
Machine Learning, 39, 59–91, 2000.
c© 2000 Kluwer Academic Publishers. Printed in The Netherlands.

A Machine Learning Approach to POS Tagging

LLU ÍS MÀRQUEZ lluism@lsi.upc.es
LLU ÍS PADRÓ padro@lsi.upc.es
HORACIO RODŔIGUEZ horacio@lsi.upc.es
Departament de Llenguatges i Sistemes Informàtics, Universitat Polit̀ecnica de Catalunya, c/ Jordi Girona 1–3.
Barcelona 08034, Catalonia

Editor: Raymond Mooney

Abstract. We have applied the inductive learning of statistical decision trees and relaxation labeling to the Natural
Language Processing (NLP) task of morphosyntactic disambiguation (Part Of Speech Tagging). The learning
process is supervised and obtains a language model oriented to resolvePOSambiguities, consisting of a set of
statistical decision trees expressing distribution of tags and words in some relevant contexts. The acquired decision
trees have been directly used in a tagger that is both relatively simple and fast, and which has been tested and
evaluated on the Wall Street Journal (WSJ) corpus with competitive accuracy. However, better results can be
obtained by translating the trees into rules to feed a flexible relaxation labeling based tagger. In this direction
we describe a tagger which is able to use information of any kind (n-grams, automatically acquired constraints,
linguistically motivated manually written constraints, etc.), and in particular to incorporate the machine-learned
decision trees. Simultaneously, we address the problem of tagging when only limited training material is available,
which is crucial in any process of constructing, from scratch, an annotated corpus. We show that high levels of
accuracy can be achieved with our system in this situation, and report some results obtained when using it to
develop a 5.5 million words Spanish corpus from scratch.

Keywords: part of speech tagging, corpus-based and statistical language modeling, decision trees induction,
constraint satisfaction, relaxation labeling

1. Introduction

Part of Speech (POS) Tagging is a very basic and well known Natural Language Processing
(NLP) problem which consists of assigning to each word of a text the proper morphosyntactic
tag in its context of appearance. It is very useful for a number ofNLP applications: as a pre-
processing step to syntactic parsing, in information extraction and retrieval (e.g. document
classification in internet searchers), text to speech systems, corpus linguistics, etc.

The base ofPOStagging is that many words being ambiguous regarding theirPOS, in most
cases they can be completely disambiguated by taking into account an adequate context.
For instance, in the sample sentence presented in Table 1, the wordshotis disambiguated
as a past participle because it is preceded by the auxiliarywas. Although in this case the
word is disambiguated simply by looking at the preceding tag, it must be taken into account
that the preceding word could be ambiguous, or that the necessary context could be much
more complicated than merely the preceding word. Furthermore, there are even cases in
which the ambiguity is non-resolvable using only morphosyntactic features of the context,
and require semantic and/or pragmatic knowledge.

60 L. MÀRQUEZ, L. PADRÓ AND H. RODŔIGUEZ

Table 1. A sentence and itsPOSambiguity. Appearing tags, from the Penn Treebank corpus, are described in
appendix A.

The DT first JJ time NN he PRP was VBD shot VBN in IN the DT

handNN as IN he PRP chasedVBD the DT robbersNNS outsideRB . .

first time shot in hand as chased outside

JJ NN NN IN NN IN JJ IN

RB VB VBD RB VB RB VBD JJ

VBN RP VBN NN

RB

1.1. Existing approaches to POS tagging

Starting with the pioneer tagger TAGGIT (Greene & Rubin, 1971), used for an initial tagging
of the Brown Corpus (BC), a lot of effort has been devoted to improving the quality of the
tagging process in terms of accuracy and efficiency. Existing taggers can be classified into
three main groups according to the kind of knowledge they use: linguistic, statistic and
machine-learning family. Of course some taggers are difficult to classify into these classes
and hybrid approaches must be considered.

Within the linguistic approach most systems codify the knowledge involved as a set of
rules (or constraints) written by linguists. The linguistic models range from a few hundreds
to several thousand rules, and they usually require years of labor. The work of the TOSCA

group (Oostdijk, 1991) and more recently the development of Constraint Grammars in the
Helsinki University (Karlsson et al., 1995) can be considered the most important in this
direction.

The most extended approach nowadays is the statistical family (obviously due to the
limited amount of human effort involved). Basically it consists of building a statistical model
of the language and using this model to disambiguate a word sequence. The language model
is coded as a set of co-occurrence frequencies for different kinds of linguistic phenomena.

This statistical acquisition is usually found in the form ofn-gram collection, that is, the
probability of a certain sequence of lengthn is estimated from its occurrences in the training
corpus.

In the case ofPOStagging, usual models consist of tag bi-grams and tri-grams (possible
sequences of two or three consecutive tags, respectively). Once then-gram probabilities
have been estimated, new examples can be tagged by selecting the tag sequence with highest
probability. This is roughly the technique followed by the widespread Hidden Markov Model
taggers. Although the form of the model and the way of determining the sequence to be
modeled can also be tackled in several ways, most systems reduce the model to unigrams, bi-
grams or tri-grams. The seminal work in this direction is the CLAWS system (Garside, Leech,
& Sampson, 1987), which used bi-gram information and was the probabilistic version of
TAGGIT. It was later improved by DeRose (1988) by using dynamic programming. The
tagger by Church (1988) used a tri-gram model. Other taggers try to reduce the amount of
training data needed to estimate the model, and use the Baum-Welch re-estimation algorithm

A MACHINE LEARNING APPROACH TO POS TAGGING 61

(Baum, 1972) to iteratively refine an initial model obtained from a small hand-tagged corpus.
This is the case of the Xerox tagger (Cutting et al., 1992) and its successors. Those interested
in the subject can find an excellent overview by Merialdo (1994).

Other works that can be placed in the statistical family are those of Schmid (1994a) which
performs energy-function optimization using neural nets. Chanod and Tapanainen (1995)
and Samuelsson and Voutilainen (1997) present comparisons between linguistic and statistic
taggers.

Other tasks are also approached through statistical methods. The speech recognition field
is very productive in this issue—actually,n-gram modeling was used in speech recognition
before being used inPOStagging. Recent works in this field try not to limit the model to
a fixed ordern-gram by combining different ordern-grams, morphological information,
long-distancen-grams, or triggering pairs (Rosenfeld, 1994; Ristad & Thomas, 1996; Saul
& Pereira, 1997). These are some approaches that we may see incorporated toPOStagging
tasks in the short term.

Although the statistical approach involves some kind of learning, supervised or unsu-
pervised, of the parameters of the model from a training corpus, we place in the machine-
learning family only those systems that include more sophisticated information than a
n-gram model. Brill’s tagger (Brill, 1992, 1995) automatically learns a set of transformation
rules which best repair the errors committed by a most-frequent-tag tagger, Samuelsson,
Tapanainen, and Voutilainen (1996) acquire Constraint Grammar rules from tagged cor-
pora, Daelemans et al. (1996) apply instance-based learning. The work that we present
here uses decision trees induced from tagged corpora (M`arquez & Rodr´ıguez, 1997, 1998),
which are exploited, together with other statistical and linguistic information, in a hy-
brid environment that applies relaxation techniques over a set of constraints (Padr´o 1996,
1998).

The accuracy reported by most statistic taggers surpasses 96–97% while linguistic Con-
straint Grammars surpass 99% allowing a residual ambiguity of 1.026 tags per word. These
accuracy values are usually computed on a test corpus which has not been used in the train-
ing phase. Some corpora commonly used as test benches are the Brown Corpus, the Wall
Street Journal (WSJ) corpus and the British National Corpus (BNC).

1.2. Motivation and goals

Taking the above accuracy figures into account one may think thatPOStagging is a solved
and closed problem this accuracy being perfectly acceptable for mostNLP systems. So why
waste time in designing yet another tagger? What does an increase of 0.3% in accuracy
really mean?

There are several reasons for thinking that there is still work to do in the field of automatic
POStagging.

When processing huge running texts, and considering an average length per sentence of
25–30 words, if we admit an error rate of 3–4% then it follows that, on average, each sentence
contains one error. SincePOStagging is a very basic task in mostNLPunderstanding systems,
starting with an error in each sentence could be a severe drawback, especially considering
that the propagation of these errors could grow more than linearly. OtherNLP tasks that

62 L. MÀRQUEZ, L. PADRÓ AND H. RODŔIGUEZ

are very sensitive toPOSdisambiguation errors can be found in the domain of Word Sense
Disambiguation (Wilks & Stevenson, 1997) and Information Retrieval (Krovetz, 1997).

Another issue refers to the need of adapting and tuning taggers that have acquired (or
learned) their parameters from a specific corpus onto another one—which may contain texts
from other domains—trying to minimize the cost of transportation.

The accuracy of taggers is usually measured against a test corpora of the same char-
acteristics as the corpus used for training. Nevertheless, no serious attempts have been
made to evaluate the portability of taggers to corpora from other domains or with different
characteristics and tag distributions.

Finally, some specific problems must be addressed when applying taggers to languages
other than English. In addition to the problems derived from the richer morphology of
some particular languages, there is a more general problem consisting of the lack of large
manually annotated corpora for training.

Although abootstrappingapproach can be carried out—using a low-accuracy tagger for
producing annotated text that could then be used for retraining the tagger and learning a
more accurate model—the usefulness of this approach relies heavily on the quality of the
retraining material. So, if we want to guarantee low-noise retraining corpora, we have to
provide methods able to achieve high accuracy, both on known and unknown words, using
a small high-quality training corpus.

