input features.
Concerning the Support Vector Machine technique, we also
rely on the default configuration of the Weka’s SMOreg
package, which uses a polynomial kernel whose parameters
are learnt using the algorithm in [26].

B. Workload Description
For our experimental study we consider the following

three workloads:
Synth: this is a synthetic benchmark which injects traffic

at each node following a regular and homogeneous pattern.
On each node we run a single application level thread which
TO broadcasts, during intervals lasting 30 seconds each,
messages of growing size, namely {100, 200, 500, 1K,
2K, 5K, 10K, 20K, 50K, 100K, 200K, 500K} bytes, at an
increasing sending rate, namely {1, 2, 10, 20, 50, 100, 125,
166, 333, 500, 1000} messages per second. The training and
testing datasets are built collecting for each configuration at
most 90 messages.

RBTree: this workload is generated by D2STM [3], a
distributed software transactional memory platform, running
the Red Black Tree benchmark. D2STM uses a TOB-based
distributed certification scheme that relies on TOB to propa-
gate the readset and writeset of local transactions, and ensure
that all replicas validate transactions in the same common
order. The Red Black Tree [13] is a well-know benchmark
for the evaluation of software transactional memories, in
which a red black tree data structure is concurrently updated
(by inserting and/or removing items) by several threads. The
benchmark was ported to run on the D2STM platform and
tuned to generate transactions entailing a variable number of
operations. Note that this has the effect of further increasing
the heterogeneity of the generated workload: as the number
of operations issued by each transaction varies over time, the
frequency of generation of TO broadcasts, and the size of
the TO broadcast messages (which encode the transactions’
readset and writeset) also vary accordingly. Unlike the Synth
benchmark, in RBTree each replica can host a variable
number of threads performing computational intensive tasks
before issuing a TO broadcast. This scenario is therefore
characterized by a much higher contention among (GCS
and application) threads on the local resources (CPU in
primis). We will see that this has a significant impact on the
predictability of the GCS performance. The data set used to
train and test the machine learner consists of the messages
exchanged during 15 minutes, which corresponds to the time

Worst vs Best Set of Feat. Benchmark NAE
6 vs 50 time window Synth (m4) 25%
500 vs 10 time window RBTree (m2t3) 32%
without vs with GC Synth (m4) 29%
without vs with time serie RBTree (m2t3) 81%
without vs with token RBTree (m2t1) 61%

Table II
MODELS’ ACCURACY INCREASE (NAE) WITH SELECTED FEATURES.

needed to collect training data across the whole range of the
generated workload.

STMBench7: this workload is also generated by D2STM,
running STMBench7 [10], a complex benchmark which ma-
nipulates an object-graph with millions of objects, featuring
a number of operations with different levels of complexity.
This benchmark includes both very short and very long-
running transactions; the latter traverse hundreds of thou-
sands of objects and generate extremely large readsets and
writesets. As a consequence, the workload for the TO service
entails both very short (on the order of few hundreds of
bytes) and very large messages (on the order of several
megabytes). Also, as transactions need to store in memory
their readset and writesets, long-running transactions end up
stressing significantly the memory system of the local JVM,
triggering frequent garbage collection cycles. Like in the
RBTree benchmark, this benchmark allows running multiple
concurrent application level threads in each node. Each run
of this benchmark lasts around 30 minutes in order to ensure
that, independently of the number of machines and threads,
the training and testing data sets contain approximately
12.000 entries.

C. Evaluated TOB Algorithms
In our experiments, we consider two classic, well-known

TOB algorithms, described, e.g., by Defago et al. in [5]. The
first one is a sequencer-based algorithm in which a single
node, called the sequencer, determines the order according
to which all nodes have to TO deliver messages. The second
one is a token-based algorithm which ensures agreement
on the TO delivery order by circulating among the nodes
a token that grants the right to broadcast messages.

