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ABSTRACT
Despite the advances provided by large-scale photometric surveys, stellar features – such as metallicity – generally remain limited
to spectroscopic observations often of bright, nearby low-extinction stars. To rectify this, we present a neural network approach
for estimating the metallicities and distances of red giant stars with 8-band photometry and parallaxes from Gaia EDR3 and the
2MASS andWISE surveys. The algorithm accounts for uncertainties in the predictions arising from the range of possible outputs
at each input and from the range of models compatible with the training set (through drop-out). A two-stage procedure is adopted
where an initial network to estimate photo-astrometric parallaxes is trained using a large sample of noisy parallax data from Gaia
EDR3 and then a secondary network is trained using spectroscopic metallicities from the APOGEE and LAMOST surveys and
an augmented feature space utilising the first-stage parallax estimates. The algorithm produces metallicity predictions with an
average uncertainty of ±0.19 dex. The methodology is applied to stars within the Galactic bar/bulge with particular focus on a
sample of 1.69million objects with Gaia radial velocities.We demonstrate the use and validity of our approach by inspecting both
spatial and kinematic gradients with metallicity in the Galactic bar/bulge recovering previous results on the vertical metallicity
gradient (−0.528 ± 0.002 dex/kpc) and the vertex deviation of the bar (−21.29 ± 2.74 deg).
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1 INTRODUCTION

One overarching goal of studying the Milky Way is to reveal its de-
tailed formation and evolution, and place our Galaxy in the context of
galaxy formation across the Universe (Bland-Hawthorn & Gerhard
2016; Barbuy et al. 2018). With the advent of large-scale spectro-
scopic surveys (RAVE, Steinmetz et al. 2020, APOGEE, Ahumada
et al. 2020, LAMOST,Cui et al. 2012,Gaia-ESO,Gilmore et al. 2012,
SEGUE, Yanny et al. 2009, GALAH, Buder et al. 2021, and in future
DESI, DESI Collaboration et al. 2016, WEAVE, Dalton et al. 2014,
4-MOST, de Jong et al. 2019, Milky Way Mapper, Kollmeier et al.
2017), we have highly detailed observations of > 106 stars allowing
characterisation of their effective temperatures, surface gravities, ra-
dial velocities, chemical compositions, masses, ages and more, from
which we can make progress on this goal by elucidating and separat-
ing the series of events and processes that have shaped our Galaxy
over cosmic time.
However, despite the utility of spectroscopic data, these surveys do

have limitations of scope when applied to some problems. As noted
by Ivezić et al. (2008) and Huang et al. (2022), taking spectroscopic
data for very distant or faint objects can quickly become difficult.
This causesmany surveys to have complex selection criteria to ensure
good spectroscopic data can be taken. These criteria typically limit
observations to specific object classes within a limited sky region
making the application of such data to large-scale populations or
structures difficult, as only a small portion of these groupings may be
included in the selection criteria. For example, when attempting to
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study the inner regions of the Milky Way’s disk and bulge, the large
distances and extreme extinction effects put many stars beyond the
reaches of spectroscopic observations. This area of the sky therefore
tends to have relatively few spectroscopic observations, which makes
analysis of these interesting populations difficult (although the infra-
red APOGEE and in future MOONS, Cirasuolo et al. 2014, surveys
are rapidly changing this state of affairs).
On the other hand, we have large-scale photometric surveys, which

typically are not bound by the same criteria that tend to limit spec-
troscopic observations. This allows them to be far more expansive,
generally observing many classes of object across the whole sky (or
often at least half) to a significantly greater depth. For example, Gaia
(Gaia Collaboration et al. 2021), 2MASS (Skrutskie et al. 2006) and
WISE (Wright et al. 2010) have all observed the entire sky across the
optical to infrared, whilst SDSS (Aihara et al. 2011), Pan-STARRS
(Chambers et al. 2016), DES (Abbott et al. 2021), Sky-Mapper (Wolf
et al. 2018) and GALEX (Bianchi et al. 2017) among others have
surveyed large fractions of the sky. However, unless designed with
filters with specific sensitivity to stellar metallicity or surface gravity
like Sky-Mapper’s u and v bands (Keller et al. 2007), broad-band
photometric data tends to struggle to accurately determine stellar
parameters without additional input.
Thus, we reach our aim with this research: to develop a method

that can determine stellar properties with the utility of spectroscopic
data, while retaining the scope and scale of photometric surveys.
From this, we would then be able to analyse, on a much deeper level,
the stellar populations and structures that stretch across the Milky
Way.
Attempts to determine stellar metallicity from photometry have
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Figure 1. The sensitivity of WISE to stellar metallicity: ratios of MARCS models with infra-red bandpasses overplotted normalized at 𝜆 = 35000Angstrom.
The reference model has 𝑇eff = 3500K, log 𝑔 = 0 dex and [M/H] = 0 dex. The green and purple lines show models with [M/H] = −1 dex and [M/H] = 1 dex,
and blue and red lines 𝑇eff = 3200K and 𝑇eff = 4000K. Note the strong gradients in 𝑊 2 due to the CO feature. The effects of temperature and metallicity
variations in𝑊 2 can be distinguished using the bluer 2MASS bands.

had some past successes, through leveraging the subtle sensitivity of
broad-band colours to metallicity. One early approach was the ‘UV
excess’ method (Wallerstein 1962) which can be calibrated to map
both stellar temperatures and metallicities using the large number of
metal lines in bluer and ultraviolet bandpasses. This method has been
adapted for use with modern photometric surveys, using the SDSS
(Ivezić et al. 2008) and Pan-STARRS (Thomas et al. 2019) (𝑔 − 𝑟)
and (𝑢 − 𝑔) colours to estimate metallicities. In a similar vein, the
metallicity sensitivity of the Ca H&K region at ∼ 3950Å has been
targeted using narrow-band filters in the PRISTINE (Starkenburg
et al. 2017) and Sky-Mapper (Wolf et al. 2018) surveys (see Huang
et al. 2022; Lin et al. 2022, for catalogues of stellar parameters derived
from Sky-Mapper data). Due to the strong effects of extinction on
UV/near-UV, these methods are less effective for studying faint or
distant objectswithin the highly-extincted innerMilkyWay (although
see Arentsen et al. 2020 for a study of metal-poor stars in the Galactic
bulge using the PRISTINE survey).

For more highly extincted regions, infra-red photometric surveys
are more attractive. Schlaufman & Casey (2014), Koposov et al.
(2015), Li et al. (2016) and Casey et al. (2018) have all demon-
strated how the infra-red WISE survey (Wright et al. 2010) can be
used to both separate dwarf and giant stars and also estimate stellar
metallicities for red stars. In particular, the WISE colour (𝑊1−𝑊2)
displays a strong correlation with stellar metallicity (𝑊1 and 𝑊2
have effective wavelengths of 3.4 𝜇m and 4.6 𝜇m respectively). This
is primarily due to the presence of a CO feature in the spectrum
of M giants. In Fig. 1 we show ratios of stellar spectra from the
MARCS model grid (Gustafsson et al. 2008). Increasing the metal-
licity we observe the molecular features (particularly the CO band
in the 𝑊2 bandpass) weaken whilst the flux in 𝐾𝑠 and 𝑊1 are es-
sentially unaffected leading to bluer (𝐾𝑠 −𝑊2) and (𝑊1 −𝑊2) for
more metal-rich stars. These colours also vary with effective tem-
perature (redder for hotter stars) again due to CO variation but this
degeneracy can be removed by combining with bluer colours such as
(𝐽 −𝐾𝑠). This metallicity sensitivity of the WISE bands was utilised

most recently by Grady et al. (2021), who used machine-learning
regression models with Gaia, 2MASS, and WISE bands to estimate
metallicities of stars in the Magellanic Clouds. This improved on
past works by allowing the subtler metallicity sensitivity of other
photometric colours to be included. For example, they found that by
including Gaia (𝐺BP − 𝐺RP) and 2MASS (𝐽 − 𝐻) they were able
to add additional metallicity information beyond that provided by
(𝑊1 −𝑊2). This work provided metallicity estimations with high
accuracy (±0.13 dex for −1 ≤ [Fe/H] ≤ −0.5) allowing for detailed
mapping of the mean metallicity of the Magellanic Clouds. However
this method was not used on stars within the Milky Way.
Past research has therefore left a gap for broadly applying metallic-

ity estimation to large-scale photometric surveys of the Milky Way.
It should be noted that WISE information is often utilised in stel-
lar characterization pipelines that provide metallicity estimates (e.g.
Anders et al. 2022; Lin et al. 2022) although these methods rely
on theoretical stellar models, or isochrones, which can be uncertain
for cool stars with significant molecular contributions to their at-
mospheres. Here we provide a complementary data-driven approach
to instead learn the correlations between photometric colours and
metallicities obtained from large spectroscopic surveys. We thus by-
pass complexities in detailed stellar modelling. In doing this, we
supplement Gaia EDR3 (Gaia Collaboration et al. 2021) astrometry
with metallicity information. Such a combination allows us to study
the spatial, kinematic, and abundance trends within the Galaxy, and,
thus, we are able use this new methodology to probe the evolution
and origins of various Milky Way structures.
This paper is split into four main components: neural-network

setup, distance estimation, metallicity estimation and a brief analysis
of the properties of a bar-bulge sample. Section 2 describes the gen-
eral setup of the neural network algorithm we will use in the subse-
quent methods. Section 3 describes our machine-learning-enhanced
approach to refine the distances we use in our analysis, allowing us to
improve object positional information and refine absolute magnitude
calculations. Section 4 covers the estimation of metallicities through
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the use of our neural-network algorithms, and the creation of our
final output catalogue. Section 5 describes an investigation of the
spatial and kinematic gradients of a bar-bulge sample separated by
our photometric metallicities, before we close with our conclusions
in Section 6.