In this direction, we are involved in a project for tagging Spanish and Catalan corpora (over
5M words) with limited linguistic resources, that is, departing from a manually tagged core
of a size around 70,000 words. For the sake of comparability we have included experiments
performed over a reference corpus of English. However, we also report the results obtained
applying the presented techniques to annotate the LEXESPSpanish corpus, proving that a
very good accuracy can be achieved at a fairly low human labor cost.

The paper is organized as follows: In Section 2 we describe the application domain,
the language model learning algorithm and the model evaluation. In Sections 3 and 4 we
describe the language model application through two taggers: A decision tree based tagger
and a relaxation labeling based tagger, respectively. Comparative results between them in
the special case of using a small training corpus and the joint use of both taggers to annotate
a Spanish corpus are reported in Section 5. Finally, the main conclusions and an overview
of the future work can be found in Section 7.

2. Language model acquisition

To enable a computer system to process natural language, it is required that language is
modeledin some way, that is, that the phenomena occurring in language are characterized
and captured, in such a way that they can be used to predict or recognize future uses
of language: Rosenfeld (1994) defines language modeling asthe attempt to characterize,
capture and exploit regularities in natural language, and states that the need for language
modeling arises from the great deal of variability and uncertainty present in natural language.

As described in Section 1, language models can be hand-written, statistically derived, or
machine-learned. In this paper we present the use of a machine-learned model combined
with statistically acquired models. A testimonial use of hand-written models is also included.

A MACHINE LEARNING APPROACH TO POS TAGGING 63

2.1. Description of the training corpus and the word form lexicon

We have used a portion of 1,170,000 words of theWSJ, tagged according to the Penn
Treebank tag set, to train and test the system. Its most relevant features are the following.

The tag set contains 45 different tags. About 36.5% of the words in the corpus are
ambiguous, with an ambiguity ratio of 2.44 tags/word over the ambiguous words, 1.52
overall.

The corpus contains 243 different ambiguity classes, but they are not all equally important.
In fact, only the 40 most frequent ambiguity classes cover 83.95% of the occurrences in the
corpus, while the 194 most frequent cover almost all of them (>99.50%).

The training corpus has also been used to create a word form lexicon—of 49,206 entries—
with the associated lexical probabilities for each word. These probabilities are estimated
simply by counting the number of times each word appears in the corpus with each different
tag. This simple information provides a heuristic for a very naive disambiguation algorithm
which consists of choosing for each word its most probable tag according to the lexical
probability. Note that such a tagger does not use any contextual information, but only the
frequencies of isolated words. Figure 1 shows the performance of thismost-frequent-tag
tagger(MFT) on theWSJdomain for different sizes of the training corpus.

The reported figures refer to ambiguous words and they can be taken as a lower bound
for any tagger. More particularly, it is clear that for a training corpus bigger than 400,000
words, the accuracy obtained is around 81–83%. However it is not reasonable to think that
it could be significantly raised simply by adding more training corpus in order to estimate
the lexical probabilities more effectively.

Due to errors in corpus annotation, the resulting lexicon has a certain amount of noise.
In order to partially reduce this noise, the lexicon has been filtered by manually checking
the entries for the most frequent 200 words in the corpus—note that the 200 most frequent
words in the corpus represent over half of it. For instance the original lexicon entry (numbers
indicate frequencies in the training corpus) for the very common wordthewas:

the CD 1 DT 47715 JJ 7 NN 1 NNP 6 VBP 1,

Figure 1. Performance of the “most frequent tag” heuristic related to the training set size.

64 L. MÀRQUEZ, L. PADRÓ AND H. RODŔIGUEZ

since it appears in the corpus with the six different tags:CD(cardinal),DT(determiner),JJ
(adjective),NN(noun),NNP(proper noun) andVBP(verb-personal form). It is obvious that
the only correct reading forthe is determiner.

2.2. Learning algorithm

From a set of possible tags, choosing the proper syntactic tag for a word in a particular
context can be stated as a problem of classification. In this case, classes are identified
with tags. Decision trees, recently used in severalNLP tasks, such as speech recognition
(Bahl et al., 1989),POStagging (Schmid, 1994; M´arquez & Rodr´ıguez, 1995; Daelemans
et al., 1996), parsing (McCarthy & Lehnert, 1995; Magerman, 1996), sense disambiguation
(Mooney, 1996) and information extraction (Cardie, 1994), are suitable for performing this
task.

2.2.1. Ambiguity classes and statistical decision trees.It is possible to group all the words
appearing in the corpus according to the set of their possible tags (i.e.adjective-noun,
adjective-noun-verb, adverb-preposition, etc.). We will call these setsambiguity classes. It
is obvious that there is an inclusion relation between these classes (i.e. all the words that
can beadjective, nounandverb, can be, in particular,adjectiveandnoun), so the whole
set of ambiguity classes is viewed as a taxonomy with aDAG structure. Figure 2 represents
part of this taxonomy together with the inclusion relation, extracted from theWSJ.

In this way we split the generalPOStagging problem into one classification problem for
each ambiguity class.

We identify some remarkable features of our domain, compared to common classification
domains in machine learning. Firstly, there is a very large number of training examples: up
to 60,000 examples for a single tree. Secondly, there is quite a significant noise in both the
training and test data:WSJcorpus contains about 2–3% of mistagged words.

The main consequence of the above characteristics, together with the fact that simple
context conditions cannot explain all ambiguities (Voutilainen, 1994), is that it is not possible

Figure 2. A part of the ambiguity-class taxonomy for theWSJcorpus.

A MACHINE LEARNING APPROACH TO POS TAGGING 65

Table 2. Training examples of thepreposition-adverbambiguity class.

tag−3 tag−2 tag−1 <word,tag> tag+1 tag+2

RB VBD IN <“after”,IN> DT NNS

VB DT NN <“as”,IN> DT JJ

DT JJ NNS <“as”,RB> RB IN

JJ NN NNS <“below”,RB> VBP DT

...

to obtain trees to completely classify the training examples. Instead, we aspire to obtain
more adjusted probability distributions of the words over their possible tags, conditioned
to the particular contexts of appearance. So we will useStatisticaldecision trees, instead
of common decision trees, for representing this information.

The algorithm we used to construct the statistical decision trees is a non-incremental
supervised learning-from-examples algorithm of theTDIDT (Top Down Induction of Deci-
sion Trees) family. It constructs the trees in a top-down way, guided by the distributional
information of the examples (Quinlan, 1993).

2.2.2. Training set and attributes.For each ambiguity class a set of examples is built by
selecting from the training corpus all the occurrences of the words belonging to this ambigu-
ity class. The set of attributes that describe each example refer to the part-of-speech tags of
the neighbor words and to the orthographic characteristics of the word to be disambiguated.
All of them are discrete attributes.

For the common ambiguity classes the set of attributes consists of a window covering 3
tags to the left and 2 tags to the right—this size as well as the final set of attributes has been
determined on an empirical basis—and theword-form. Table 2 shows real examples from
the training set for the words that can be preposition and adverb (IN-RB ambiguity class).

A new set of orthographic features is incorporated in order to deal with a particular
ambiguity class, namelyunknown words, that will be introduced in following sections. See
Table 3 for a description of the whole set of attributes.

Attributes with many values (i.e. the word-form and pre/suffix attributes used when deal-
ing with unknown words) are treated by dynamically adjusting the number of values to theN
most frequent, and joining the rest in a newotherwisevalue. The maximum number of values
is fixed at 45 (the number of different tags) in order to have more homogeneous attributes.

2.2.3. Attribute selection function. After testing several attribute selection functions—
including Gini Diversity Index(Breiman et al., 1984),Quinlan’s Gain Ratio(Quinlan,
1986), RELIEF-F (Kononenko,̌Simec, & Robnik-̌Sikonja, 1995),χ2 Test, andSymmetrical
Tau (Zhou & Dillon, 1991)—, with no significant differences between them, we used
an attribute selection function proposed by L´opez de Mántaras (1991), belonging to the
information-theory-based family, which showed a slightly higher stability than the others
and which is proved not to be biased towards attributes with many values and capable
of generating smaller trees, with no loss of accuracy, compared with those of Quinlan’s
Gain Ratio (López de Mántaras, Cerquides, & Garcia, 1996). Roughly speaking, it defines

66 L. MÀRQUEZ, L. PADRÓ AND H. RODŔIGUEZ

Table 3. List of considered attributes.

Attribute Values Number of values

tag−3 Any tag in the Penn Treebank 45

tag−2 ” ”

tag−1 ” ”

tag+1 ” ”

tag+2 ” ”

Word form Any word of the ambiguity class <847

First character Any printable ASCII character <190

Last character ” ”

Last-1 character ” ”

Last-2 character ” ”

Capitalized? {Yes, no} 2

Other capital letters? ” ”

Multi-word? ” ”

Has numeric character? ” ”

a distance measurement between partitions and selects for branching the attribute that
generates the closest partition to thecorrect partition, namely the one that perfectly classifies
the training data.

Let X be a set of examples,C the set of classes andPC(X) the partition ofX according
to the values ofC. The selected attribute will be the one that generates the closest partition
of X to PC(X). For that we need to define a distance measurement between partitions. Let
PA(X) be the partition ofX induced by the values of attributeA. The average information
of such partition is defined as follows:

I (PA(X)) = −
∑

a∈PA(X)

p(X,a) log2 p(X,a),

where p(X,a) is the probability for an element ofX belonging to the seta which is the
subset ofX whose examples have a certain value for the attributeA, and it is estimated by the
ratio |X ∩a|

|X| . This average information measurement reflects the randomness of distribution
for the elements ofX between the classes of the partition induced byA. If we now consider
the intersection between two different partitions induced by attributesA andB we obtain:

I (PA(X) ∩ PB(X)) = −
∑

a∈PA(X)

∑
b∈PB(X)

p(X,a ∩ b) log2 p(X,a ∩ b).