The choice of these two algorithms was aimed at max-
imizing diversity, with the ultimate purpose of widening
the representativeness of our testbed. The above TO algo-
rithms, in fact, rely on extremely different approaches for
establishing agreement on the delivery order (centralized vs
distributed), aim at optimizing different performance metrics
(latency vs throughput), and have complementary pros and
cons [5].

IV. ANALYSIS OF THE RESULTS

In this section we present the results of our experimental
study. We will initially focus on the analysis of the results
obtained using Cubist c� and only subsequently move to

compare the performance of the Neural Network and SMO
methods. All the results reported in the following were
obtained using a testbed of nodes equipped with an Intel
QuadCore Q6600 at 2.40GHz with 8 GB of RAM running
Linux 2.6.27.7 and interconnected via a private Gigabit
Ethernet.

The accuracy of the machine learners is measured using
the following metrics. Relative Average Error (RAE), which
compares the performance of the predictor with that of a
naive predictor that simply outputs the average value of
the training data. When comparing two different models,
say M1 and M2, we will rely on the Normalized Addi-
tional Mean Absolute Error (NAE), defined as NAE =
MAEM1−MAEM2

Latavg
, namely the difference between the Mean

Absolute Error (MAE) of model M1 (MAEM1) and the
MAE of model M2 (MAEM2) normalized by the average
value of the delivery latency in the test set data (Latavg). The
NAE is a scale-free metric that we deem more informative
than a simple comparison between the MAEs of M1 and M2.
In fact, small differences between the MAEs are irrelevant if
the delivery latencies are, on average, large, whereas, small
differences between the MAEs are relevant if, on average,
delivery latencies are also small.

Finally, to assess the models’ accuracy we rely on twofold
cross-validation, using 60% of the available data to build the
model during the training phase and the remaining 40% as
test data.

A. What features to use?
A crucial challenge that has to be faced for accurately

predicting the performance of any complex system via
machine learning techniques is to carefully identify the set
of metrics/context information to be used as input variables
for the model construction [11].

One of the first problems that we had to address while
building our system was related to the difficulty to identify
an optimal time window for computing the moving averages
concerning the percentage of utilization of CPU and network
resources. Our experimental results accentuated the fact that
the choice of the wrong time window could significantly
affect the machine learners’ accuracy. This phenomenon
is clearly highlighted by the first two rows in Table II,
which compares the accuracy of the predictions when using
specific features when the Token algorithm is being used
to disseminate messages in a group of 4 machines. The
fact that the Synth workload is stable over relatively long
periods of time explains the 25% decrease in accuracy
(measured through the NAE) when using a time window of
6 msec rather than 50 msec. On the other hand, an opposite
result is obtained when considering the RBTree workload,
where the accuracy decreases by 32% when using 500 msec,
rather than 10 msec, time windows. This can be explained
considering that shorter time windows are more sensitive
to transient burstiness phenomena; this can be beneficial

Sequencer Token
2 Machines 4 Machines 2 Machines 4 Machines

1Thread 3Threads 1Thread 3Threads 1Thread 3Threads 1Thread 3Threads
COR RAE COR RAE COR RAE COR RAE COR RAE COR RAE COR RAE COR RAE

Synth 1.00 0.01 - - 1.00 0.20 - - 1.00 0.01 - - 1.00 0.01 - -
RBTree 0.44 0.42 0.63 0.39 0.69 0.37 0.77 0.42 0.80 0.31 0.95 0.12 0.57 0.49 0.84 0.30
STMB7 0.44 0.37 0.64 0.35 0.67 0.35 0.54 0.36 0.65 0.38 0.71 0.36 0.49 0.51 0.74 0.42

Table III
CORRELATION COEFFICIENT AND RELATIVE ABSOLUTE ERROR OF CUBIST c� USING FORWARD SELECTION.

in presence of highly variable workloads, such as RBtree,
but disadvantageous in the case of more stable workloads,
such as for Synth. These results have led us to the choice
of computing the moving averages across multiple time
windows, ranging from 2 up to 500 msecs, and of relying on
feature selection phase to filter out the ones that turned out
to be uninformative or misleading for the machine learner.