2 NEURAL NETWORK SETUP

For the most accurate predictions of photometric metallicity, we opt
for a neural network (NN)machine learning algorithm. Typically, NN
architectures are trained with a set of input features, which are fed
through a non-linear layered network to return an output value. The
network layers are constructed from a set of inter-connected nodes,
with the strength of the connections (or weights) tuned through train-
ing to allow the model to learn patterns in the input data. Training
is guided by the network’s ‘loss function’, which guides the penalty
the model receives for returning poor predictions of the outputs com-
pared to the training set, and which the network aims to minimise.
The most common loss function is the mean squared error between
the NN’s output and desired target values – although this can be
customised and tuned for the desired setup.
Using the Python implementation of the Torch machine learning

library, Pytorch (Paszke et al. 2019), we work with a NN with the
architecture shown in Fig. 2 and described in-detail in Appendix A.
For a set of input features, 𝑥, each layer in the network, ℎ, follows

ℎ = 𝑎 𝑓 (𝑥) + 𝑏, (1)

where 𝑓 (𝑥) is the non-linear response function of the layer, and the
matrix of weights 𝑎 and vector of biases 𝑏 are constants refined by
the training process. Thus, for a network of 𝑛 layers, we return an
output value, 𝑦, from outputs of one layer being sequentially input to
the next. This gives us:

𝑦 = 𝑎𝑛 𝑓 (𝑎𝑛−1 𝑓 (. . . 𝑓 (𝑎2 𝑓 (𝑎1 𝑓 (𝑥)+𝑏1))+𝑏2 . . . )+𝑏𝑛−1)+𝑏𝑛 . (2)

The network is trained iteratively with the network tuning 𝑎𝑖 and 𝑏𝑖
to improve the loss function. By improving the average loss function
over the full training set, the network is able to learn the correlation
between 𝑥 and 𝑦 and predict outputs for new sets of input features.
This allows for accurate and robust fitting, while also allowing 𝑓 (𝑥)
to be customised and modified to best suit a chosen problem.
However, NN’s do not tend have a measure of ‘confidence’ in their

estimations and instead usually return a single value for a set of input
features. For us to include a measure of the network’s predictive
confidence, we add two small modifications adapted from Leung &
Bovy (2019a): an uncertainty output node and node drop-out.

2.1 Uncertainty Node

We include a secondary output node into the NN architecture, as
marked in Fig. 2. This node provides one uncertainty measure, 𝜎pred,
known as the model’s ‘predictive uncertainty’. This is the variance
in the training data that isn’t accounted for by the uncertainties noted
in the training set’s output targets. Even with perfect data, there
are ‘hidden variables’ that impact the outputs. This manifests as
identical training inputs into the NN returning a range of outputs.
During the training process, the output uncertainty was fed into the
NN’s customised loss function, and allows us to return an output
value along with an uncertainty measure.
We adopt the loss function from Leung & Bovy (2019a). With 𝑦𝑖

as the target value from the training set with uncertainty 𝜎data,𝑖 , and
𝑦̂𝑖 the value returned by the NN with uncertainty 𝜎pred,𝑖 (from the

Figure 2. Diagram of the adopted Neural Network (NN) architecture. Input
features are fed into the NN, which trains the nodes/layers with the drop-
out modifier active. Then, for predictions, the layers predict a value with
a combined uncertainty from the drop-out stochasticity and the secondary
‘uncertainty’ output node.

‘uncertainty node’), the logarithm of the joint variance is determined
as 𝑠𝑖 = ln(𝜎2data,𝑖 + 𝜎

2
pred,𝑖). The loss function, 𝐽 (𝑦𝑖 , 𝑦̂𝑖), is then

defined as

𝐽 (𝑦𝑖 , 𝑦̂𝑖) =
1
𝑛

𝑛∑︁
𝑖=1

1
2
(𝑦𝑖 − 𝑦̂𝑖)2𝑒−𝑠𝑖 +

1
2
𝑠𝑖 . (3)

The predictive uncertainty, 𝜎pred is refined by the training process,
with each iteration of training incrementally refining the uncertainty
output when calculating the loss function. The function in equa-
tion (3) is designed such that the network minimises loss from poor
predictions by maximising the predictive uncertainty. However, this
drive is countered by the final additive term which increases loss for
high predictive uncertainty. In this way, the network optimises to find
the largest predictive uncertainty for the given data, but is penalised
for selecting extremely large or small values.

2.2 Drop-Out

Drop-out (Hinton et al. 2012) is a common NN operation used to
dissuade over-fitting during the training stage by randomly ‘dropping’
a fraction of the nodes in each layer. This modifies equation (1) to be

ℎ = 𝑎 𝑔(𝑥) + 𝑏, (4)

where 𝑔(𝑥) = P 𝑓 (𝑥). Here, P is a function that applies a Bernoulli
distribution to each node within a layer (and thus modifies the re-
sponse of 𝑓 (𝑥)). The Bernoulli function causes some chosen fraction
of nodes within a layer to be temporarily ‘zeroed’ out, and thus have
no effect on the current training or prediction pass. This limits the
effect one node or branch can have to the overall output, as other
nodes in the network must learn to ‘cover’ for those hidden by the
drop-out process.With drop-out active, the network tends to learn the
problem as a cohesive unit, and avoids the creation a small number
of over-influential nodes that can dictate the network’s predictions.
However, in our case, drop-out can have a secondary function to

add stochasticity to the model (Gal & Ghahramani 2015). As each
run of the network has a random fraction of nodes missing, we can
consider each run to be a slightly different network. So, if a set of
input features are repeatedly passed through the NN, the variations
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due to drop-out will cause different outputs to be returned each
time. While predicting from our network, we return an ensemble of
networks with slight variations due to the randomness of drop-out,
all of which are consistent with the training data. When we input new
features, we return a distribution of output values from the ensemble
of networks - a distribution we can consider as a probability. We
therefore consider ourmodel to be a BayesianNeural Network, which
returns a probabilistic distribution rather than a single value. From
such a distribution, we draw a prediction (mean) and an implicit
uncertainty (standard deviation).
We return our uncertainty from the drop-out stochasticity as𝜎drop.

Then, with both the drop-out uncertainty, 𝜎drop, and the predictive
uncertainty, 𝜎pred, calculated, we can determine the final uncertainty
of each prediction, 𝜎total, by

𝜎total =
√︃
𝜎2drop + 𝜎

2
pred. (5)

3 DISTANCE ESTIMATION

Before we begin estimating metallicities, our method requires a ro-
bust measure of stellar distances. Distances allow us to calculate
absolute magnitudes for our sample stars, which can provide essen-
tial information on intrinsic stellar properties for the NN’s model.
While using Gaia parallaxes directly would be the ideal choice

for data-driven analysis, there are a number of limitations to such an
approach. As described by Bailer-Jones et al. (2021), transforming
between parallax and distance can lead to issues if done naively. Ob-
jects with𝜛 ≈ 0, even with well-constrained uncertainties, will tend
to have very large fractional errors. This equates to extremely large
distance uncertainties for stars beyond a few kiloparsecs. Addition-
ally, valid parallaxes in the Gaia catalogue can have negative values
due to the random scatter from uncertainties at small parallaxes,
which makes the naive 𝑟 = 1/𝜛 relation impractical to apply. The
approach developed by Bailer-Jones (2015) instead adds a statistical
prior to distance prediction that works to guide estimates for objects
with poorly informative Gaia parallaxes. From this, a distance esti-
mation can be drawn allowing us to avoid the limitations of the raw
Gaia data.
However, for this work, we aimed to focus on a large proportion

of the Milky Way’s stars. Therefore, many of the objects in our
samples exist in the distance regimewhere prior information becomes
dominant over Gaia parallax information. While this was expected
behaviour for this approach, we found some estimates to be strongly
dependent on the parameters of the prior rather than being guided by
Gaia measurements – which reduce the utility of these distances for
our methodology.
In an attempt to reduce the impact of the prior, Bailer-Jones et al.

(2021) adjust their method to also include a star’s photometric in-
formation (producing ‘photogeometric’ distances). Briefly, this sec-
ondary approach uses a colour-magnitude prior (derived from Gaia
photometric bands) to restrict the range of absolute magnitudes an
object of a given colour can have. Thus, they constrain the distance
probability function their method returns. With this addition, they
find an improvement in the precision of stars with poorly informative
parallaxes.
Our approach follows on from this idea, expanding the addition

of photometric information through the inclusion of a wide range of
additional bands (see Hogg et al. 2019, for a similar approach also
utilising spectroscopic information). However, instead of using this
data as a constraint on our distance estimates, we instead used our

photometric information and NN algorithm to estimate an indepen-
dent parallax value. This ‘photometric parallax’ was then combined
with the parallaxes from Gaia, and allowed us to return values with
much lower uncertainties. Thus, we reduced the regime where par-
allax information is uninformative, and thus limited the number of
objects where the Bailer-Jones et al. (2021) prior has a significant
impact.