Conditioned information ofPB(X) given PA(X) is:

I (PB(X) | PA(X)) = I (PA(X) ∩ PB(X))− I (PA(X))

= −
∑

a∈PA(X)

∑
b∈PB(X)

p(X,a ∩ b) log2
p(X,a ∩ b)

p(X,a)
.

A MACHINE LEARNING APPROACH TO POS TAGGING 67

It is easy to show that the measurement

d(PA(X), PB(X)) = I (PB(X) | PA(X))+ I (PA(X) | PB(X))

is a distance. Normalizing, we obtain

dN(PA(X), PB(X)) = d(PA(X), PB(X))

I (PA(X) ∩ PB(X))
,

with values in [0, 1]. So, finally, the selected attribute will be that one that minimizes the
normalized distance:dN(PC(X), PA(X)).

2.2.4. Branching strategy. When dealing with discrete attributes, usualTDIDT algorithms
consider a branch for each value of the selected attribute. However there are other possibil-
ities. For instance, some systems perform a previous recasting of the attributes in order to
have binary-valued attributes (Magerman, 1996). The motivation could be efficiency (deal-
ing only with binary trees has certain advantages), and avoiding excessive data fragmentation
(when there is a large number of values). Although this transformation of attributes is always
possible, the resulting attributes lose their intuition and direct interpretation, and explode
in number. We have chosen a mixed approach which consists of splitting for all values,
and subsequently joining the resulting subsets into groups for which we have insufficient
statistical evidence for there being different distributions. This statistical evidence is tested
with aχ2 test at a 95% confidence level, with a previous smoothing of data in order to avoid
zero probabilities.

2.2.5. Pruning the tree. In order to decrease the effect ofover-fitting, we have implemented
a post pruning technique. In a first step the tree is completely expanded and afterwards is
pruned following a minimal cost-complexity criterion (Breiman et al., 1984), using a com-
paratively small fresh part of the training set. The alternative, of smoothing the conditional
probability distributions of the leaves using a fresh corpus (Magerman, 1996), has been left
out because we also wanted to reduce the size of the trees. Experimental tests have shown
that in our domain, the pruning process reduces tree sizes up to 50% and improves their
accuracy by 2–5%.

2.2.6. An example. Finally, we present a real example of a decision tree branch learned
for the classIN-RB which has a clear linguistic interpretation.

We can observe in figure 3 that each node in the path from the root to the leaf contains
a question on a concrete attribute and a probability distribution. In the root it is the prior
probability distribution of the class. In the other nodes it represents the probability distri-
bution conditioned to the answers to the questions preceding the node. For example the
second node says that the wordas is more commonly a preposition than an adverb, but the
leaf says that the wordas is almost certainly an adverb when it occurs immediately before
another adverb and a preposition (this is the case ofas much as, as well as, as soon as, etc.).

68 L. MÀRQUEZ, L. PADRÓ AND H. RODŔIGUEZ

Figure 3. Example of a decision tree branch.

Figure 4. Architecture of TREETAGGER.

3. TREETAGGER: A tree-based tagger

Using the model described in the previous section, we have implemented areductionistic
tagger in the sense of Constraint Grammars (Karlsson et al., 1995). In the initial step a
word-form frequency dictionary constructed from the training corpus provides each input
word with all possible tags with their associated lexical probability. After that, an iterative
process reduces the ambiguity (discarding low probable tags) at each step until a certain
stopping criterion is satisfied. The whole process is represented in figure 4. See also Table 4
for the real process of disambiguation of a part of the sentence presented in Table 1.

More particularly, at each step and for each ambiguous word the work to be done in
parallel is:

1. Classify the word using the corresponding decision tree. The ambiguity of the context
(either left or right) during classification may generate multiple answers for the questions
of the nodes. In this case, all the paths are followed and the result is taken as a weighted
average of the results of all possible paths. The weight for each path is actually its
probability, which is calculated according to the current probabilities of thePOStags of
the features involved in the nodes of the path.

2. Use the resulting probability distribution to update the probability distribution of the
word. The probability updating is done by simply multiplying previous probabilities per
new probabilities coming from the trees and renormalizing the results (so they sum to
one again).

A MACHINE LEARNING APPROACH TO POS TAGGING 69

Table 4. Example of disambiguation.

... as he chased the robbers outside .

it.0 IN:0.83 PRP:1 JJ:0.25 DT:1 NNS:1 IN:0.54 .:1

RB:0.17 VBD:0.28 JJ:0.36

VBN:0.57 NN:0.06

RB:0.04

it.1 IN:0.96 PRP:1 VBD:0.97 DT:1 NNS:1 IN:0.01 .:1

RB:0.04 VBN:0.03 JJ:0.01

RB:0.98

it.2 IN:1 PRP:1 VBD:1 DT:1 NNS:1 RB:1 .:1

stop

3. Discard the tags withalmostzero probability, that is, those with probabilities lower than
a certaindiscard boundaryparameter.

After the stopping criterion is satisfied, some words could still remain ambiguous. Then
there are two possibilities: 1) Choose the most probable tag for each still-ambiguous word
to completely disambiguate the text. 2) Accept the residual ambiguity (for successive
treatment).

Note that a unique iteration forcing the complete disambiguation is equivalent to using the
trees directly as classifiers, and results in a very efficient tagger, while performing several
steps progressively reduces the efficiency, but takes advantage of the statistical nature of
the trees to get more accurate results.

Another important point is to determine an appropriate stopping criterion—since the
procedure is heuristic, the convergence is not guaranteed, however this is not the case in
our experiments. First experiments seem to indicate that the performance increases up to
a unique maximum and then softly decreases as the number of iterations increases. This
phenomenon is studied by Padr´o (1998) and the noise in the training and test sets is suggested
to be the major cause. For the sake of simplicity, in the experiments reported in following
sections, the number of iterations was experimentally fixed to three. Although it might seem
an arbitrary decision, broad-ranging experiments performed seem to indicate that this value
results in a good average tagging performance in terms of accuracy and efficiency.

3.1. UsingTREETAGGER

We divided theWSJcorpus in two parts: 1,120,000 words were used as a training/pruning
set, and 50,000 words as a fresh test set. We used a lexicon—described in Section 2.1—
derived from training corpus, containing all possible tags for each word, as well as their
lexical probabilities. For the words in the test corpus not appearing in the training set, we
stored all the tags that these words have in the test corpus, but no lexical probability (i.e.
assigning uniform distribution). This approach corresponds to the assumption of having a

70 L. MÀRQUEZ, L. PADRÓ AND H. RODŔIGUEZ

Table 5. Tree information and number and percentages of error for the most difficult ambiguity classes.

Amb. class #Exs #Nodes %Error TT-errors(%) MFT-errors(%)

VBD-VBN 25,902 844 7.53% 91 (6.47%) 267 (18.98%)

NN-VB-VBP 24,465 576 3.32% 51 (4.02%) 255 (20.10%)

VB-VBP 17,690 313 3.67% 46 (4.97%) 226 (24.42%)

IN-RB-RP 26,964 99 7.13% 164 (9.14%) 210 (11.70%)

DT-IN-RB-WDT 8,312 271 6.07% 56 (12.08%) 187 (40.34%)

JJ-VBD-VBN 11,346 761 18.75% 95 (16.70%) 180 (31.64%)

JJ-NN 16,922 680 16.30% 122 (14.01%) 144 (16.54%)

NN-VBG 9,503 564 16.54% 58 (10.84%) 116 (21.68%)

NNS-VBZ 15,233 688 4.37% 44 (6.19%) 81 (11.40%)

JJ-RB 8,650 854 11.20% 48 (10.84%) 73 (16.49%)

NN-VB 14,614 221 1.11% 12 (1.63%) 67 (9.10%)

Total 179,601 5,871 787 1,806

morphological analyzer that provides all possible tags for unknown words. In following
experiments we will treat unknown words in a less informed way.

From the 243 ambiguity classes the acquisition algorithm learned a base of 194 trees
(covering 99.5% of the ambiguous words) and requiring about 500KB of storage. The
learning algorithm (in a Common Lisp implementation) took about 12CPU-hours running
on a SUN SparcStation-10 with 64 Mb of primary memory. The first four columns of Table 5
contain information about the trees learned for the ten most representative ambiguity classes.
They present figures about the number of examples used for learning each tree, their number
of nodes and the classification error over the set of examples used for pruning. This last figure
could be taken as a rough estimation of the error of the trees when used in TREETAGGER,
though it is not exactly true, since in the pruning examples the neighboring tags are given
their correct tags from the supervised annotation, while during tagging both contexts—left
and right—can be ambiguous.

The tagging algorithm, running on a SUN UltraSparc2, processed the test set at a speed
of >300 words/sec. The results obtained can be seen at a different levels of granularity.