Another interested finding highlighted in Table II is re-
lated to the relevance of the GC related metrics. The third
row of the table reports a degradation of the model’s accu-
racy of 29% for the Synth workload when the metric that
indicates the time elapsed since the last garbage collection
cycle (tLGC in Table I) is not used (and otherwise using the
same set of features).

These experiments have also highlighted the usefulness of
incorporating time series information in the set of features
used by the machine learners. To this end we pre-process
the training data generated by the monitoring layer in
order to include, in the set of features provided to the
machine learner, the latencies of the last k TO broadcasts
self-delivered by that node. As shown by the 4th row of
table II, when time series information is not employed,
the Cubist’s c� predictions accuracy increases by 81% in
the Synth workload scenario. This is due to the fact that,
especially in the less fluctuating workloads, there is often
a significant correlation among the delivery latencies of
recently broadcast messages.

Finally, the last row in Table II reports a 61% decrease in
the accuracy for the RBTree workload when the machine
learner is not provided with information concerning the
elapsed time since the token was owned by the node for the
last time (toTime in Table I). In the token-based algorithm,
in fact, the delivery latency is strongly affected by the time
elapsed before the token is owned by the sending node, and
the latter is closely correlated with toTime. Overall, these
results confirm the relevance of our semi-opaque monitoring
approach, which provides the TOB layers’ developers with
standard interfaces to instruct the monitoring layer to trace
protocol-dependant state information.

Based on the above analysis, we identified a total number
of 53 relevant features (43 of which being directly traced
by our monitoring layer, and 10 additional ones obtained
by building a time serie on the delivery latency). When
faced with such an abundance (and redundancy) of available

metrics, it is easy to fall prey of the, so called, curse of
dimensionality [17]. As the number of dimensions in the
feature space (i.e. the degrees of freedom of the model to be
built by the machine learner) increases, in fact, the amount
of training data required to ensure an equivalently dense
sampling coverage of the feature space grows exponentially.
This makes the machine learners much more exposed to
the risk of overfitting [6], a phenomenon in which the ma-
chine learner infers erroneous dependencies among random
features of the training data with no causal relation to the
target function, with the result of increasing their accuracy
in fitting known data (hindsight) while actually degrading
the accuracy in predicting new data (foresight).

Note that the feature selection problem is of combinatorial
nature, as identifying optimal solutions entails exhaustive
searching the powerset of the feature set. This motivated the
design of a number of alternative heuristic approaches that
enhance efficiency at the cost of not achieving optimality.
In the machine learning literature, greedy algorithms are
probably the most used for implementing feature selection.
There are two variants of this approach: forward selection
(FS) and backward elimination (BE). In FS, features are
progressively added to build larger models, whereas in BE
one starts with the set of all features and progressively elimi-
nates the least promising ones. At each iteration, one feature
is added/removed and cross-validation is used to identify
the best performing subsets of features. Both approaches
stop when adding/removing one more feature to/from the
remaining set of features no longer improves accuracy.

We report in Table III the Relative Absolute Error and
correlation coefficient achieved by using the FS heuristic
across all the considered workloads (we omit report results
for BE as they are extremely close to those achieved by
FS). The plots are relative to scenarios where the number of
machines varies between 2 and 4, and the number of threads
in the RBtree and STMBench7 benchmarks vary from 1 to
3. Results show that the prediction accuracy clearly depends
on the complexity of the considered workload. When con-
sidering the Synth workload, the accuracy and correlation
of the predictor output are extremely high, even if this
workload is highly heterogeneous and encompasses phases
where nodes generate both very low and high network traffic.
This happens because, in each phase, the fluctuations of the
delivery latencies are rather limited. The reasons for the

FS BE OSH ENS
Models Built 401 484 72 7
Time (sec) 250 579 53 2.1

Table IV
AVERAGE EXECUTION TIME OF FEATURE SELECTION ALGORITHMS.

observed stability in each phase are twofold. First, nodes
are very lightly loaded, not running any computational or
memory intensive tasks. Second, nodes send messages at
the same rate, which makes the performance of the GCS in
each phase rather stable.