3.1 Data Collection

In order to augment existing distance information with photometric
data, we required accurate astrometry and a wide range of photomet-
ric colours.
We followed the lead of Grady et al. (2021), and selected our data

from three photometric surveys: Gaia EDR3 (Gaia Collaboration
et al. 2016, 2021; Riello et al. 2021; Seabroke et al. 2021), 2MASS
(Skrutskie et al. 2006), and the unWISE catalogue (Schlafly et al.
2019). The Gaia survey is an optical photometric survey, with three
bands (G, GRP, & GBP) between 330nm and 1050nm , and focusses
on observing accurate sky positions, proper motions, parallaxes, and
radial velocity information. The 2MASS survey instead observes in
near-infrared, with three bands, J, H, and Ks, with peak sensitivity
at 1235nm, 1662nm, and 2159nm respectively, which grants infor-
mation to separate giant and main-sequence stars (Majewski et al.
2003) as well as bolster extinction measurements (as will be dis-
cussed later). Finally, the unWISE survey is built upon the results
of the WISE catalogue described previously (Wright et al. 2010),
but with altered image processing to retain observation resolution
in star-dense regions. This increases the available number of objects
with WISE bands (W1, W2, W3, W4 at 3.4𝜇m, 4.6𝜇m, 12𝜇m, and
22𝜇m respectively), and thus greater coverage at large distances and
within high-density sky regions. For our sample, we avoided the W3
and W4 bands due to the small number of objects with accurate ob-
servations, which would have limited the maximum potential size of
our sample.
With access to the H andW2 bands, we made use of the Rayleigh-

Jeans Colour Excess (RJCE) Method (Majewski et al. 2011) to de-
termine accurate extinction corrections for objects in our sample.
This approach relies on the fact that, for most stellar types, intrinsic
(H-W2) colour is nearly constant. Therefore, significant reddening in
this colour can provide a good measure of the extinction effects on
a star-by-star basis. To transform the extinction to the other photo-
metric bands, we used the extinction coefficients fromWang & Chen
(2019).
Objects were chosen to ensure good photometry by filtering for

high-quality observations. We limit the Gaia BP/RP flux excess to
≤ 3.0, limit the astrometric renormalised unit weight error to values
≤ 1.4, and select only for objects with ‘good’ W1 &W2 photometry
from the UnWISE quality flags. We further ensured all of our sample
had velocity information (proper motion, radial velocity) from Gaia,
which provided kinematic information for stars within our sample.
This kinematic information, when combined with the distances from
our method, could then allow us to calculate three-dimensional ve-
locities for each star, and thus analyse the kinematic distributions of
our sample objects. Due to the limitations of Gaia’s radial velocity
measurements, requiring radial velocities remained the largest limit
on our sample size, with only 0.4% of the full survey catalogue
having radial velocity information. Corrections to Gaia parallaxes
were also made at this stage, accounting for zero-point errors in the
measurements described in Lindegren et al. (2021).
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3.2 Methodology

Our method leveraged the NN architecture described in Section 2,
and a ‘pseudo-absolute magnitude’ measure described by Arenou &
Luri (1999). We anticipated that, if we chose to have the NN predict a
value of parallax directly from photometric data, the algorithmwould
struggle to learn a direct correlation between a star’s photometric
colour and its distance. However, as the absolute magnitude of a star
is intrinsic to the star, it is therefore independent of object distance.
We were thus able to use this as a target for the NN to predict, rather
than attempting to estimate parallax directly.
We used the pseudo-absolute magnitude defined in the 2MASS

J-band, 𝑀𝐽 ,pseudo, as the basis for our analysis, where 𝜛 was the
Gaia parallax and 𝐽𝑐 was the extinction-corrected apparent J-band
magnitude. 𝑀𝐽 ,pseudo was therefore defined as

𝑀𝐽 ,pseudo = 𝜛100.2𝐽𝑐 . (6)

This value acted as a good proxy for absolute magnitude by combin-
ing parallax and magnitude information. The NN therefore made it’s
predictions within the pseudo-absolute magnitude parameter space,
rather than parallax space, andwas therefore generalisable beyond the
scope of the training data. Had we estimated parallax alone, the NN
would struggle to predict reliably towards (and beyond) the edges
of the parameter space — especially towards distant object paral-
laxes at the smallest end of our range. Furthermore, this formulation
for pseudo-absolute magnitude allowed the Gaussian uncertainties
in parallax to be translated into Gaussian uncertainties in pseudo-
absolute magnitude space.
Initially, we used this value to filter our sample for giant stars.

Due to their intrinsic brightness, giant stars are ideal targets for long
distance analysis of the Milky Way’s population. Therefore, to avoid
the NN’s attention being split between dwarf and giant stars while
training – and thus lowering the model’s overall performance – we
removed non-giant stars from our sample. The giant and dwarf pop-
ulations were clearly visible in colour-pseudo-absolute magnitude
space, and so we were able to apply a simple cut in these parame-
ters. With 𝑀J and 𝑀H being 2MASS J and H extinction-corrected
apparent magnitudes respectively, and the J-band pseudo-absolute
magnitude being 𝑀𝐽 ,pseudo, we selected only objects where

𝑀𝐽 ,pseudo < 492.101(𝑀J − 𝑀H) − 53.827. (7)

This cut is shown clearly in Fig. 3, separating the red clump and giant
branch from the main sequence.
From this, we set the NN to accept 16 photometric colours as our

input array, 𝑥, (described in Appendix A), and to predict the pseudo-
absolute magnitude, 𝑦. As mentioned previously, using 𝑀𝐽 ,pseudo
had the notable advantage of inheriting the Gaussian uncertainties of
the Gaia parallaxes. We then returned a NN-refined parallax value,
𝜇NN, as

𝜇NN = 𝑀𝐽 ,pseudo10−0.2𝐽𝑐 , (8)

and similar for the uncertainty 𝜎NN from the uncertainty node.
To train the network, we followed a method of ‘cross-training’

which functioned similarly to common cross-validation methods.
As every object in our data sample has a Gaia parallax, we chose

to train the NN on our sample rather than some external source.
In order to train our sample, we split our sample into eight equal
‘chunks’ which we iterated through. For each chunk, the remaining
∼ 88% was used to train our network, and returned new parallaxes
for objects within the chosen chunk. Between each iteration, we reset
the NN’s training for the new chunk, which avoids biases that arising
from objects appearing in both the training and prediction datasets.
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Figure 3. Plot of object pseudo-absolute J magnitudes against J-H colour.
Both axes have been corrected for extinction using the RJCE method (Ma-
jewski et al. 2011). The giant-dwarf cut is shown with the main-sequence in
red, and the red clump/giant branch in blue.

With the network’s predictions applied to our entire sample, we
had derived a set of parallaxes from stellar photometry alone. We
therefore considered these results as independent measurements to
the parallaxes reported by Gaia. Thus, we combine the two values
to improve the overall parallax uncertainty. For an object with a
Gaia parallax, 𝜇Gaia, and associated uncertainty, 𝜎Gaia, and with a
NN-predicted parallax, 𝜇NN, and associated uncertainty, 𝜎NN, we
calculate our combined parallax, 𝜇new, and combined uncertainty,
𝜎new as

𝜇new =

(
𝜇Gaia
𝜎2Gaia

+ 𝜇NN
𝜎2NN

) (
1

𝜎2Gaia
+ 1
𝜎2NN

)−1
, (9)

and

1
𝜎new

=

√︄
1

𝜎2Gaia
+ 1
𝜎2NN

. (10)

Therefore, we produced a unified parallax value with much narrower
error than the initial Gaia parallaxes, reducing the number of stars
with poorly-informative parallaxes — and so reduced the proportion
of objects for which the Bailer-Jones statistical prior was dominant
for distance estimation.
We note this improvement in Fig 4, where we show how parallax

uncertainties vary with distance for our Gaia data, our NN’s outputs,
and for the unified parallax value. For this comparison, we have re-
moved the limit of only selecting objects with Gaia radial velocity
information. As objects with radial velocities will tend to be brighter,
Gaia parallaxes tend to be good, and our NN-based approach has
limited impact. Removing this limit shows a more general compari-
son between the Gaia and NN parallax performance, and highlights
clearly where our method provides improvement. It is clear that, at
around 6.1kpc, our NN parallax uncertainties become smaller than
those from Gaia. At distances beyond this, our parallaxes are there-
fore more informative than those from Gaia, and our unified value
retains a low uncertainty out to larger distances.
With each object given a NN-enhanced parallax, we calculated

new distance estimations. We apply the method of Bailer-Jones et al.
(2021), which uses the parallax information and simulation-backed
prior distributions to return an estimated parallax. Our NN-enhanced
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Figure 4. Plot of parallax uncertainty against object distance for Gaia par-
allaxes (red), our NN parallaxes (blue), and the combined unified parallax
(green). Note that this sample is not limited to only objects with Gaia radial
velocities.

parallaxes form a notable reduction in the number of uninforma-
tive parallaxes, decreasing the parallax uncertainty for around 58%
of our overall sample. When we focus only on objects with Gaia
parallax/uncertainty < 2.0, we find around 89% of objects see an
improvement from our method. These distances were taken forward
to calculate objects positions and absolute magnitudes.

3.3 Validation

To validate the accuracy of the distance predictions, we had three
measures: the uncertainty output calculated by the NN, and two sam-
ples with comparison distance estimates. These comparison distance
samples were those calculated byBailer-Jones et al. (2021), and those
calculated from the AstroNN algorithm (Leung & Bovy 2019b).

3.3.1 Network Uncertainty

From the NN, we obtained a predicted value of distance (and an
associated uncertainty) for each object. We found that this value is
low for the majority of our sample, with the mean uncertainty of our
whole sample being ±159.7 pc. We plot these uncertainties versus
estimated distances in Fig. 5, with uncertainties binned by absolute
distance shown in Table 1. We note that, as with Fig. 4, this plot is
not limited to only objects with Gaia radial velocity information. As
discussed in Section 3.2, this gives us a better sense of our NN’s
performance than if we only focus on the brighter sample with radial
velocity data.
As expected, distance uncertainties remained small for closer ob-

jects, and become larger for distant objects. The distance uncertainties
remained below 10% for objects closer than approx. 6kpc, with the
the furthest objects in our sample having distance uncertainties less
than 20%.