• The performance of some of the learned trees is shown in last two columns of Table 5.
The corresponding ambiguity classes concentrate the 62.5% of the errors committed by a
most-frequent-tagtagger (MFT column).TT column shows the number and percentage of
errors committed by our tagger. On the one hand we can observe a remarkable reduction
in the number of errors (56.4%). On the other hand it is useful to identify some prob-
lematic cases. For instance,JJ-NN seems to be the most difficult ambiguity class, since
the associated tree obtains only a slight error reduction from theMFT baseline tagger
(15.3%). This is not surprising since semantic knowledge is necessary to fully disam-
biguate between noun and adjective. Results for theDT-IN-RB-WDT ambiguity reflect

A MACHINE LEARNING APPROACH TO POS TAGGING 71

Figure 5. Performance of the tagger related to the training set size.

an over-estimation of the generalization performance of the tree—predicted error rate
(6.07%) is much lower than the real (12.08%)—which may be indicating a problem of
over pruning.
• Global results are the following: when forcing a complete disambiguation the resulting

accuracy was 97.29%, while accepting residual ambiguity the accuracy rate increased
up to 98.22%, with an ambiguity ratio of 1.08 tags/word over the ambiguous words and
1.026 tags/word overall. In other words, 2.75% of the words remained ambiguous (over
96% of them retaining only 2 tags).
Márquez and Rodr´ıguez (1997) show that these results are as good (and better in some
cases) as the results of a number of state-of-the-art taggers based on automatic model
acquisition.

In addition, we present in figure 5 the performance achieved by our tagger with increasing
sizes of the training corpus. Results in accuracy are computed over all words. The same
figure includesMFT results, which can be seen as a reference baseline.

Following the intuition, we see that performance grows as the training set size grows.
The maximum is at 97.29%, as previously indicated.

One way to easily evaluate the quality of the class-probability estimates given by a
classifier is to calculate arejection curve. That is to plot a curve showing the percentage of
correctly classified test cases whoseconfidence levelexceeds a given value. In the case of
statistical decision trees this confidence level can be straightforwardly computed from the
class probabilities given by leaves of the trees. In our case we calculate the confidence level
as the difference in probability between the two most probable cases (if this difference is
large, then the chosen class is clearly much better than the others; if the difference is small,
then the chosen class is nearly tied with another class). A rejection curve that increases
smoothly, indicates that the confidence level produced by the classifier can be transformed
into an accurate probability measurement.

The rejection curve for our classifier, included in figure 6, increases fairly smoothly,
giving the idea that that the acquired statistical decision trees provide good confidence
estimates. This is in close connection with the aforementioned positive results yielded by
the tagger when disambiguation in the low-confidence cases is not required.

72 L. MÀRQUEZ, L. PADRÓ AND H. RODŔIGUEZ

Figure 6. Rejection curve for the trees acquired with full training set.

3.2. Unknown words

Unknownwords are those words not present in the lexicon (i.e. in our case, the words
not present in the training corpus). In the previous experiments we have not considered
the possibility of unknown words. Instead we have assumed a morphological analyzer
providing the set of possible tags with a uniform probability distribution. However, this is
not the most realistic scenario. Firstly, a morphological analyzer is not always present (due
to the morphological simplicity of the treated language, the existence of some efficiency
requirements, or simply the lack of resources). Secondly, if it is available, it very probably
has a certain error rate that makes it necessary to consider the noise it introduces. So it
seems clear that we have to deal with unknown words in order to obtain more realistic
figures about the real performance of our tagger.

There are several approaches to dealing with unknown words. On the one hand, one can
assume that unknown words may potentially take any tag, excluding those tags correspond-
ing to closed categories (preposition, determiner, etc.), and try to disambiguate between
them. On the other hand, other approaches include a pre-process that tries to guess the set
of candidate tags for each unknown word to feed the tagger with this information. Padr´o
(1998) provides a detailed explanation of the methods.

In our case, we consider unknown words as words belonging to the ambiguity class
containing all possible tags corresponding to open categories (i.e. noun, proper noun, verb,
adjective, adverb, cardinal, etc.). The number of candidate tags come to 20, so we state a
classification problem with 20 different classes. We have estimated the proportion of each
of these tags appearing naturally in theWSJas unknown words and we have collected the
examples from the training corpus according to these proportions. The most frequent tag,
NNP(proper noun), represents almost 30% of the sample. This fact establishes a lower
bound for accuracy of 30% in this domain (i.e. the performance that amost-frequent-tag
tagger would obtain).

We have used very simple information about the orthography and the context of unknown
words in order to improve these results. In particular, from an initial set of 17 potential at-
tributes, we have empirically decided the most relevant, which turned out to be the following:

A MACHINE LEARNING APPROACH TO POS TAGGING 73

Table 6. Generalization performance of the trees for unknown words.

#Exs. TREETAGGERaccuracy(#nodes) IGTREEaccuracy(#nodes)

2,000 77.53% (224) 70.36% (627)

5,000 80.90% (520) 76.33% (1438)

10,000 83.30% (1112) 79.18% (2664)

20,000 85.82% (1644) 82.30% (4783)

30,000 87.32% (2476) 85.11% (6477)

40,000 88.00% (2735) 86.78% (8086)

50,000 88.12% (4056) 87.14% (9554)

1) In reference to word form: the first letter, the last three letters, and other four binary-
valued attributes accounting for capitalization, whether the word is a multi-word or not, and
for the existence of some numeric characters in the word. 2) In reference to context: only
the preceding and the followingPOStags. This set of attributes is fully described in Table 3.

Table 6 shows the generalization performance of the trees learned from training sets
of increasing sizes up to 50,000 words. In order to compare these figures with a close
approach we have implemented IGTREEsystem (Daelemans et al., 1996) and we have tested
its performance exactly under the same conditions as ours.

IGTREE system is a memory-basedPOS tagger which stores in memory the whole set
of training examples and then predicts the part of speech tags for new words in particular
contexts by extrapolation from the most similar cases held in memory (k-nearest neigh-
bor retrieval algorithm). The main connection point to the work presented here is that
huge example bases are indexed using a tree-based formalism, and that the retrieval al-
gorithm is performed by using the generated trees as classifiers. Additionally, these trees
are constructed on the base of a previous weight assignment for attributes (contextual and
orthographic attributes used for disambiguating are very similar to ours) using Quinlan’s
Gain Ratio (Quinlan, 1986).

Note that the final pruning step applied by IGTREEto increase the compression factor even
more has also been implemented in our version. The results of IGTREEare also included in
Table 6. Figures 7 and 8 contain the plots corresponding to the same results.

Observe that our system produces better quality trees than those of IGTREE—we measure
this quality in terms of generalization performance (how well these trees fit new examples)
and size (number of nodes). On the one hand, we see in figure 7 that our generalization
performance is better. On the other hand, figure 8 seems to indicate that the growing factor
in the number of nodes is linear in both cases, but clearly lower in ours.

Important aspects contributing to the lower size are the merging of attribute values and
the post pruning process applied in our algorithm. Experimental results showed that the tree
size is reduced by up to 50% on average without loss in accuracy (M`arquez, 1999).

The better performance is probably due to the fact that IGTREEs are not actually decision
trees (in the sense of trees acquired by a supervised algorithm of top-down induction, that
use a certainattribute selection functionto decide ateach stepwhich is the attribute that

74 L. MÀRQUEZ, L. PADRÓ AND H. RODŔIGUEZ

Figure 7. Accuracy vs. training set size forunknownwords.

Figure 8. Number of nodes of the trees forunknownwords.

best contributes to discriminate between the current set of examples), but only a tree-based
compression of a base of examples inside a kind of weighted nearest-neighbor retrieval
algorithm. The representation and the weight assignment for attributes allows us to think
of IGTREEs as the decision trees that would be obtained by applying the usual top-down
induction algorithm with a very naive attribute selection function consisting of making a
previous unique ranking of attributes using Quinlan’s Gain Ratio over all examples and
later selecting the attributes according to this ordering. Again, experimental results show
that it is better to reconsider the selection of attributes at each step than to decide on an
a priori fixed order (Màrquez, 1999).

Of course, these conclusions have to be taken in the domain of small training sets, since the
same plot in figure 7 suggests that the difference between the two methods decreases as the
training set size increases. Using bigger corpora for training might improve performance

A MACHINE LEARNING APPROACH TO POS TAGGING 75

significantly. For instance, Daelemans et al. (1996) report an accuracy rate of 90.6% on
unknown words when training with the wholeWSJ(2 million words). So our results can be
considered better than theirs in the sense that our system needs less resources for achieving
the same performance. Note that the same result holds when using the whole training set:
They report a tagging accuracy of 96.4%, training with a 2Mwords training set, while our
results, slightly over 97%, were achieved using only 1.2 Mwords.

4. RELAX : A relaxation labeling based tagger

Up to now we have described a decision-tree acquisition algorithm used to automatically
obtain a language model forPOS tagging, and a classification algorithm which uses the
obtained model to disambiguate fresh texts.

Once the language model has been acquired, it would be useful that it could be used
by different systems and extended with new knowledge. In this section we will describe
a flexible tagger based on relaxation labeling methods, which enables the use of models
coming from different sources, as well as their combination and cooperation.

The tagger we present has the architecture described in figure 9: A unique algorithm uses
a language model consisting of constraints obtained from different knowledge sources.

Relaxation is a generic name for a family of iterative algorithms which perform function
optimization, based on local information. They are closely related to neural nets (Torras,
1989) and gradient descent (Larrosa & Meseguer, 1995a).

Although relaxation operations had long been used in engineering fields to solve sys-
tems of equations (Southwell, 1940), they did not achieve their breakthrough success until
relaxation labeling—their extension to the symbolic domain—was applied to the field of
constraint propagation, especially in low-level vision problems (Waltz, 1975; Rosenfeld,
Hummel, & Zucker, 1976).