The other two considered workloads are, on the other
hand, definitely more challenging. First, the applications
lack a well defined traffic pattern and second, nodes execute
computational intensive applications. Together, these factors
induce a strong variance in the self-delivery latencies. As
a result, even though the set of features selected by the
FS algorithm varies significantly for each workload, the
performance of the predictors is similar across the two
workloads, with an average correlation factor of 66% and
an average RAE of 37%.

The results collected with these two workloads show an
interesting trend, namely, the correlation generally grows,
on average, from 59% to 73% when moving from scenarios
with one thread to scenarios with three threads. This cor-
relation is mainly due to the fact that in this context the
undelivMsgs feature (which captures the number of threads
that are blocked waiting for the self-delivery of a message,
see Table I) becomes extremely useful in this context. Indi-
rectly, this metric provides a measure of congestion in the
system. On the other hand, this feature is only meaningful
when there are at least two application level threads, as it
is constantly equal to 0 in case there is a single application
level thread.

B. Boosting Feature Selection
Unfortunately, despite being significantly more efficient

than exhaustive searches, the FS and BE heuristics still
demand the construction of hundreds of models (see the first
two columns from left of Table IV) and require execution
times on the order of the hundreds of seconds even on a fast
(at the time of writing) machine equipped with two quad-
core 2.33 Ghz Intel Xeon processors, 4 GB of RAM and
running Linux 2.6.271. These costs are clearly prohibitive
in scenarios where models may have to be re-built rapidly
to adapt to workload fluctuations.

To tackle this issue, we propose and evaluate the following
two techniques:

1Interestingly, the average performance of BE is significantly worse (by
a factor 2.3) with respect to that of FS even though the latter builds, on
average, only 20% less models than than the former. This is due to the fact
that the models built by BE have, on average, a larger number of features
with respect to those explored by FS, and that the time taken by Cubist c�
to build a model is strongly affected by the number of features it uses.

• OSH: An Optimized Search Heuristic (OSH) that eval-
uates only combinations of features that were pre-
selected based on a preliminary exhaustive experimen-
tation across the whole spectrum of workloads with
classical statistical tools, such as Primary Component
Analysis [18], and cross-validation testing. This pre-
liminary phase allowed us to identify and discard the
combinations of features whose usage either provided
negligible increases, or even deterioration of the pre-
diction accuracy.
OSH explores a total of 72 different models built by
using as input features, a common set of attributes
(namely, msg size, TCPqueue, and undelivMsgS) and
the combinations obtained by picking exactly one item
from the following sets:

– T={latency of the last TO broadcast, latencies of
the last 5 TO broadcasts, latencies of the last 10
TO broadcasts};

– M={no memory information, freeMem, freeMem
and tLGC, freeMem and pLGC};

– R={moving avgsx}, where moving avgsx de-
notes the following set of metrics {bytesUPx,
bytesDOWNx, TOBUpx, TOBDownx, totCPUx,
esCPUx} computed over the same time window
of duration x msecs, and x ∈{2,6,10,50,100,500}
msecs.

• Ensemble: An ensemble of independent models built
over largely non-overlapping sets of features and whose
predictions are reconciliated on the basis of their es-
timated confidence interval. The intuition underlying
this approach is that models built using diverse set
of features have the potentiality to capture distinct
phenomena affecting the delivery latency of TOB al-
gorithms with different degrees of accuracy. In addi-
tion, by focusing each model on a smaller subset of
attributes, they are less prone to suffer of overfitting
problems. Further, by selecting the prediction generated
by the model with the highest degree of confidence in
the current region of the feature space, our ensemble
technique may enhance the accuracy of each indepen-
dent model.
Our ensemble technique generates 7 models, where
each model uses the same common set of attributes as
in OSH (msg size, TCPqueue, and undelivMsgS), but
differs from the other ones as it uses either i) a time-
series containing the last k (where we set k = 10) TOB
latencies, or ii) moving avgsx computed as before.
In preliminary experiments we have evaluated several
alternative methods for conciliating the predictions pro-
vided by the various models. We only report results
for the best performing strategy, which is based on the
simple approach of selecting the prediction associated
with the smallest confidence interval.