3.3.2 Bailer-Jones et al. (2021) Distance Comparison

We compared our network’s performance in comparison to the pho-
togeometric values calculated by Bailer-Jones et al. (2021). These
reference distance values were the values we initially hoped to im-
prove upon with our method. We used much the same method, but
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Figure 5. Plot of NN-estimated distance uncertainties against the correspond-
ing absolute distances. Note that these contour plots are logarithmic, and the
upper and lower curves are the 84th and 16th percentiles respectively. Further,
note that this sample is not limited to only objects with Gaia radial velocities.

Table 1. Table of mean distance uncertainties for binned absolute distance
ranges. All distances are reported in pc. Percentage uncertainties are taken
with respect to the mid-point of the bin.

Distance Bounds Distance Unc. Unc. Percentage

0 < 𝑑 < 2000 ± 35.018 3.5%
2000 < 𝑑 < 4000 ± 110.750 3.7%
4000 < 𝑑 < 6000 ± 369.182 7.38%
6000 < 𝑑 < 8000 ± 748.284 10.67%
8000 < 𝑑 < 10000 ± 1142.063 12.69%
10000 < 𝑑 < 12000 ± 1571.712 14.28%
12000 < 𝑑 < 14000 ± 2072.115 15.94%
14000 < 𝑑 < 16000 ± 2672.450 17.81%

applied our NN to reduce the impact of prior terms on the distance
estimates. It was therefore expected for there to be good agreement
between the two datasets where parallaxes are highly-informative,
and significant divergence in the regime where fractional Gaia paral-
lax uncertainties were large (i.e. very high uncertainty, or very small
parallaxes) and the NN had a stronger influence. If our approach
returned accurate distances, we expected to see the majority of stars
match between the two samples, with divergences in parallax space
remaining symmetric and becoming more prominent for objects fur-
ther away. We show this comparison for our sample in the left panel
of Fig. 6, where we see a clear correlation between the two methods
(for good parallaxes) with a large scatter due to the impact of the NN.
We further highlight the right panel of Fig. 6, where we selected a

larger comparison sample without the restriction of requiring radial
velocity data for all stars. This allowed us to observe additional
objects at large distances (≥ 10 kpc) as well as fainter objects at
closer ranges. The minor over-estimation bias for Bailer-Jones et al.
(2021) distances between 4 kpc and 8 kpc appeared to be due to
a divergence in the underlying methods. As our distance estimates
used the same prior choices as Bailer-Jones et al. (2021), the primary
differences between the results arose from our NN providing an
improvement over the base Gaia parallaxes. Thus, this bias maps the
regime where the our distances were more weakly constrained by the
statistical prior distribution than in Bailer-Jones et al. (2021) work.
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Beyond this region, where parallax measurements became too noisy
for our NN-based approach to improve upon, the two methods again
converge as the prior distribution comes to dominate the distance
estimates.

3.3.3 AstroNN Distance Comparison

Finally, we compared our distance estimations to those calculated by
Leung&Bovy (2019b)with theAstroNNmachine-learning package.
The AstroNN package is based on similar neural-network algorithms
to our own, and uses APOGEE DR17 spectral data to estimate astro-
physical parameters such as stellar abundances, ages, and distances.
Therefore, we used these distances as an independent sample from
which we could draw comparisons to our own results.
Using a sample of 11,318 common stars (not limited to only those

with Gaia radial velocities), we plotted the comparison in Fig. 7. It
was clear there was a strong correlation between the two methods
with narrow deviations. The differences were also symmetric, sug-
gesting no significant systematic errors in our method that had caused
notable biasing. However, as the majority of our sample overlap ex-
isted at distances less than ∼ 4 kpc, a large proportion of sample
objects had informative parallaxes. Therefore, we expected to see
this strong agreement when comparing these two approaches. Over-
all, we concluded that our method has very good agreement with
the AstroNN distances, and further confirms the reliability of our
distance estimates.

4 METALLICITY ESTIMATION

With an accurate measure of distance determined for each object, we
applied our method to predict stellar metallicities.

4.1 Data Collection

We built two samples from which we can estimate metallicities: a
training (TG) sample, and a photometric-only (PO) test sample.
The PO sample followed the approach detailed in Section 3.1,

drawing astrometric and photometric data from Gaia EDR3 and the
2MASS and UnWISE surveys. We also included the distance esti-
mations determined in Section 3, and applied the same filtering to
ensure Gaia astrometry includes radial velocities for kinematic anal-
ysis. This sample acts as our ‘output’ sample, upon which we will be
applying our method for predicting metallicities.
Our TG sample contained the data we will use to train our NN

algorithms. This was built from matching objects from our PO sam-
ple with iron abundance measurements ([Fe/H]) derived from two
spectroscopic surveys, APOGEE-2 (SDSS DR16) (Majewski et al.
2017; Ahumada et al. 2020) and LAMOST DR6 (Cui et al. 2012).
This sample covers the magnitude range of 9 ≤ 𝐺 ≤ 15.6 in the
Gaia G-band. This spectroscopic information can then be used as
the dataset our NN is trained to estimate from photometric data. We
acknowledge that while broadband photometry will be sensitive to
overall stellar metallicity, we use spectroscopic iron abundance as an
accurate proxy for this value.
We removed objects with poor spectroscopic data by excluding

sources with 𝜎Teff /𝑇eff > 1 and 𝜎log 𝑔/log 𝑔 > 1. As the range of
metallicities in the training data crosses [Fe/H] = 0, using fractional
uncertainties causes us to filter valid objects with small absolute
metallicities. Thuswedo not apply this filter tometallicity.We instead
incorporate training data uncertainties as part of the NN’s training

process (as described in Section 2) which accounts for metallicity
uncertainties in the training dataset.
Together, these two spectroscopic surveys provided a large sample

of objects, mainly due to the large sky region and depths observed by
the LAMOST survey. We were therefore confident our training sam-
ple had high-quality metallicities with minimal bias from spatially
unbalanced datasets. We note that, thanks to calibration between gi-
ant stars in LAMOST and APOGEE datasets, the two spectroscopic
surveys shared a good agreement with their metallicity observations
(Anguiano et al. 2018). Thus, while small discrepancies may occur,
we felt confident using the two surveys concurrently. Additionally,
in situations where objects appear in both APOGEE and LAMOST,
we preferred the higher-resolution APOGEE data and included only
this value in our sample.

4.2 Methodology

We built our network with architecture described in Section 2, and
selected input features constructed from 16 photometric colours and
8 absolute magnitudes (as described in Appendix A). For training,
we used the input features alongside our TG sample’s spectroscopic
metallicities to optimise the network to predict metallicities from
photometry.
A major deviation from the method used in Section 3 was the

inclusion of an extra weighting term to the network’s loss function
which worked to down-weight objects with [Fe/H] ≈ 0. This aimed
to oppose the significant over-abundance of near-solar metallicities
in our TG sample. Without mitigation, the network would learn this
imbalance as a trend in the data, and return values which follow
this bias. Thus, we would have expected the algorithm preferentially
return metallicities close to zero, as (when averaged over the entire
dataset) these predictions would be generally accurate.
Our weighting term took the form of a linear multiplier on the

network’s loss function. Modifying Eq. (3), with this weighting term
as 𝑊 = | [Fe/H] | + 𝐶 (where 𝐶 is a constant), the weighted loss
function is

𝐽 (𝑦𝑖 , 𝑦̂𝑖) =
1
𝑛

𝑛∑︁
𝑖=1

𝑊

2
(𝑦𝑖 − 𝑦̂𝑖)2𝑒−𝑠𝑖 +

1
2
𝑠𝑖 . (11)

This weighting acted to decrease the ‘loss’ penalty when training
on objects with [Fe/H] ≈ 0, and increased the penalty linearly for
objects with much larger or smaller metallicities. Thus, the network
put less effort into accurately predicting objects with solar-likemetal-
licities, as penalties were significantly smaller for poor estimations.
The weighting was also tuned with the constant, 𝐶, which changed
the minimum (and maximum) weight an object can be allocated. For
our training, we selected𝐶 = 0.5, such that the penalty multiplier for
an object with [Fe/H] = 0 was ×0.5 and an object with [Fe/H] = -2
was ×2.5.We chose this value to increase the network’s sensitivity to
very low- and high-metallicity objects, while reducing the priority of
metallicities between −0.5 < [Fe/H] < 0.5 (the metallicity region
of the majority of our TG sample). This ensured that objects with
near-solar metallicites still retained a small impact on the network
training, while maximising the relative weighting between the high
and low ends of the metallicity range.
One small side-effect of this weighting procedure was a reduction

in accuracy for objects with [Fe/H] ≈ 0, due to the network consid-
ering them as lower priority. However, this had a negligible effect
on the overall prediction accuracy: the larger population of objects
with [Fe/H] ≈ 0 somewhat offset this effect, while the improvements
to high/low metallicity predictions provided much more significant
enhancement.
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Figure 6. Logarithmic contour plot of NN distances from our work vs. distances from Bailer-Jones et al. (2021) for our main sample (left). We also perform the
same comparison for a sample without the prerequisite of radial velocity data allowing comparisons out to greater distance (right).
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Figure 7. Plot of NN distances from our sample vs. distances from AstroNN
(above), with comparison residuals (below). Note, this contour plot is loga-
rithmic, and is not limited to only stars with Gaia radial velocities.