Relaxation labeling is a technique that can be used to solve consistent labeling problems
(CLPs), as described by Larrosa and Meseguer (1995b). A consistent labeling problem
consists of, given a set of variables, assigning to each variable a value compatible with the
values of the other ones, satisfying—to the maximum possible extent—a set of compatibility
constraints.

Figure 9. Architecture of RELAX tagger.

76 L. MÀRQUEZ, L. PADRÓ AND H. RODŔIGUEZ

In the Artificial Intelligence field, relaxation has been mainly used in computer vision—
since it is where it was first used—to address problems such as corner and edge recognition
or line and image smoothing (Richards, Landgrebe, & Swain, 1981; Lloyd, 1983). Nev-
ertheless, many traditional AI problems can be stated as a labeling problem: the traveling
salesman problem,n-queens, or any other combinatorial problem (Aarts & Korst, 1987).

The application of constraint satisfaction to performNLP tasks is not a novel idea. The
relaxation labeling algorithm in particular was first pointed out as useful for such tasks
by Pelillo and Refice (1994), Pelillo and Maffione (1994), who usedPOS tagging as a
toy problem to test some methods to improve the computation of constraint compatibility
coefficients for relaxation processes. Applications to realNLP problems, dealing with large
unrestricted texts, are presented in the work by Padr´o (1996), Voutilainen and Padr´o (1997),
Màrquez and Padr´o (1997), Padr´o (1998).

From our point of view, the most remarkable feature of the algorithm is that, since it deals
with context constraints, the model it uses can be improved by writing into the constraint
formalism any available knowledge. The constraints used may come from different sources:
statistical acquisition, machine-learned models or hand coding. An additional advantage is
that the tagging algorithm is independent of the complexity of the model.

4.1. The algorithm

Although in this section the relaxation algorithm is described from a general point of view,
its application toPOStagging is straightforwardly performed, considering each word as a
variable and each of its possiblePOStags as a label.

Let V = {v1, v2, . . . , vN} be a set of variables (words).
Let Ti = {t i

1, t
i
2, . . . , t

i
mi
} be the set of possible labels (POStags) for variablevi (where

mi is the number of different labels that are possible forvi).
Let C be a set of constraints between the labels of the variables. Each constraint is a

compatibility valuefor a combination of pairs variable-label.

0.53 [(v1, A)(v3, B)] binary constraint (e.g. bi-gram)
0.29 [(v1, A)(v3, B)(v6,C)] ternary constraint (e.g. tri-gram)

The first constraint states that the combination of variablev1 having labelA, and variable
v3 having labelB, has a compatibility value of 0.53. Similarly, the second constraint states
the compatibility value for the three pairs variable-value it contains.

Constraints can be of any order, so we can define the compatibility value for combinations
of any number of variables.

The aim of the algorithm is to find aweighted labelingsuch thatglobal consistencyis
maximized.

A weighted labelingis a weight assignment for each possible label of each variable:

P = (p1, p2, . . . , pN) where eachpi is a vector containing a weight for each possible
label ofvi , that is:pi = (pi

1, pi
2, . . . , pi

mi
).

A MACHINE LEARNING APPROACH TO POS TAGGING 77

Since relaxation is an iterative process, the weights vary in time. We will note the weight
for label j of variablei at time stepn as pi

j (n), or simply pi
j when the time step is not

relevant.
Maximizing global consistencyis defined as maximizing for each variablevi , (1 ≤ i ≤

N), the average support for that variable, which is defined as the weighted sum of the
support received by each of its possible labels, that is:

∑mi
j = 1 pi

j × Si j , whereSi j is the
support received by that pair from the context.

The support for a pair variable-label (Si j) expresseshow compatibleis the assignment
of label j to variablei with the labels of neighboring variables, according to the constraint
set.

Although several support functions may be used, we chose the following one, which
defines the support as the sum of the influence of every constraint on a label.

Si j =
∑
r∈Ri j

I n f (r)

whereRi j and I n f (r) are defined as follows:
Ri j is the set of constraints on labelj for variablei , i.e. the constraints formed by any

combination of variable-label pairs that includes the pair(vi , t i
j).

I n f (r) = Cr × pr1
k1
(m)×· · ·× prd

kd
(m), is the product of the current weights for the labels

appearing in the constraint except(vi , t i
j) (representinghow applicablethe constraint is in

the current context) multiplied byCr which is the constraint compatibility value (stating
how compatible the pair is with the context).

Although theCr compatibility values for each constraint may be computed in different
ways, recent experiments (Padr´o, 1996, 1998) point out that the best results in our case are
obtained when computing compatibilities as themutual informationbetween the tag and
the context. Mutual information measures how informative is a discrete random variable
with respect to another, and is computed as the expectation of the expression in (1) for every
possible pair of values (Cover & Thomas, 1991). Since we are interested on events rather
than on distributions, we will use the corresponding expression for the outcomesA andB
rather than its expectation (Krenn & Samuelsson, 1997).

M I (A, B) = log
P(A, B)

P(A) · P(B) (1)

If A and B are independent events, the conditional probability ofA given B will be
equal to the marginal probability ofA and the measurement will be zero. If the conditional
probability is larger, it means than the two events tend to appear together more often than
they would by chance, and the measurement yields a positive number. Inversely, if the con-
ditional occurrence is scarcer than chance, the measurement is negative. Although Mutual
information is a simple and useful way to assigncompatibilityvalues to our constraints, a
promising possibility still to be explored is assigning them by Maximum Entropy Estimation
(Rosenfeld, 1994; Ratnaparkhi, 1997; Ristad, 1997).

The pseudo-code for the relaxation algorithm can be found in Table 7. It consists of the
following steps:

78 L. MÀRQUEZ, L. PADRÓ AND H. RODŔIGUEZ

Table 7. Pseudo code of the relaxation labeling algorithm.

1. P := P0

2. repeat

3. for each variablevi

4. for eacht j possible label forvi

5. Si j :=
∑

r∈Ri j
I n f (r)

6. end for

7. for eacht j possible label forvi

8. pi
j (m+ 1) :=

pi
j (m)× (1+ Si j)∑ki

k=1 pi
k(m)× (1+ Sik)

9. end for

10. end for

11. until no more changes

1. Start in a random labelingP0. In our case, we select a better-informed starting point,
which are the lexical probabilities for each word tag.

2. For each variable, compute the support that each label receives from the current weights
from other variable labels (i.e. see how compatible is the current weight assignment with
the current weight assignments of the other variables, given the set of constraints).

3. Update the weight of each variable label according to the support obtained by each of
them (that is, increase weight for labels with high support—greater than zero—, and
decrease weight for those with low support—less than zero—). The chosen updating
function in our case was:

pi
j (m+ 1) = pi

j (m)× (1+ Si j)∑ki
k=1 pi

k(m)× (1+ Sik)

4. Iterate the process until a convergence criterion is met. The usual criterion is to wait for
no more changes from one iteration to the next.

The support computing and weight changing must be performed in parallel, to avoid that
changing a weight for a label would affect the support computation of the others.

We could summarize this algorithm by saying that at each time-step, a variable changes
its label weights depending on how compatible is that label with the labels of the other
variables at that time-step. If the constraints are consistent, this process converges to a state
where each variable has weight 1 for one of its labels and weight 0 for all the others.

The performedglobal consistency maximization is a vector optimization. It does not
maximize—as one might think—the sum of the supports of all variables, but it finds a
weighted labeling such that any other choice would not increase the support foranyvariable,
given—of course—that such a labeling exists. If such a labeling does not exist, the algorithm
will end in a local maximum.

Note that thisglobal consistencyidea makes the algorithm robust: The problem of hav-
ing mutually incompatible constraints (there is no combination of label assignment which

A MACHINE LEARNING APPROACH TO POS TAGGING 79

satisfies all the constraints) is solved because relaxation does not necessarily find an exclu-
sive combination of labels—i.e. a unique label for each variable—, but a weight for each
possible label such that constraints are satisfied to the maximum possible degree. This is
especially useful in our case, since constraints will be automatically acquired, and different
knowledge sources will be combined, so constraints might not be fully consistent.

The advantages of the algorithm are:

• Its highly local character (each variable can compute its new label weights given only
the state at previous time-step). This makes the algorithm highly parallelizable (we could
have a processor to compute the new label weights for each variable, or even a processor
to compute the weight for each label of each variable).
• Its expressiveness, since we state the problem in terms of constraints between variable

labels. In our case, this enables us to use binary (bi-gram) or ternary (tri-gram) con-
straints, as well as more sophisticated constraints (decision tree branches or hand-written
constraints).
• Its flexibility, we do not have to check absolute consistency of constraints.
• Its robustness, since it can give an answer to problems without an exact solution (incom-

patible constraints, insufficient data,. . .)
• Its ability to find local-optima solutions toNP problems in a non-exponential time (only

if we have an upper bound for the number of iterations, i.e. convergence is fast or the
algorithm is stopped after a fixed number of iterations).