Sequencer Token
2 Machines 4 Machines 2 Machines 4 Machines

1Thread 3Threads 1Thread 3Threads 1Thread 3Threads 1Thread 3Threads
OSH ENS OSH ENS OSH ENS OSH ENS OSH ENS OSH ENS OSH ENS OSH ENS

Synth 0.2% 0.7% - - 2.5% 14.2% - - 7.4% 7.5% - - 10.7% 10.6% - -
RBTree 0.2% 3.4% 1.8% 20% 0.2% 14.2% 5.3% 14.1% 3.8% 4.1% 1.6% 2.5% 7.2% 11.7% 5.4% 8.3%
STMB7 0.4% 0.7% 2.1% 19.1% 0.3% 3.9% 3.1% 18.3% 6.4% 15.3% 11.1% 17.6% 2.6% 3.6% 20.4% 22.9%

Table V
NORMALIZED ADDITIONAL MEAN ABSOLUTE (NAE) ERROR USING OSH AND ENSEMBLE.

As expected, by evaluating a much smaller number of
models, OSH and Ensemble achieve striking performance
gains, reducing feature selection time up to two orders of
magnitude (see Table IV).

On the other hand, table V reports data quantifying to
what extent the quality of the predictions deteriorate when
using OSH and Ensemble with respect to the case in which
FS is used. The accuracy of OSH is extremely close to that of
FS, being its average NAE around 2.2%. Concerning Ensem-
ble, the average NAE increase is larger, namely around 10%.
We argue that, in practical settings, this (limited) degradation
of the prediction accuracy is largely compensated by the
significant performance gains it achieves. On the other hand,
in these experiments, we relied on Cubist’s c� estimates of
the confidence intervals, whose details are unfortunately not
publicly available. An interesting open research question is
whether the accuracy of the Ensemble technique could be
enhanced by leveraging on alternative techniques, e.g. [14],
for the computation of the predictions’ confidence intervals.

C. Additional Performance Considerations

In Table VI we report the average overhead (measured
in terms of TOB throughput reduction) due to the tracing
activities carried out by the Monitoring Layer with a differ-
ent number of machines/threads. The numbers show that the
overhead is in practice very limited, being always less than
5%, and decreasing to 2% in the case of four machines.
This can be explained by considering that, as the number
of nodes in the system increases, the TO delivery latency
also grows accordingly. In a closed model, such as the
one characterizing both the RBTree and the STMBench7
benchmarks, this leads to a reduction of the frequency of
TO broadcast issued by each node and, consequently, of the
frequency of messages traced by the Monitoring Layer.

In Figure 2 we analyze to what extent the size of the
training data set affects the model’s prediction accuracy and
building time. To this end, we considered the model using
the features selected by the FS technique for the STM-
Bench7 and Synth benchmarks, and progressively reduced
the size of the training data set. The data shown in the
plots is obtained by averaging the model’s accuracy and
building time across the whole set of configurations (number
of machines/threads and considered TOB protocol) evaluated
for these benchmarks (see Section III).

Machines # Threads Overhead (%)
2 1 5.71
2 3 5.21
4 1 2.63
4 3 2.23

Table VI
AVERAGE OVERHEAD DUE TO MONITORING LAYER

The plots highlight a somewhat expectable, but relevant
trade-off: the model building time can be significantly
reduced by using smaller training data sets, at the cost
of a degradation of the predictions’ quality. Specifically,
our experimental data show that a very similar prediction
accuracy (1%, resp. 10%, higher RAE for the Synth, resp.
STMBench7) could have been achieved using 50% smaller
data sets, boosting the training phase by a factor larger than
2. The selection of the training data set size represents, in
fact, a key tuning knob that can be used to further reduce
the time required to derive the TOB performance prediction
model. Unfortunately, as also confirmed by our experimental
data, the optimal choice of the training data set size is
highly workload dependent and is a time consuming process
which is typically performed offline. Extending our system
to automatize this process is an important research direction
that will be pursued in our future work.