We also note that the inclusion of the weighting term in equa-
tion (11) may have also caused a small increase in the uncertainties
output by the network. As 𝑠𝑖 incorporates the predictive uncertainty
of the NN, the network may have returned slightly larger uncer-
tainties to account for the weighting term. For objects at high- and
low-metallicities, which would be most affected by the weighting
term, this uncertainty increase would be the most severe. In this case,
we would expect the potency of the weighting term’s bias-reduction
would have been reduced.
The success of this approach was not perfect, as we found that un-

certainties still vary with respect to predicted metallicity. As shown
in Fig. 8, even with the weighting term included, the prediction un-
certainty was far larger for the highest and lowest metallicity objects.
However, for the majority of our sample, the uncertainties remained
small enough to be sufficient for our purposes.
There are two potential approaches tomitigate this in futurework: a

more complexweighting criteria, to better reduce the impact of unbal-
anced data; or observing a greater number of objects with extremely
high/low metallicities. While weighting may work to successfully

mitigate this issue in some instances, removal of the imbalance alto-
gether would be preferred, which can only be achieved through the
latter of these two solutions.
The use of narrower bands, especially those bluer than in our data,

may form a notable improvement over using broad-band photometry
alone. The benefits of these bands for measuring stellar parameters
has been shown by Keller et al. (2007) and Arentsen et al. (2020).
However, the extreme extinction effects in these bands within regions
such as the mid-plane or central bulge adds additional complexities
to their inclusion into our dataset.

4.3 Validation

To validate the prediction accuracy, we had two measures: the uncer-
tainty output calculated by the NN, and its performance compared
against spectroscopically-determined metallicities.
From the network’s uncertainty measure, we found a very high

confidence in the metallicity predictions being made. We returned a
mean uncertainty output of ±0.185 dex over our entire sample. We
show our metallicity uncertainties binned by predicted metallicity in
Table 2. This reiterates the correlation shown in Fig. 9. It is clear that
within the range −0.5 < [Fe/H] < 0.5 our predictions perform the
best with an uncertainty of ±0.15, and we have worse performance
at low metallicities ([Fe/H] < −1.5). We also found that, while
there is a large tail of high uncertainty predictions, these outputs
only make up a small fraction of our entire sample: 97.49% of our
PO sample have uncertainties below ±0.5 dex. In comparison, the
spectroscopic metallicities in the range −0.5 < [Fe/H] < 0.5 have a
mean uncertainty of ±0.046 dex, meaning our best-case metallicities
have uncertainties about three times that of the spectroscopic data.
We find these uncertainties are comparable to the results of other
photometric-metallicity methods, with Grady et al. (2021) finding an
uncertainty of ±0.21 ([Fe/H] > −0.5), Huang et al. (2022) finding
an uncertainty of approximately ±0.12 (−0.5 < [Fe/H] < 0.5), and
Lin et al. (2022) finding an uncertainty of ±0.2 dex. Furthermore, we
directly compare our metallicities to those from Huang et al. (2022)
and Lin et al. (2022) in Appendix B, and find reasonable agreement
to these methods.
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We note that the range of Fig. 9 extends beyond the metallicity
range of our TG sample. The minimum metallicity from the spec-
troscopically measured giant stars was -2.49 dex, and the maximum
metallicity being 0.74 dex. Outside of this range, the NNmust extrap-
olate beyond the training data - and thus causes returned uncertainties
to be very large. This is most apparent above 0.74 dex, where un-
certainties become extremely large beyond the extent of the training
data. We therefore recognise that metallicities at the extreme edges
of our metallicity distribution should be ignored in further analy-
ses (either by specific cuts to metallicity, or by filtering for extreme
metallicity uncertainties).
We further compared the predictions made by our NN to metal-

licities from APOGEE and LAMOST, providing a measure of the
‘recovery accuracy’ of the network. This worked to cross-check the
uncertainty values outputted by the NN, ensuring that the network re-
tains its high accuracy when compared to ‘true’ data values. This val-
idation is achieved through a method of out-of-bag cross-validation.
We selected a fraction of our TG sample to be removed from the net-
work’s training process, which we then used to validate the model’s
predictions. We chose a validation sample split of 15% of our TG
sample, leaving 85% to train the network. The network’s predictions
on the validation sample were then be compared to the spectro-
scopic measurement, with the comparison shown in Fig. 8. We find
there is a good correlation between our method and the spectroscopic
data, suggesting our approach is successful in accurately reproducing
metallicity values. However, we do confirm the minor bias apparent
in the residuals at high and low metallicities, with an over-estimation
of metallicities below [Fe/H] < -0.5 and a smaller biasing of under-
estimated metallicities for high [Fe/H] objects. This ‘regression to
the mean’ effect is a common issue for neural-network algorithms us-
ing unbalanced datasets, and so suggests our weighting term has not
fully removed these effects. Analyses using lower metallicity objects
must take this into account.
We finally analyse the effect the weighting term may be having

on the predicted metallicity uncertainties, as noted in the previous
section. We compare the NN’s output uncertainties to the residual
scatter in the lower panel of Fig. 8. If the network is predicting larger
uncertainties due to inclusion of the weighting term, we would ex-
pect the the output uncertainties to be much larger than the scatter in
the residuals. We plot this in Fig. 10. Note that we have significantly
fewer objects at [Fe/H] < -1 (137 objects) than for [Fe/H] > -1 (15,430
objects), and so our trends are poor beyond this threshold. This fig-
ure shows clearly that, for the metallicity range where we have large
numbers of objects, we see a good agreement between NN uncer-
tainties and residual scatter. Thus, we conclude that the weighting
term does not appear to be causing the NN uncertainties to be out-
put significantly larger than expected. Furthermore, we note that the
uncertainties shown in Fig. 9 and Table 2 may be over-estimated at
the low-[Fe/H] regime, as they are significantly larger than we would
expect from the residual scatter trend.

5 RESULTS AND ANALYSIS

With the completion of the metallicity estimation, we returned our
PO sample of 1,689,885 objects with: Gaia astrometry; eight pho-
tometric colours from Gaia, 2MASS, and WISE; kinematic infor-
mation from Gaia proper motions and radial velocities; and pho-
tometric metallicity estimations. Furthermore, we calculated three-
dimensional Galactocentric coordinates and velocities based on our
distance estimates. Using a right-handed coordinate system, we con-
verted Gaia astrometry (sky positions and velocities) into Galactic

Table 2.Table of meanmetallicity uncertainties for binnedmetallicity ranges.
Note that the top-most row shows the mean metallicity uncertainty over the
entire sample.

[Fe/H] Bounds [Fe/H] Unc. Obj. Counts

−3.5 < [Fe/H] < 1.5 ± 0.185 1,697,077

−3.5 < [Fe/H] < −2.5 ± 4.042 713
−2.5 < [Fe/H] < −1.5 ± 1.713 12,392
−1.5 < [Fe/H] < −0.5 ± 0.404 145,177
−0.5 < [Fe/H] < 0.5 ± 0.150 1,538,047
0.5 < [Fe/H] < 1.5 ± 0.537 736
1.5 < [Fe/H] < 2.5 ± 1.009 12
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Figure 8. Plot of NN-estimated photometric metallicities from our cross-
validation vs. metallicities from spectroscopic observations (above), with
comparison residuals (below). Note, this contour plot is logarithmic.
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Figure 9. Plot of metallicity uncertainty against metallicity for our NN-
estimated photometric metallicity values. The lowest uncertainty predictions
are those with absolute metallicity close to 0.0 dex (the highest population
region), with uncertainties becoming more significant at the edges of our
distribution.
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Figure 10. Plot of NN metallicity uncertainties (solid red) and the residuals
between the NN and spectroscopic metallicities (blue dashed) from Fig. 7’s
lower panel, plotted against absolute predictedmetallicity. These uncertainties
diverge notably from the trend shown in Fig. 9, as these are objects from our
spectroscopically-matched TG sample — and thus, tend to be closer and
brighter than many objects in our output sample.

positions and velocities. In this system, the 𝑋 axis is along the Sun-
Galactic Centre (GC) direction with positive towards the GC. The
longitudinal axis,𝑌 , sits perpendicular to 𝑋 along the Galactic plane,
with positive 𝑌 in the direction of positive Galactic longitude. The
vertical axis, 𝑍 , is directed out of the Galactic plane with positive
towards Galactic north. All axes have their origin at the GC.
We applied our catalogue to determine the out-of-planemetallicity

gradient of the Galactic bulge, and to identify the vertex angle of the
Milky Way’s bar from stellar kinematics and metallicity.