The drawbacks of the algorithm are:

• Its cost.N being the number of variables,v the average number of possible labels per
variable,c the average number of constraints per label, andI the average number of
iterations until convergence, the average cost isN×v×c× I , that is, it depends linearly
on N, but for a problem with many labels and constraints, or if convergence is not quickly
achieved, the multiplying terms might be much bigger thanN. In our application toPOS

tagging, the bottleneck is the number of constraints, which may be several thousand.
The average number of tags per ambiguous word is about 2.5, and an average sentence
contains about 10 ambiguous words.
• Since it acts as an approximation of gradient descent algorithms, it has their typical

convergence problems: Found optima are local, and convergence is not guaranteed, since
the chosen step might be too large for the function to optimize.
• In general relaxation labeling applications, constraints would be written manually, since

they are the modeling of the problem. This is good for easy-to-model domains or reduced
constraint-set problems, but in the case ofPOStagging, constraints are too many and too
complicated to be easily written by hand.
• The difficulty of stating by hand what thecompatibility valueis for each constraint. If

we deal with combinatorial problems with an exact solution (e.g. traveling salesman),
the constraints will be either fully compatible (e.g. stating that it is possible to go to any
city from any other), fully incompatible (e.g. stating that it is not possible to be twice in
the same city), or will have a value straightforwardly derived from the distance between
cities. But if we try to model more sophisticated or less exact problems (such asPOS

80 L. MÀRQUEZ, L. PADRÓ AND H. RODŔIGUEZ

tagging), we will have to establish a way of assigning graded compatibility values to
constraints.
• The difficulty of choosing the most suitable support and updating functions for each

particular problem.

4.2. Using machine-learned constraints

In order to feed the RELAX tagger with the language model acquired by the decision-
tree learning algorithm, the group of trees for the 44 most representative ambiguity classes
(covering 83.95% of the examples) were translated into a set of weighted context constraints.
RELAX was fed not only these constraints, but also with bi/tri-gram information.

The Constraint Grammars formalism (Karlsson et al., 1995) was used to code the tree
branches. CG is a widespread formalism used to write context constraints. Since it is able to
represent any regular context pattern, we will use it to represent all our constraints,n-gram
patterns, hand-written constraints, or decision-tree branches.

Since the CG formalism is intended for linguistic uses, the statistical contribution has no
place in it: Constraints can state only full compatibility (constraints thatSELECTa particular
reading) or full incompatibility (constraints thatREMOVE a particular reading). Thus, we
slightly extended the formalism to enable the use of real-valued compatibilities, in such
a way that constraints are not assigned aREMOVE/SELECT command, but a real number
indicating the constraint compatibility value, which—as described in Section 4.1—was
computed as the mutual information between the focus tag and the context.

The translation of bi/tri-grams to context constraints is straightforward. A left prediction
bi-gram and its right prediction counterpart would be:

4.21 (NN) 3.82 (DT)
(-1 DT); (1 NN);

The training corpus contains 1404 different bi-grams. Since they are used both for left and
right prediction, they are converted in 2808 binary constraints.

A tri-gram may be used in three possible ways (i.e. theABC tri–gram pattern generates
the constraints:C, given it is preceded byAB; A, given it is followed byBC; andB, given it
is preceded byA and followed byC):

2.16 (VB) 1.54 (NN) 1.82 (DT)
(-2 DT) (-1 DT) (1 NN)
(-1 NN); (1 VB); (2 VB);

The 17387 tri-gram patterns in the training corpus produce 52161 ternary constraints.
The usual way of expressing trees as a set of rules was used to construct the context

constraints. For instance, the tree branch represented in figure 3 was translated into the two
following constraints:

A MACHINE LEARNING APPROACH TO POS TAGGING 81

−5.81(IN) 2.366 (RB)
(0 "as" "As") (0 "as" "As")
(1 RB) (1 RB)
(2 IN); (2 IN);

which express the compatibility (either positive or negative) of the tag in the first line with
the given context (i.e. the focus word is"as" , the first word to the right has tagRBand the
second has tagIN). The decision trees acquired for the 44 most frequent ambiguity classes
result in a set of 8473 constraints.

The main advantage of RELAX is its ability to deal with constraints of any kind. This
enables us to combine statisticaln-grams (written in the form of constraints) with the learned
decision tree models, and even with linguistically motivated hand-written constraints, such
as the following,

10.0 (VBN)
(*-1 VAUX BARRIER (VBN) OR (IN) OR (<,>) OR

(<:>) OR (JJ) OR (JJS) OR (JJR));

which states a high compatibility value for aVBN (participle) tag when preceded by an
auxiliary verb, provided that there is no other participle, adjective nor any phrase change in
between.

The obtained results for the different knowledge combination are shown in Table 8. The
results produced by two baseline taggers—MFT: most-frequent-tag tagger,HMM: bi-gram
Hidden Markov Model tagger by Elworthy (1993)—are also reported.B stands for bi-grams,
T for tri-grams, andC for the constraints acquired by the decision tree learning algorithm.
Results using a sample of 20 linguistically-motivated constraints (H) can be found in Table 9.
These constraints deal with the participle-past tense ambiguity (1 constraint), with the noun-
adjective ambiguity (2 constraints) and with special constructions using particles such as
“about” (4 constraints), “as” (7), “up” (3), “out” (2) and “more” (1).

Table 8. Results of baseline tagger and of the RELAX tagger using every combination of constraint kinds.

MFT HMM B T BT C BC TC BTC

Ambig. 85.31% 91.75% 91.35% 91.82% 91.92% 91.96% 92.72% 92.82% 92.55%

Overall 94.66% 97.00% 96.86% 97.03% 97.06% 97.08% 97.36% 97.39% 97.29%

Table 9. Results of our tagger using every combination of constraint kinds plus hand written constraints.

H BH TH BTH CH BCH TCH BTCH

Ambiguous 86.41% 91.88% 92.04% 92.32% 91.97% 92.76% 92.98% 92.71%

Overall 95.06% 97.05% 97.11% 97.21% 97.08% 97.37% 97.45% 97.35%

82 L. MÀRQUEZ, L. PADRÓ AND H. RODŔIGUEZ

Figure 10. 95% confidence intervals for the RELAX tagger results.

Since the cost of the algorithm depends linearly on the number of constraints, the use of
the tri-gram constraints (either alone or combined with the others) makes the disambigua-
tion about six times slower than when usingBC, and about 20 times slower than when using
only B.

Those results show that the addition of the automatically acquired context constraints led
to an improvement in the accuracy of the tagger, overcoming the bi/tri-gram models and
properly cooperating with them. M`arquez and Padr´o (1997) provide more details on the
experiments and comparisons with other current taggers.

Figure 10 shows the 95% confidence intervals for the results in Table 8. The main
conclusions that can be drawn from those data are described below.

• RELAX is slightly worse than theHMM tagger when using the same information (bi-grams).
This may be due to a higher sensitivity to noise in the training corpus.
• There are two significantly distinct groups: Those using only statistical information, and

those using statistical information plus the decision trees model. Then-gram models and
the learned model belong to the first group, and any combination of a statistical model
with the acquired constraint belongs to the second group.
• Although the hand-written constraints improve the accuracy of any model, the size of the

linguistic constraint set is too small to make this improvement statistically significant.
• The combination of the two kinds of model produces significantly better results than any

separate use. This indicates that each model contains information which was not included
in the other, and that relaxation labeling combines them properly.

5. Using small training sets

In this section we will discuss the results obtained when using the two taggers described
above to apply the language models learned from small training corpus.

A MACHINE LEARNING APPROACH TO POS TAGGING 83

The motivation for this analysis is the need for determining the behavior of our taggers
when used with language models coming from scarce training data, in order to best exploit
them for the development of Spanish and Catalan tagged corpora starting from scratch.

5.1. Testing performance on WSJ

In particular we used 50,000 words of theWSJ corpus to automatically derive a set of
decision trees and collect bi-gram statistics. Tri-gram statistics were not considered since
the size of the training corpus was not large enough to reasonably estimate the big num-
ber of parameters for the model. Note that a 45-tag tag set produces a tri-gram model
of over 90,000 parameters, which obviously cannot be estimated from a set of 50,000
occurrences.

Using this training set the learning algorithm was able to reliably acquire over 80 trees
representing the most frequent ambiguity classes (note that the training data was insufficient
for learning sensible trees for about 150 ambiguity classes). Following the formalism de-
scribed in the previous section, we translated these trees into a set of about 4,000 constraints
to feed the relaxation labeling algorithm.

The results in Table 10 are computed as the average of ten experiments using randomly
chosen training sets of 50,000 words each.B stands for the bi-gram model andC for the
learned decision tree (either in the form of trees or translated to constraints). The corre-
sponding confidence intervals can be found in figure 11.

The presented figures point out the following conclusions:

Table 10. Comparative results using different models acquired from small training corpus.

MFT TREETAGGER RELAX(C) RELAX(B) RELAX(BC)

Ambiguous 75.35% 87.29% 86.29% 87.50% 88.56%

Overall 91.64% 95.69% 95.35% 95.76% 96.12%

Figure 11. 95% confidence intervals for both tagger results.

84 L. MÀRQUEZ, L. PADRÓ AND H. RODŔIGUEZ

• We think this result is quite accurate. In order to corroborate this statement we can
compare our accuracy of 96.12% with the 96.0% reported by Daelemans et al. (1996) for
the IGTREETagger trained with a double size corpus (100 Kw).
• TREETAGGERyields a higher performance than the RELAX tagger when both use only the

C model. This is caused by the fact that, due to the scarceness of the data, a significant
amount of test cases do not match any complete tree branch, and thus TREETAGGERuses
some intermediate node probabilities. Since only complete branches are translated to
constrains—partial branches were not used to avoid excessive growth in the number of
constraints—, the RELAX tagger does not use intermediate node information and produces
lower results. A more exhaustive translation of tree information into constraints is an issue
that should be studied in the short run.
• The RELAX tagger using theB model produces better results than any of the taggers when

using theC model alone. The cause of this is related with the aforementioned problem
of estimating a big number of parameters with a small sample. Since the model consists
of six features, the number of parameters to be learned is still larger than in the case of
tri-grams, thus the estimation is not as complete as it could be.
• The RELAX tagger using theBC model produces better results (statistically significant

at a 95% confidence level) than any other combination. This suggests that, although the
tree model is not complete enough on its own, it contains different information than the
bi-gram model. Moreover this information is proved to be very useful when combined
with theB model by RELAX.