D. Alternative Machine Learners

Finally, we compare the performance and accuracy of the
models obtained by using Cubist c� with those generated by
two other machine learning algorithms available in Weka,
namely a Multilayer Neural Nework (Neural) and a Support
Vector Machine regression (SMO) method. The reported
results are obtained using the same set of features as input
for all the machine learners, namely those selected by
running the FS scheme with Cubist c�.

Figure 3 reports the NAE between Neural and Cubist c�,
and between SMO and Cubist c�, averaged across all the
three considered workload. By the plot, we see that Cubist c�

significantly outperforms both Neural and SMO across al-
most every workload with the exception of the scenarios
where sequencer-based protocol is evaluated using 2 ma-
chines. In these cases, the Weka’s machine learners in fact
achieve a lower Minimum Absolute Error with respect to
Cubist c�, determining an inversion of the trend highlighted

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

5001000200050008000

0.05
0.1

0.2

0.3

0.4

0.5

Re
la

tiv
e

A
ve

ra
ge

 E
rro

r (
%

)

M
od

el
 b

ui
ld

in
g

tim
e

(s
ec

)

Size of the training data set

Synth

Rel.Avg.Err.
Model building time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1005001000500010000

0.1

0.5

1

1.5

Re
la

tiv
e

A
ve

ra
ge

 E
rro

r (
%

)

M
od

el
 b

ui
ld

in
g

tim
e

(s
ec

)

Size of the training data set

STMBench7

Rel.Avg.Err.
Model building time

Figure 2. Evaluating model’s building time and accuracy while varying
the training data set’s size.

by the plot. It is interesting to note, however, that in these
scenarios the correlation of Neural and SMO (not shown in
the plots) is significantly worse (around the half) than that of
Cubist c�. These differences can be motivated by considering
that different machine learning approaches are known to
optimize distinct metrics [17] and by referring to the well-
known ”No free lunch theorem” [28], which states that the
performance of no single machine learner can be optimal
across all possible scenarios.

As a final remark, we compared the training time of
the various machine learning tools when using data set
containing approximately 7.200 training cases. The results
are strongly in favour of Cubist c�, which on average takes
0.64 seconds to build a model, whereas the average time
for completing the training phase for Neural and SMO
was, respectively, 243 and 575 seconds. Albeit the per-
formance difference is quite striking, it is not completely
surprising considering that Cubist c� is a commercial, and
highly optimized performance tool (written entirely in C and
parallelized to take advantage of multi-core CPUs), whereas
Weka is an open-source framework designed to simplify
development and testing of novel machine learning methods
rather than fine-tuned for performance purposes.

-40%

-20%

0%

20%

40%

60%

1thr. 3thr. 1thr. 3thr. 1thr. 3thr. 1thr. 3thr.

N
A

E

Sequencer

2 machines 4 machines

Token

2 machines 4 machines

Neural
SMO

Figure 3. NAE of Neural and SMO with respect to Cubist c�.

V. RELATED WORK

Existing performance evaluation and modelling studies of
TOB [4], [7] (and related agreement problems, consensus
in primis [2]) have been aimed at providing a steady state
estimate of the average performance of several TOB proto-
cols in presence of simple synthetic workloads. Typically,
the purpose of these approaches is to identify the most
favourable settings for each of the considered algorithmic
alternatives. Also, due to the inherent complexity of TOB
protocols, the only analytical models of TOB we are aware
of [2], [7] make rather stringent assumptions on the work-
load, e.g. symmetric Poissonian traffic sources generating
messages at the same rate. In these works, the system model
is also simplified, using synthetic (constant or exponential)
communication latency distributions, that neglect important
factors such as the impact of the message size on the
observed latency. To the best of our knowledge, our work
represents the first attempt to leverage on machine learning
methods for assessing the performance of TOB protocols.
Unlike existing analytical/simulation models, we leverage on
statistical methods to automatically build fine-grained TOB
performance models capable of forecasting in real-time the
delivery latency perceived by user level applications on a
per message basis.