5.1 Vertical metallicity gradient in the Galactic Bulge

The presence of a metallicity gradient, vertically out of the Galactic
plane, in the region of the bulge has been identified in many pre-
vious studies. This gradient is suggested by some to be the effect
of overlapping populations within the bulge region (Barbuy et al.
2018). These intersecting structures include bulge and bar popula-
tions, as well as the surrounding disk and halo structures. As we
observe away from the Galactic plane, we see the changing influence
on each of these independent components, which creates a gradient
in the observed metallicity distribution. Alternatively, other work
proposes that this gradient instead forms from the kinematic sep-
aration of different populations during the formation of the bulge
and bar (Debattista et al. 2017). Due to bursts of star formation dur-
ing bulge formation, populations of metal-poor and -rich stars can
become separated kinematically into hotter and colder velocity dis-
tributions. This causes a metallicity gradient to be observed, without
the need for distinct, overlapping populations. As summarised by
Ness & Freeman (2016), gradients have been observed in past litera-
ture of around −0.45 dex/kpc (Ness et al. 2013), with some methods
observing as low as −0.6 dex/kpc (Zoccali et al. 2008) and as high
as −0.35 dex/kpc (Minniti et al. 1995).
To draw this trend from our data, we first defined our selection

region of the ‘bulge’. Using our 3D Galactocentric Cartesian coordi-
nates, we defined our bulge region to be within 2.5kpc radius (along
the plane) of the Galactic centre – selecting a cylindrical volume
centred on the Galactic centre. We also applied filtering on selected

objects, removing stars with metallicity uncertainties greater than
±0.5dex, positional uncertainties greater than ±1kpc, and velocity
uncertainties greater than ±250km s−1. We note that the filter on
metallicity uncertainty will ensure we are only selecting objects with
‘good’ metallicity estimations, but will also introduce a bias into the
gradient observed. Filtering out objects with metallicity uncertainty
greater than ±0.5 dex will predominantly remove objects with [Fe/H]
< -1 dex and [Fe/H] > 0.5 dex. Thus, the trends we observe in metal-
licity will potentially ignore populations of high- or low-metallicity
stars that would otherwise shift the mean metallicity at a chosen po-
sition in the Galaxy, and cause our recovered gradient to be under-
or over-estimated.
Initially, we plot stellar metallicity against object height

above/below the Galactic plane, 𝑍 , for the PO sample in the left
panel of Fig. 11. It is clear the trends visible are very noisy, with
a large uncertainty across the range of 𝑍-values shown. We find
this is a limitation due to the small number of objects with Gaia
radial velocity information within the volume, limiting us to only
22,280 objects. This small sub-sample leads to a large scatter in me-
dian metallicity with 𝑍-height, and reduces the strength of trends we
can draw. Fortunately, we do not need velocity information to draw
a positional metallicity gradient, and thus we could remove this re-
quirement when collecting our dataset and expect to see more objects
within the sample volume.
Including objects without radial velocities, we applied our NN

to estimate metallicities for the larger sample. This is shown in the
middle panel of Fig. 11, which mirrors the left panel while showing
a much stronger trend across the 𝑍-height range. As we expect the
gradient to be symmetric above and below the plane, we further
plot the median metallicity against the absolute 𝑍-height in the right
panel of Fig. 11, which increases the strength of observed trends and
further constrains the level of uncertainty in a measured gradient.
We also note the clear gradient inversion visible within 500pc

of the plane. This appears to retain the well-constrained uncertain-
ties between approx. 250pc and 500pc, before the trend becomes
extremely scattered towards the mid-plane. This is unexpected, as
Gonzalez & Gadotti (2016) note that many past works with spectro-
scopic data have recovered a smoothmetallicity-height relation, from
lower metallicity objects far from the plane, and higher metallicity
objects towards the mid-plane.
This metallicity gradient change towards lower latitudes has been

noted by Rich et al. (2012), who observed the vertical gradient flat-
tens below a vertical height of 550pc. Furthermore, Babusiaux et al.
(2014) found hints that the gradient indeed inverts close to the plane.
This is proposed to have been due to early-forming stars becoming
trapped in the inner regions of the Galaxy as it formed, and remaining
bound in the mid-plane during bar buckling. Alternatively, this low-
metallicity core population may be the result of metal-poor gas being
funnelled into the bulge by the bar, forming this metallicity inver-
sion towards the mid-plane. We therefore find our results agree with
these past findings, and confirm the presence of a low-metallicity
population towards the mid-plane.
We compute a metallicity gradient between 700pc ≤ 𝑍 ≤ 1600pc,

and return a value of −0.5278 ± 0.0022 dex/kpc (outwards from
the galactic plane). It is useful to note that we are assuming a linear
relationship betweenmetallicity and z-height within the quoted range
only, and so does not account for the gradient flattening at values of
𝑍 outside of our selection.
We find a vertical metallicity gradient that is well within the litera-

ture range of values, although towards the steeper end. This suggests
our observed metallicity distribution diverges significantly form that
found by Minniti et al. (1995) and slightly from that of Ness et al.
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(2013). We suggest that such a discrepancy is expected between
our method and those that use spectroscopic data. Due to the se-
lection criteria used by spectroscopic surveys, we expect to find our
photometric-based data to be sampling a slightly different stellar
distribution, and return a slightly different metallicity gradient.
Furthermore, we note that the metallicity bias described in Sec-

tion 4.3 may have also biased our recovered gradient. As we expect
low-metallicity populations to be more common at higher latitudes,
we expect the metallicity overestimation bias to have a stronger im-
pact further from the plane. This would cause our gradient to be
measured as shallower, as the mean metallicity at higher latitudes
would be increased, while the metallicity of the mid-plane would
remain mostly unchanged.
Overall, our main conclusion from this analysis remains that our

data has successfully returned positions and metallicity estimations,
which accurately trace known abundance trends within the Milky
Way.

5.2 The vertex deviation of the bar

As we have radial velocities from Gaia DR2, we have also been able
to use our catalogue to analyse the kinematics of the Galactic bar-
bulge. One quantity useful for probing the kinematic properties of
the bar is the vertex angle or vertex deviation, that is the angle of
the major axis of the velocity ellipsoid relative to the Galactic centre
direction giving an indication of the orientation of the bar (Zhao et al.
1994).
Vertex angles, 𝑙𝑣 , are defined as

𝑙𝑣 =
1
2
arctan

(
2𝜎2XY
𝜎2X − 𝜎2Y

)
(12)

where 𝜎2X is the velocity dispersion on the Galactocentric X axis, 𝜎
2
Y

is the dispersion in the Y axis, and 𝜎2XY is the correlation term. The
angle is calculated from the Sun-Galactic Centre (GC) line such that
the value is within |𝑙𝑣 | ≤ 45◦. The angle is positive in the direction of
positive Galactic longitude (anticlockwise rotated bar), and negative
in the direction of negative longitude (clockwise rotated bar). For
an axisymmetric velocity distribution, the vertex angle is ill-defined
(as the major and minor axes are equal) and we would expect any
measurement to be unconstrained.
Existing literature has measured this value, and found a bar-like

signal for metal-rich bulge objects. Zhao et al. (1994) note a vertex
angle of −65◦ ± 9◦ (for [Fe/H] ≥ 0.0), while Babusiaux et al. (2010)
measures an angle of −32◦ ± 9◦ (for [Fe/H] ≥ 0.3). Both studies
also found that low-metallicity objects show a high-scatter, near-zero
vertex angle— and thus not a bar-like signal. This suggests spherical
or disk-like rotation in these metal-poor populations.
We note that, for our analysis, we use ourGalactocentric coordinate

system (X/Y/Z) to determine the angle of the velocity ellipsoid, rather
than the usual Galactic coordinates (r/l/b). For the sky region of
interest, these are broadly equivalent, but using this definition does
alter the returned ‘vertex angle’ in comparison to past literature. We
selected these coordinates as it ensures all object velocity vectors have
parallel axes, which is not the case when using Galactic coordinates
across large sky regions. Note that the orientation of our axes are
described at the end of Section 3.2.
For this method, we developed a Bayesian inference pro-

cess using a STAN implementation in Python (CmdPyStan, Stan
Dev Team 2021). We constructed a Markov-Chain Monte-Carlo
method (MCMC), which accepted three-dimensional velocity vec-
tors, 𝒗𝑖 , (in the XYZ coordinate system) and corresponding veloc-

ity uncertainty covariance matrices, Σunc and evaluated the log-
likelihood as a two-component Gaussian mixture model with dis-
tribution means, 𝝁𝑛, and covariance matrices Σv,𝑛. Such a mixture
model allows us to isolate a minor ‘anomalous’ component from the
data, and return a stronger signal of interest. For this method, we
evaluated the log-likelihood of each Gaussian component as

lnL𝑛 = −1
2

∑︁
𝑖

(
(𝒗𝑖−𝝁𝑛)T (Σv,𝑛+Σunc,𝑖)−1 (𝒗𝑖−𝝁𝑛)+ln |Σv,𝑛+Σunc,𝑖 |

)
.

(13)

The two components are thus evaluated to assign member stars, with
the two component distribution given by

Ltotal = 𝜆L𝑎 + (1 − 𝜆)L𝑏 , (14)

where 𝑎 and 𝑏 denote the two components, and 𝜆 is a ratio of the two
componentswhere 0 ≤ 𝜆 ≤ 1, andLtotal is the overall log-likelihood.
From themajor component in themixturemodel, we infer themean

velocity, 𝝁 and the velocity ellipsoid, Σv, which has components

Σv =
©­­«
𝜎2X 𝜎2XY 𝜎2XZ
𝜎2XY 𝜎2Y 𝜎2YZ
𝜎2XZ 𝜎2YZ 𝜎2Z

ª®®¬ , (15)

from which the vertex angle can be calculated using equation (12).
As the MCMCmethod returns a distribution of covariance matrices,
we output a distribution of vertex angles. From this, we calculated a
median value and percentile uncertainties for our vertex angle.
We selected our sample as an on-sky region,with |𝑙 | ≤ 5◦ and |𝑏 | ≤