5.2. Tagging theLEXESPSpanish corpus

The LEXESPProject is a multi-disciplinary effort headed by the Psychology Department at
the University of Barcelona. It aims to create a large database of language usage in order
to enable and encourage research activities in a wide range of fields, from linguistics to
medicine, through psychology and artificial intelligence, among others. One of the main
issues of this database of linguistic resources is the LEXESPcorpus, which contains 5.5 Mw
of written material, including general news, sports news, literature, scientific articles, etc.

The corpus has been morphologically analyzed with theMACO+ system, a fast, broad-
coverage analyzer (Carmona et al., 1998). The tag set contains 62 tags. The percentage
of ambiguous words is 39.26% and the average ambiguity ratio is 2.63 tags/word for the
ambiguous words (1.64 overall).

From this material, 95 Kw were hand-disambiguated to get an initial training set of 70 Kw
and a test set of 25 Kw. It has to be noted that the size of the training set is much lower than
the usual one million word training corpus derived from theWSJ. This is a common problem
when dealing with languages with a reduced amount of available linguistic resources, since
the manual tagging of a big enough training corpus is very expensive, both in time and
human labor.

Some methods have been developed to avoid the need of fully supervised training. In
POStagging we find the Baum–Welch re-estimation algorithm which has been successfully
used to improve tagger accuracies when limited disambiguated material is available (Cutting
et al., 1992; Elworthy, 1994; Merialdo, 1994). Brill (1995) presented a weak-supervised

A MACHINE LEARNING APPROACH TO POS TAGGING 85

version of the transformation-based learning algorithm for tagging. Recently, similar tech-
niques that use unsupervised data to aid supervised training have been applied in the domain
of text categorization (Blum & Mitchell, 1998; Nigam et al., 1998).

In our case, we applied a bootstrapping method taking advantage of the use of both taggers
(TREETAGGERand RELAX) in order to automatically disambiguate the LEXESPcorpus. The
procedure applied starts by using the small hand-tagged portion of the corpus as an initial
training set. After training both taggers, they are used to disambiguate further fresh material.
The cases in which both taggers assign the same tag are used to enlarge the language model,
incorporating it to the training set and retraining both taggers. This procedure could be
iterated to obtain progressively better language models.

The point here is that the cases in which both taggers coincide present a higher accuracy,
and thus can be used as new retraining set with a lower error rate than that obtained using
a single tagger. For instance, using a single tagger trained with the hand-disambiguated
training set, we can tag 200,000 fresh words and use them to retrain the tagger. In our case,
the best tagger would tag this new set with 97.4% accuracy. Merging this result with the
previous hand-disambiguated set, we would obtain a 270 Kw corpus with an error rate of
1.9%. On the other hand, given that both taggers agree in 97.5% of the cases in the same
200 Kw set, and that 98.4% of those cases are correctly tagged, we get a new corpus of
195 Kw with an error rate of 1.6%. If we add the manually tagged 70 Kw we get a 265 Kw
corpus with an 1.2% error rate, which is significantly lower than 1.9%.

The main results obtained with this approach are summarized below: Starting with the
manually tagged training corpus, the best tagger combination achieved an accuracy of
93.1% on ambiguous words and 97.4% overall. After one bootstrapping iteration, using
the coincidence cases in a fresh set of 800 Kw, the accuracy was increased up to 94.2%
for ambiguous words and 97.8% overall. It is important to note that this improvement is
statistically significant and that it has been achieved in a completely automatic re-estimation
process. In our domain, further iterations did not result in new significant improvements.

For a more detailed description we refer the reader to the work by M`arquez & Rodriguez
(1998), where experiments using different sizes for the retraining corpus are reported, as
well as different combination techniques, such as weighted interpolation and/or previous
hand checking of the tagger disagreement cases.

From the aforementioned results we emphasize the following conclusions:

• A 70 Kw manually-disambiguated training set provides enough evidence to allow our
taggers to get fairly good results. In absolute terms, results obtained with the LEXESP

Spanish corpus are better than those obtained forWSJEnglish corpus. One of the reasons
contributing to this fact may be the less noisy training corpus. However it should be
investigated if the part of speech ambiguity cases for Spanish are simpler on average.
• The combination of two (or more) taggers seems to be useful to:

– Obtain larger training corpora with a reduced error rate, which enable the learning
procedures to build more accurate taggers.

– Building a tagger which proposes a single tag when both taggers coincide and two
tags when they disagree. Depending on user needs, it might be worthwhile to accept
a higher remaining ambiguity in favor of a higher recall. With the models acquired

86 L. MÀRQUEZ, L. PADRÓ AND H. RODŔIGUEZ

from the best training corpus, we get a tagger with a recall of 98.3% and a remaining
ambiguity of 1.009 tags/word, that is, 99.1% of the words are fully disambiguated and
the remaining 0.9% keep only two tags.

6. Discussion

The comparison ofPOStaggers is a delicate issue since many factors can affect the final
accuracy figures: different sizes for training and test sets, evaluation over different corpora—
and thus, different tag distributions—, different tag sets, etc. Even when comparing systems
under similar conditions, results might be non-conclusive if noisy material is used for the
test (see Padr´o & Màrquez, 1998, for details).

Nevertheless, an orienting comparison between our system and other current taggers—
using the same corpus (WSJ) and training and test sets with similar sizes—can be sketched.
To do so, we selected a representative sample of the most accurate statistical and machine-
learning taggers that can be found in the literature: Daelemans et al. (1996) report an accuracy
of 96.4% (which, taking into account that 5.5% of the test set are unknown words, with
an accuracy rate of 90.6%, yields a figure of about 96.7% over known words). Similarly,
Brill (1994) obtains a 97.2% over known words, Weischedel et al. (1993) get 96.7% and
Ratnaparkhi (1996) reports 96.7%.

Although our figures are higher than the ones reported by the previous systems—we
obtained 97.36% on known words overWSJwith similar training sizes—, we believe that
quantitative comparison is not conclusive in this case, since conditions are not similar
enough to enable us to state that the reported difference in accuracy is significant.

Nevertheless, we do believe that a qualitative comparison can be performed, and that our
system presents the following advantages:

• Flexibility: It enables a rich feature representation, which can easily incorporate different
sources of available information (morhpological, syntax, semantics, etc.). It also provides
a numerical weight or probability estimation for each tag.
• Decision Trees Acquisition: A possible way of acquiring statistical knowledge is the pre-

sented algorithm forDT acquisition, which has been proved (M`arquez & Rodr´ıguez, 1998)
to be more accurate and compact than other representations—such that of Daelemans
et al. (1996)—for thePOStagging task.
• Linguistic Knowledge: Our system is able to deal with linguistic knowledge when ex-

pressed in the form of regular context constraints. Thus, it is able to take advantage of
the robustness of statistical systems and the coverage of infrequent cases that linguistic
rules can provide.
• Simultaneous disambiguation: It also enables the simultaneous disambiguation of differ-

ent features (i.e.POStags, senses, etc.) as described by Padr´o (1998).

The main drawback of our hybrid system is the computational cost of applying the context
rules. This causes a speedvs.accuracy trade-off which may make the system unsuitable for
cases in which high tagging speed and high accuracy are required.

Note that the above comparisons only mention taggers based on automatic model acquisi-
tion. We have intentionally avoided the comparison with linguistic taggers because we think

A MACHINE LEARNING APPROACH TO POS TAGGING 87

that both approaches such be considered in a complementary—rather than exclusive—way.
It is a fact that years of work on machine learning for tagging have resulted in taggers
that significantly underperform the linguistic taggers based on hand-written rules in the
style of Constraint Grammars (Karlsson et al., 1995). We think that automatic taggers will
never be able to fully compete with manual linguistic taggers. This may be explained by
the coverage of infrequent cases and exceptions which—due to their low frequency—are
much difficult to acquire in a statistical approach. However, it is also accepted that linguis-
tic taggers have a much higher acquisition cost and that they are less portable. The hybrid
approach takes advantage of both models, achieving a more adequate balance of acquisition
cost and accuracy.

7. Summary and further work

In this work we have presented and evaluated a machine-learning based algorithm for
obtaining statistical language models oriented toPOStagging.

We have directly applied the acquired models in a simple and fast tree-based tagger
obtaining fairly good results. We also have combined the models withn-gram statistics in a
flexible relaxation-labeling based tagger. Reported figures show that both models properly
collaborate in order to improve the results.

Comparison between the results obtained using large training corpora (see Section 4.2)
with those obtained with fairly small training sets (see Section 5) points out that the best
policy in both cases is the combination of the learned tree-based model with the bestn-gram
model.

Deeper application of the techniques, together with the collaboration of both taggers in
a voting approach was used to develop from scratch a 5.5 Mw annotated Spanish corpus
(LEXESP) with an estimated accuracy of 97.8%. This result confirms the portability of the
the proposed method and shows that a very high accuracy is possible for Spanish tagging
with a relatively low manual effort. More details about this issue are described by M`arquez
et al. (1998).

However, further work is still to be done in several directions. Referring to the language
model learning algorithm, we are interested in testing more informed attribute selection
functions, considering more complex questions in the nodes and finding a good smoothing
procedure for dealing with very small ambiguity classes. (See M`arquez & Rodr´ıguez, 1997,
for a first approach).