Our work is clearly related to the machine learning litera-
ture addressing performance prediction of computer systems.
These include works aiming at forecasting the throughput of
TCP flows [16] and Pub-Sub systems [9], solutions aimed at
automatizing the allocation of resources in cloud-computing
infrastructures [29], and at generating software aging models
to be used in the context of rejuvenation frameworks [1].

The idea of ensembling different machine learning models
to enhance the performance of single predictors has been
widely investigated in general contexts [17], as well as
applied to predict performance failures of complex systems
[31]. The latter work ensembles models based on the same

set of features but representative of different phases of the
life cycle of applications, and dynamically selects the model
which better matches the current load scenario by ranking
them based on the Brier score. Conversely, our ensemble
technique ensemble models built using largely disjoint sets
of features capturing different aspects of the application
workload with different degrees of accuracy.

Finally, our work is related with the body of literature
addressing the issue of identifying the most informative
attributes to be used by machine learners. In addition to
the already mentioned greedy search techniques, such as
Backward Elimination or Forward Selection [11], we can
mention also techniques, e.g. [30], aimed at clustering highly
correlated attributes for a preliminary screening of redundant
metrics, or at identifying the set of attributes accounting
for the greater variability in the output variable, such as
Primary Component Analysis [18] and Projection Pursuit
[27]. Unfortunately, these methods do not provide a direct
indication of the actual accuracy achievable by the machine
learner and rely on a set of input parameters (e.g. the fraction
of the total variability of the output variable should be
accounted when evaluating the feature set) whose optimal
settings may be not trivial to determine.

VI. CONCLUSION

In this paper we propose and evaluate a machine learning
based approach to performance modelling of Total Order
Broadcast protocols. The ability of our technique to provide
fine-grained prediction on a per-message basis makes it
an extremely useful building block for architecting self-
optimizing replication schemes. An extensive experimental
study comparing different machine learning methodologies
and feature selection approaches has been presented. We also
introduced two novel heuristics that drastically reduce the
execution time of the feature selection phase at the cost of
a very limited loss of accuracy.

REFERENCES

[1] A. Andrzejak and L. Silva. Using machine learning for non-intrusive
modeling and prediction of software aging. In Proc. NOMS’08, IEEE
Press, 2008.

[2] A. Coccoli, P. Urban, A. Bondavalli, and A. Schiper. Performance
Analysis of a Consensus Algorithm Combining Stochastic Activity
Networks and Measurements. In Proc. DSN ’02, IEEE Computer
Society Press, 2002.

[3] M. Couceiro, P. Romano, N. Carvalho, and L. Rodrigues. D2STM:
Dependable distributed software transactional memory. In Proc.
PRDC’09, IEEE Computer Society Press, 2009.

[4] F. Cristian, R. D. Beijer, and S. Mishra. A performance comparison
of asynchronous atomic broadcast protocols. Distributed Systems
Engineering, 1:177–201, 1994.

[5] X. Defago, A. Schiper, and P. Urban. Total order broadcast and
multicast algorithms: Taxonomy and survey. ACM Comput. Surv.,
36(4):372–421, 2004.

[6] T. Dietterich. Overfitting and undercomputing in machine learning.
ACM Comput. Surv., 27(3):326–327, 1995.

[7] R. Ekwall and A. Schiper. Modeling and validating the performance
of atomic broadcast algorithms in high-latency networks. In Proc.
Euro-Par ’07, Lecture Notes in Computer Science, pages 574–586.
Springer, 2007.