10◦, and limited to distances between 6 kpc and 10 kpc. This forms
a volume approximately 700pc wide on the Y axis, 1.5kpc on the Z
axes, and 2kpc deep in theXaxis.Wenote here that this volume-based
sample selection is strongly affected by the distances, and thus the
distance uncertainties, reported for each star.We therefore filtered our
objects for only those with distance uncertainties smaller than±1kpc,
to limit the effect of non-bulge/bar objects with large uncertainties
being included in the selection. We also applied filters on extreme
metallicity uncertainty ([Fe/H]unc < 1.0), extreme Galactocentric
velocity uncertainty (velocity unc. < 250 km s−1), and perpendicular
axis (Y & Z) positional uncertainty (position unc. < 1kpc). This
selection region is strongly limited by the maximum depth of objects
with radial velocity information, which causes our sample to be
predominantly objects on the near-side of the bulge, with far fewer
objects at greater distances.
To identify the cutoff between high- and low-metallicity samples,

we split our sample by metallicity into bins of width 0.35 dex be-
tween the range of -1.65 dex and +0.8 dex. Due to the associated
uncertainties at extremely high- and low-metallicities, we observe
very few objects with [Fe/H]unc < 1.0 outside of this range. We note
that for objects beyond the range -0.5 < [Fe/H] < 0.5, the metallicity
uncertainty is larger than the 0.35 dex bins we use in Fig. 12. We
therefore expect the bins within this ‘good’ range of metallicities
to be accurately binned with predominantly objects within the bin
range and little contamination. However, for metallicity ranges with
higher mean metallicity uncertainties, we expect contamination to be
higher between bins. This would cause us to return angles with large
uncertainties in these bins, as the contaminant objects will bring a
larger distribution of object kinematics.
The vertex angle was calculated within each bin. This binned

calculation is plotted in Fig. 12. For low metallicity bins, the vertex
deviation is approximately zero, whilst for higher metallicities a large
negative angle is found.
We further compare these values against a slightly modified vertex
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Figure 11. Logarithmic contour plot of median metallicity against an object’s height, 𝑍 , for objects within the bulge selection volume. We plot objects with
radial velocitiy information (left), objects without radial velocities (right), and objects without radial velocities plotted against absolute 𝑍 -height (bottom). For
the bottom panel, we find the median curve to peak at approximately 560pc with a metallicity of 0.173dex. Note that the upper and lower curves are the 84th and
16th percentiles respectively.

angle calculation, where instead of centering the velocity ellipsoid
on the fitted mean velocity of the data, we assume the mean velocity
is zero. As our sample appears to be biased towards objects on the
near-side of the bulge, we find that high-metallicity objects have a
mean velocity dominated byGalactic rotation. Centering the ellipsoid
on this mean removes this net motion from our vertex deviation
calculations, and gives a better fit to the kinematic data.
However, this is not the only approach to determine the vertex angle

from objects kinematics. If our data was more evenly distributed
across the bulge region, rather than predominantly on the near-side,
we would expect to find the mean of the velocity distribution close
to zero in all axes (rather than dominated by galactic rotation). We
therefore estimate the vertex angle with the ellipsoid means ‘zeroed’,
to emulate the angle we would return from an unbiased sample. This
‘zeroed’ approach will likely be a poorer fit to our biased dataset, but
we find the comparison useful to understand the angle we expect to
observe with a kinematically unbiased sample.
We note that our initial method with the means estimated by the

algorithm is noted as the ‘fitted’ ellipsoid, while the method with
ellipsoid means constrained at zero is the ‘zeroed’ ellipsoid.
From this binned selection we selected two main samples: a high

metallicity bin, and a low metallicity bin. This maximised the num-
ber of objects used to calculate the vertex angle, and limited the
potential uncertainties from small sample sizes. We selected our
low-metallicity bin where [Fe/H] ≤ −0.7 and our high-metallicity
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Figure 12. Plot of vertex angle calculated for seven metallicity bins, drawn
from ∼4,200 objects within the selected bulge region. The angles plotted in
red are measured with the velocity ellipsoid centred at the mean velocity of
the data, while angles plotted in green aremeasuredwith the velocity ellipsoid
centred at the velocity of the Galactic centre. The bin objects counts, from
low- to high-metallicity, are: 4, 73, 600, 1882, 981, 418, & 56.
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Figure 13. Plot of the velocity distribution on the x (Vx) and y (Vy) axes. The fitted velocity ellipsoids are shown, where the ellipsoids means are fitted to the
sample mean velocity (red) and the origin of the plot (green).

bin where [Fe/H] ≥ −0.4. Using these we retained large samples,
and recovered vertex angles with minimised scatter.
In the region between these two bins, where −0.7 ≤ [Fe/H] ≤

−0.4, we found a mean angle of −18.449 ± 8.644 deg, which fell
between that of the high- and low-metallicity bins and retained a
large uncertainty value. This suggested we were seeing an overlap
of the two regimes, where scatter in metallicity predictions make it
difficult to differentiate the distinct kinematic profiles. We therefore
excluded this region from our analysis, and focussed on the selected
high- and low-metallicity samples.
We note that contamination between these two bins will be less

severe than for the smaller bins used in Fig. 12. As we separate our
two bins with the intermediate −0.7 ≤ [Fe/H] ≤ −0.4 region, there
will be few objects with uncertainties extreme enough to contaminate
the other bin. The most significant issues will arise for objects with
[Fe/H] < -1.5 dex, as their uncertainties become large enough to po-
tentially contaminate the binning. However, as noted previously, we
have a very small sample of objects with these very lowmetallicities.
Thus while there may be contamination, we expect this to have a
minor influence on the angles calculated.
With the metallicity ranges set, we re-applied the Bayesian model

to draw a vertex angle for each of these two samples. These results
are shown in Table 3 and show that there was a clear difference
between the velocity distribution of the low- and high-metallicity
samples. The low-metallicity objects appear to have a small vertex
angle with a high uncertainty, suggesting minimal bar-like signal in
the data. Conversely, we show amuchmore negative, low uncertainty
vertex angle present in the high-metallicity sample, with an angle of
−21.29 ± 2.74 deg.
Our results therefore confirm the kinematic split of bulge popula-

tions by metallicity. We observe that lower-metallicity bulge objects
showmore axisymmetric kinematics around the Galactic centre, sug-
gesting they are populations found in the spheroidal-shaped bulge or
thick disk. On the other hand, higher metallicity objects show a large,
low-uncertainty vertex angle, suggesting these objects instead have
a bar-like kinematic structure, and so will be members of the Milky
Way’s bar population.
However, the high-metallicity vertex angles are much lower than

those found by past works, with our measured angle being around
∼ 10 deg smaller although still within the uncertainties of the mea-
surement from Babusiaux et al. (2014). This suggests that we either

measure a bar that is rotated to a smaller angle than prior works, or a
weaker bar-like signal from a more axisymmetric velocity distribu-
tion.

We apply our ‘zeroed’ approach to these high- and low-metallicity
samples, with both the ‘zeroed’ and fitted mean distributions shown
in Fig. 13. It is clear that, for the low-metallicity sample, both the fitted
means and the ‘zeroed’ means trace a similar spherically symmetric
distribution, centred on the origin. On the other hand, for the high-
metallicity sample, the two distributions diverge significantly, with a
vertex angle of −47.32 ± 3.93 deg, compared to the fitted ellipsoid’s
vertex angle of −21.29 ± 2.73 deg. While the fitted ellipsoid is the
better fit for the dataset, it is noticeably more spheroidal than the
much more extended ‘zeroed’ ellipsoid.

While the ‘zeroed’ approach is a slightly poorer fit to our dataset,
this larger angle is much closer to the vertex angle calculated by past
works (from -32 deg to -65 deg). This suggests thatwhile our ellipsoid
with fitted means is a better fit to our dataset, the velocity bias
present means we return an angle that is smaller than expected. Our
‘zeroed’ ellipsoid being closer to the expected vertex angle suggests
that mitigation of this bias is necessary to fully recover the bar vertex
angle. This can be done either through centering the ellipsoids on
zero in all axes, or by building a dataset with greater depth to ensure
a more balanced distribution of objects across the bulge. In this
case, we would expect the means of the velocity distribution to tend
towards zero, and so we would see a distribution closer to that of the
‘zeroed’ ellipsoid.

We do however conclude that we detect a clear difference in ver-
tex angles measured for our high- and low-metallicity samples. The
observation that galaxy bar-populations are metal-rich (in compari-
son to other bulge components) has been discussed by Wegg et al.
(2019), who suggest this describes a formation process where the
bar is formed from higher-metallicity, kinematically cool stars which
orbit outside of the central bulge, and thus form this separate pop-
ulation within the galactic centre. They also note that a metal-rich
bar has also been identified in other nearby galaxies (Gadotti et al.
2019), notably including M31 (Saglia et al. 2018).

Overall, we can confirm the success of our method in recover-
ing this known bar-like signal from objects from photometrically-
estimated distances and metallicities. We are also able to highlight
the utility of our approach to be applied to structures like the Milky
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Table 3. Results of vertex deviation calculations of the Milky Way’s bulge.
The vertex angle is the value returned by the analysis, the Uncertainty is the
difference between the 16th and 84th percentiles of the angle distribution. We
also include the range (1st to 99th percentile) of the distribution, to illustrate
the edges — and thus the broadness — of the two prediction distributions.

[Fe/H] Range (dex) [Fe/H] ≤ -0.6 [Fe/H] ≥ -0.4

Vertex Angle (deg) 6.8526 -21.2896
Angle Uncertainty (deg) ± 16.4271 ± 2.7367
Angle Range (deg) ± 108.9450 ± 13.2134

Way’s bar, where debates on the metallicity and kinematic distribu-
tions are ongoing.

5.3 Limitations

We note there is a limitation in our approach to selecting a bulge sam-
ple for our two analyses. Our approach in both cases was to select
target volumes using cuts in either on-sky Galactic coordinates or
Galactocentric positions. These approaches predominantly selected
bulge objects within the chosen region of the bulge, and so forms our
stellar population of interest. However, we did not make any attempt
to isolate any specific population or Galactic component. We there-
fore note that these selections contain non-bulge populations which
overlap the chosen spatial region, such as from the Milky Way’s disk
or halo. In future work, we hope to include a more robust selection
approach, which would account for additional parameters like stellar
types or kinematics and allow us to target specific populations with
specific analyses.
Our distance cuts also must account for the potential bias between

metallicity and distance. This bias occurs due to low-metallicity stars
being brighter than higher-metallicity stars of the same effective
temperature (Ahumada et al. 2020; Chiti et al. 2021). Low-metallicity
stars are then over-selected at greater distances, especially beyond
5 kpc from the Sun (as noted by Chiti et al. 2021). However, as
our volume-based sample selections collect only a small range of
possible distances, the near- and far-sides of out samples will have
had approximately similar numbers of over-selected low-metallicity
stars. We therefore expect this bias to have only had minor effects on
our analyses.
Furthermore, we also note a limitation in how we filtered our sam-

ples by metallicity uncertainty. As we wished to focus on how metal-
licity correlates with object positions and kinematics, we attempted
to focus only on objects with ‘good’ metallicity measurements. How-
ever, as was noted in Section 4.3, our metallicity uncertainties vary
with absolute metallicity. Therefore any filtering by metallicity un-
certainty introduces a bias in our sample, due to removing very high-
or low-metallicity objects. This bias was unlikely to cause a major
deviation in the trends we observed, as 97.5% of our output sam-
ple has metallicity uncertainties smaller than ±0.5 dex. However, we
note that the trends we observe are most strongly applicable to ob-
jects with solar-like metallicity, and may not fully account for very
high- or low-metallicity populations.

6 CONCLUSION & DISCUSSION

Our method to determine metallicity information from photometric
information was built on a three-step process: we first built a neu-
ral network algorithm which enhanced Gaia parallax values with

photometric information. This allowed us to determine distance esti-
mationswith greater accuracy, whichwe could then bring forwards to
predicting metallicities. With accurate distances, we were then able
to train our NN model to predict stellar metallicities from APOGEE
and LAMOST spectra, allowing the NN to estimate metallicity from
photometric colours and absolute magnitudes alone. From this, we
could build a sample of objects with Gaia astrometry and metallic-
ity information, allowing for analysis of the positional, kinematic,
and metallicity trends in Milky Way populations. Finally, to test our
method, we compared against known trends in theMilkyWay. Firstly,
we measured a vertical metallicity gradient within the Galactic bulge
from our data, and compared this to known values in the literature.
Then, we used a statistical model to estimate the vertex deviation of
different metallicity populations in the Galactic bar.

6.1 Method Improvements

Despite our confidence in our results, we still acknowledge there are
some outstanding limitations in our method. The primary of these
is the amount of data we had available to train the network. Due to
the limited depth of Gaia’s (DR2) radial velocity data, there was a
significant decrease in the number of stars available at large distances.
This manifested quite clearly with our analysis in Section 5.2, where
the limited object numbers in our bulge sample led to a lack of objects
at the edges of our metallicity range. Therefore, analysis of the bar’s
vertex angle required us to choose large bins in our high- and low-
metallicity regimes to maintain higher object counts. However, this
approach increased the risk of contamination from overlap of the two
regimes, as we attempted to maximise the available sample sizes.
Furthermore, our method can be applied to analyses that do not

require kinematic information (such as gradients or trends in stellar
positions), lacking kinematic information severely reduces the trends
and phenomena we can target in future. For example, without veloc-
ity information, our methodology would be unable to investigate the
properties of bound groupings of stars (i.e. MilkyWay structures, ac-
creted sub-structures) where metallicity and kinematics are essential
to identification and analysis.
With the Gaia DR3 release, the magnitude limit of the radial ve-

locity is fainter (Gaia Collaboration et al. 2021), and so we expect
the number of objects we can return with full kinematic data will
increase drastically. This would allow our primary output sample to
be significantly larger, and permit us to expand the range of popula-
tions we can determine metallicities for. Furthermore, the addition of
BP/RP spectra in the DR3 release will provide additional data from
which our method can estimate metallicities.
We find another limitation in the lack of a good comparison sample

for our metallicity estimations. While we are confident in our abun-
dance estimates thanks to comparisons with APOGEE and LAM-
OST validation sets, the most robust comparison would be to use an
independent survey sample. As we use these two spectroscopic sam-
ples as part of our training process, we cannot discern whether our
metallicity outputs incorporate the biases or errors from these spec-
troscopic surveys. Thus, a comparison with an independent survey
would ensure these biases could be accounted for.
In future work, we would be able to build a comparison sample

from a selection of current and future surveys. In the immediate
future, we could utilise the cross-match between our sample and
the GALAH (Buder et al. 2019), RAVE (Steinmetz et al. 2020),
or SEGUE (Yanny et al. 2009) surveys - each of which is on the
scale of 104 to 105 objects, and would have notable overlap with our
Gaia-based data. Furthermore, within the next couple of years, the
large-scale WEAVE (Dalton et al. 2012) and 4-MOST (de Jong et al.
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2019) survey releases would allow us to further compare our method
against a wide selection of objects with high-resolution spectroscopic
data. The Gaia DR3 release will also have the capability to estimate
metallicities directly from BP/RP spectra, which could provide us
with an additional sample of metallicities to compare our results
against.
Additionally, we further hope to resolve the metallicity imbalance

we see in our spectroscopic training data. As themajority of our train-
ing sample has near-solar metallicities, this creates a bias in our NN’s
predictions. While we add heavy weighting to our method to mitigate
this, we still find some biasing in our estimations. To more robustly
resolve this issue, we can instead augment our existing data with
artificial objects, creating a more balanced dataset from unbalanced
samples. On one hand, this would require use of generative algo-
rithms, such as variational autoencoders (Kingma & Welling 2019)
or synthetic over-sampling methods (Chawla et al. 2011), which
would allow us to generate additional data which would be similar
to our input samples. These algorithms could then be used to build
samples with significantly more objects with extremely high or low
metallicities, and thus work to mitigate the near-solar bias we see
currently.

6.2 Final Thoughts

Overall, we can conclude that our NN-based methodology has suc-
cessfully estimated stellar properties that had previously been difficult
to determine without spectroscopic data. Our approach retains high
accuracy, with mean uncertainties (for −0.5 < [Fe/H] < 0.5) of
±0.15 dex. We return a catalogue (as described in Section 5) of 1.7
millionGaia objects with NN-enhanced distances, three-dimensional
kinematic information, and accurate metallicity information.
Future works will be able to leverage these results to draw con-

clusions which require very large samples with stellar abundance
information. For example, the identification of substructure within
the Milky Way would be an ideal target for our approach, as we
have accurate distance, velocity, and metallicity measurements for
our large sample. The detection of substructures such the ‘Gaia-
Enceladus Sausage’ (Belokurov et al. 2018) and ‘Sequoia’ (Myeong
et al. 2019) merger remnants require the detection of a large number
of bound low-metallicity objects to accurately define the structure’s
origin.While ourmethod does not have the accuracy of spectroscopic
approaches, the greater depth and objects counts we return can allow
us to find deeper insights into these (and similar) substructures.
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APPENDIX A: NEURAL NETWORK SETUP

Here we describe the specific inputs and architecture we use to design
our neural networks.

A1 Input Features

We select 24 features to use as input for our NN: 16 colours, and
8 absolute magnitudes. Constructed from Gaia G, G𝑅𝑃 , & G𝐵𝑃 ,
2MASS J, H, & K𝑠 , and WISE W1 & W2 photometric bands, and
extinction corrected following the RJCE method (Majewski et al.
2011), we select the following colours:
(J-K𝑠), (J-H), (H-K𝑠), (W1-W2), (GBP-J), (GBP-H), (GBP-K𝑠),

(GBP-W1), (GBP-W2), (GRP-K𝑠), (GBP-GRP), (GBP-GG), (GG-
GRP), (J-W1), (J-W2), (H-W2).
We also include the following absolute magnitudes when noted,

calculated with distances from our NN-enhanced approach:
BP, RP, G, W1, W2, J, H, and K𝑠 .

A2 Network Architecture

We build our network out of four main layers: an input layer, two
hidden layers, and an output layer.
Out input layer accepts the 24 input features, and assigns each

of them to a node in the network. We have two hidden layers, both
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with 80 nodes, which are fully interconnected between each other,
the input layer, and the output layer. These hidden layers also have
drop-out applied, with a weighting of 20% for each pass (i.e.: one
fifth of each hidden layer is ‘dropped’ each run) of the network during
training or prediction. Two layers of 80 hidden nodes were chosen
as the result of manual tuning, where we found a large network with
drop-out gave the best recovery of initial data while maintaining the
network’s confidence in it’s predictions.
Our output layer contains only two nodes: the output node, where

we return the ‘final’ output; and an uncertainty node which recovers
the network’s certainty in it’s prediction. This is explained fully in
Section 2.

APPENDIX B: PHOTOMETRIC METALLICITY
COMPARISONS

We compare the metallicities returned by our method to similar
photometric-based techniques from Huang et al. (2022) and Lin
et al. (2022), as shown in Fig B1. Both papers use Skymapper 𝑢
and 𝑣 photometry with Lin et al. (2022) comparing to theoretical
isochrones and Huang et al. (2022) using a data-driven approach
deriving polynomial colour relations for the metallicities fitted to
SDSS (APOGEEDR14&DR16) and LAMOST (DR7) data.We find
a good correlation with these studies, especially at low metallicities
([Fe/H] < −1.5). There is, however, a notable over-estimation in our
metallicities visible in the Lin et al. (2022) comparison at −1.5 <
[Fe/H] < −0.5, where our method appears to predict a large portion
of the samplewith [Fe/H] ≈ −0.5.We note that the objects thatmake
up this bias do tend to be stars with low log 𝑔 values, suggesting this is
may be a regime where the NN under-performs, possibly due to lack
of training data. Alternatively, this bias could be due to discrepancies
in the isochrones utilised by Lin et al. (2022) for cool stars.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Figure B1. Plot of comparisons between our NN-estimated metallicities with those from Huang et al. (2022) (left) and Lin et al. (2022) (right).
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