[8] E. Frank, M. A. Hall, G. Holmes, R. Kirkby, B. Pfahringer, and I. H.
Witten. Weka: A machine learning workbench for data mining., pages
1305–1314. Springer, Berlin, 2005.

[9] L. Garces-Erice. Admission control for distributed complex respon-
sive systems. In Proc ISPDC ’09, pages 226–233, Washington, DC,
USA, 2009. IEEE Computer Society Press.

[10] R. Guerraoui, M. Kapalka, and J. Vitek. Stmbench7: a benchmark for
software transactional memory. SIGOPS Operating Systems Review,
41(3):315–324, 2007.

[11] I. Guyon and A. Elisseeff. An introduction to variable and feature
selection. J. Mach. Learn. Res., 3:1157–1182, 2003.

[12] S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 1994.

[13] M. Herlihy, V. Luchangco, and M. Moir. A flexible framework
for implementing software transactional memory. SIGPLAN Not.,
41(10):253–262, 2006.

[14] B. Jiang, X. Zhang, and T. Cai. Estimating the confidence interval
for prediction errors of support vector machine classifiers. J. Mach.
Learn. Res., 9:521–540, 2008.

[15] H. Miranda, A. Pinto, and L. Rodrigues. Appia, a flexible protocol
kernel supporting multiple coordinated channels. In Proc. ICDCS’01,
pages 707–710, IEEE Computer Society Press, 2001.

[16] M. Mirza, J. Sommers, P. Barford, and X. Zhu. A machine learning
approach to tcp throughput prediction. In Proc. SIGMETRICS ’07,
pages 97–108, ACM Press, 2007.

[17] T. M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.
[18] K. Pearson. On lines and planes of closest fit to systems of points

in space. Philosophical Magazine, 2(6):559–572, 1901.
[19] F. Pedone, R. Guerraoui, and A. Schiper. The Database State Machine

Approach. Distributed and Parallel Databases, 14(1):71–98, 2003.
[20] J. R. Quinlan. Cubist. http://www.rulequest.com/cubist-info.html.
[21] J. R. Quinlan. Learning with continuous classes. pages 343–348.

World Scientific, 1992.
[22] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 1993.
[23] P. Romano, N. Carvalho, and L. Rodrigues. Towards distributed

software transactional memory systems. In Proc. LADIS’08, ACM
Press, 2008.

[24] D. E. Rumelhart, R. Durbin, R. Golden, and Y. Chauvin. Backprop-
agation: the basic theory. pages 1–34, 1995.

[25] F. B. Schneider. Replication management using the state-machine
approach. ACM Press/Addison-Wesley Publishing Co., 1993.

[26] S. K. Shevade, S. S. Keerthi, C. Bhattacharyya, and K. R. K. Murthy.
Improvements to the SMO algorithm for SVM regression. IEEE-NN,
11(5), IEEE Computer Society Press, 2000.

[27] J. S. Vetter and D. A. Reed. Managing performance analysis with
dynamic statistical projection pursuit. In Proc. Supercomputing ’99,
ACM Press, 1999.

[28] D. H. Wolpert. The lack of a priori distinctions between learning
algorithms. Neural Comput., 8(7):1341–1390, 1996.

[29] J. Xu, M. Zhao, J. Fortes, R. Carpenter, and M. Yousif. Autonomic
resource management in virtualized data centers using fuzzy logic-
based approaches. Cluster Computing, 11(3):213–227, 2008.

[30] L. Yang, J. M. Schopf, C. L. Dumitrescu, and I. Foster. Statistical
data reduction for efficient application performance monitoring. In
Proc. CCGRID ’06, pages 327–334, IEEE Computer Society, 2006.

[31] S. Zhang, I. Cohen, J. Symons, and A. Fox. Ensembles of models
for automated diagnosis of system performance problems. In Proc.
DSN ’05, pages 644–653, IEEE Computer Society Press, 2005.