In reference to the information that this algorithm uses, we would like to explore the
inclusion of more morphological and semantic information, as well as more complex context
features, such as non-limited distance or barrier rules in the style of Samuelsson, Tapanainen,
and Voutilainen (1996).

We are also specially interested in extending the experiments involving combinations
of more than two taggers in a double direction: first, to obtain less noisy corpora for the
retraining steps in bootstrapping processes; and second, to construct ensembles of classifiers
to increase global tagging accuracy (Halteren, Zavrel, & Daelemans, 1998; Brill & Wu,
1998). We plan to apply these techniques to develop taggers and annotated corpora for the
Catalan language in the near future.

88 L. MÀRQUEZ, L. PADRÓ AND H. RODŔIGUEZ

More detailed research should be done in order to establish quantitative conclusions to
compare tagger performances. The cross evaluation of the main state-of-the-arst taggers in
a range of operating conditions is a work we plan to start in the short run. It is also necessary
to establish a standard benchmark for the evaluation ofPOStaggers, to reliably evaluate the
results of future research in this field.

The development of hybrid models such as the one presented here is a promising trend
of research we think should be further explored. Statistical approaches are fast and accu-
rate techniques to construct language models that explain language phenomena frequently
appearing. Linguistic approaches are suitable to model low frequency cases, and could be
used to enrich the automatically acquired models. A system able to incorporate both kinds
of knowledge sources will provide an accurate tagger at a low human labor cost.

We conclude by saying that we have carried out first attempts (Padr´o, 1998) in using
the same techniques to tackle another classification problem in theNLP area, namely Word
Sense Disambiguation (WSD). We believe, as other authors do, that we can take advantage
of treating both problems jointly.

Acknowledgments

This research has been partially funded by the Spanish Research Department (CICYT’s
ITEM project TIC96-1243-C03-02), by the EU Commission (EuroWordNet LE4003) and by
the Catalan Research Department (CIRIT’s consolidated research group 1997SGR 00051).

Appendix A

We list below a description of the Penn Treebank tag set, used for tagging theWSJcorpus. For
a complete description of the corpus see the work by Marcus, Marcinkiewicz, & Santorini
(1993).

CC Coordinating conjunction PRP Personal pronoun WDT wh-determiner

CD Cardinal number PP$ Possessive pronoun WP wh-pronoun

DT Determiner RB Adverb WP$ Possessivewh-pronoun

EX Existentialthere RBR Adverb, comparative WRB wh-adverb

FW Foreign word RBS Adverb, superlative # Pound sign

IN Preposition RP Particle $ Dollar sign

JJ Adjective SYM Symbol . End of sentence

JJR Adjective, comparative TO to , Comma

JJS Adjective, superlative UH Interjection : Colon, semi-colon

LS List item marker VB Verb, base form (Left bracket character

MD Modal VBD Verb, past tense) Right bracket character

NN Noun, singular VBG Verb, gerund " Straight double quote

NNP Proper noun, singular VBN Verb, past participle ‘ Left open single quote

NNS Noun, plural VBP Verb, non-3rd ps. ‘‘ Left open double quote

NNPS Proper noun, plural sing. present ’ Right close single quote

PDT Predeterminer VBZ Verb, 3rd ps. ’’ Right close double quote

POS Possessive ending sing. present

A MACHINE LEARNING APPROACH TO POS TAGGING 89

References

Aarts, E.H. & Korst, J.H. (1987). Boltzmann machines and their applications. In J.W. de Bakker, A.J. Nijman &
P.C. Treleaven (Eds.).Proceedings PARLE (Parallel Architectures and Languages Europe). Lecture Notes in
Computer Science, Vol. 258.

Bahl, L.R., Brown, P.F., DeSouza, P.V., & Mercer, R.L. (1989). A tree-based statistical language model for natural
language speech recognition.IEEE Transactions on Acoustics, Speech and Signal Processing,37(7), 1001–1008.

Baum, L.E. (1972). An inequality and associated maximization technique in statistical estimation for probabilistic
functions of a Markov process.Inequalities, 3, 1–8.

Blum, A. & Mitchell, T. (1998). Combining labeled and unlabeled data with co-training.Proceedings of the 11th
Annual Conference on Computational Learning Theory, COLT-98(pp. 92–100). Madison, Wisconsin.

Breiman, L., Friedman, J.H., Olshen, R.A., & Stone, C.J. (1984).Classification and regression trees. The
Wadsworth Statistics/Probability Series. Belmont, CA: Wadsworth International Group.

Brill, E. (1992). A simple rule-based part-of-speech tagger.Proceedings of the 3rd Conference on Applied Natural
Language Processing, ANLP(pp. 152–155). ACL.

Brill, E. (1994). Some advances in rule-based part-of-speech tagging.Proceedings of the 12th National Conference
on Artificial Intelligence, AAAI(pp. 722–727).

Brill, E. (1995). Unsupervised learning of disambiguation rules for part-of-speech tagging.Proceedings of the 3rd
Workshop on Very Large Corpora(pp. 1–13). Massachusetts.

Brill, E. & Wu, J. (1998). Classifier combination for improved lexical disambiguation.Proceedings of the Joint
17th International Conference on Computational Linguistics and 36th Annual Meeting of the Association for
Computational Linguistics, COLING-ACL(pp. 191–195). Montr´eal, Canada.

Cardie, C. (1994).Domain specific knowledge acquisition for conceptual sentence analysis. Ph.d. Thesis, Univer-
sity of Massachusets. Available as CMPSCI Technical Report 94–74, University of Massachusetts.

Carmona, J., Cervell, S., M`arquez, L., Mart´ı, M., Padró, L., Placer, R., Rodr´ıguez, H., Taul´e, M., & Turmo, J.
(1998). An environment for morphosyntactic processing of unrestricted spanish text.Proceedings of the 1st
International Conference on Language Resources and Evaluation, LREC(pp. 915–922). Spain: Granada.

Chanod, J.-P. & Tapanainen, P. (1995). Tagging french—Comparing a statistical and a constraint-based method.
Proceedings of the 7th Conference of the European Chapter of the Association for Computational Linguistics,
EACL(pp. 149–156). Dublin, Ireland.

Church, K.W. (1988). A stochastic parts program and noun phrase parser for unrestricted text.Proceedings of the
1st Conference on Applied Natural Language Processing, ANLP(pp. 136–143). ACL.

Cover, T.M. & Thomas, J.A. (Eds.). (1991).Elements of information theory. John Wiley & Sons.
Cutting, D., Kupiec, J., Pedersen, J., & Sibun, P. (1992). A practical part-of-speech tagger.Proceedings of the 3rd

Conference on Applied Natural Language Processing, ANLP(pp. 133–140). ACL.
Daelemans, W., Zavrel, J., Berck, P., & Gillis, S. (1996). MBT: A memory-based part-of-speech tagger generator.

Proceedings of the 4th Workshop on Very Large Corpora(pp. 14–27). Copenhagen, Denmark.
DeRose, S.J. (1988). Grammatical category disambiguation by statistical optimization.Computational Linguistics,

14, 31–39.
Elworthy, D. (1993). Part-of-speech and phrasal tagging. Working Paper #10, ESPRIT BRA-7315 Acquilex II.
Elworthy, D. (1994). Does Baum-Welch re-estimation help taggers?Proceedings of the 4th Conference on Applied

Natural Language Processing, ANLP(pp. 53–58). ACL.
Garside, R., Leech, G., & Sampson, G. (Eds.) (1987).The computational analysis of English: A corpus-based

approach. London: Longman.
Greene, B.B. & Rubin, G.M. (1971). Automatic grammatical tagging of English. Technical Report, Department

of Linguistics, Brown University.
Halteren, H.v., Zavrel, J., & Daelemans, W. (1998). Improving data driven wordclass tagging by system combi-

nation.Proceedings of the Joint 17th International Conference on Computational Linguistics and 36th Annual
Meeting of the Association for Computational Linguistics, COLING-ACL(pp. 491–497). Montr´eal, Canada.

Karlsson, F., Voutilainen, A., Heikkil¨a, J., & Anttila, A. (Eds.). (1995).Constraint grammar: A language-
independent system for parsing unrestricted text. Berlin: Mouton de Gruyter.

Kononenko, I.,̌Simec, E., & Robnik-̌Sikonja, M. (1995). Overcoming the myopia of inductive learning algorithms
with RELIEFF.Applied Intelligence, 10, 39–55.

90 L. MÀRQUEZ, L. PADRÓ AND H. RODŔIGUEZ

Krenn, B. & Samuelsson, C. (1997).The linguists’ guide to statistics: Don’t panic. Technical Report Universit¨at
des Saarlandes. Postscript version of December 19, 1997 at URL: http://coli.uni-sb.de/∼ christer.

Krovetz, R. (1997). Homonymy and polysemy in information retrieval.Proceedings of the 35th Annual Meeting
of the Association for Computational Linguistics. Joint ACL/EACL(pp. 72–79). Madrid, Spain.

Larrosa, J. & Meseguer, P. (1995a). An optimization-based heuristic for maximal constraint satisfaction.Proceed-
ings of International Conference on Principles and Practice of Constraint Programming(pp. 103–120).

Larrosa, J. & Meseguer, P. (1995b). Constraint satisfaction as global optimization.Proceedings of 14th Interna-
tional Joint Conference on Artificial Intelligence, IJCAI ’95(pp. 579–584).

Lloyd, S.A. (1983). An optimization approach to relaxation labelling algorithms.Image and Vision Computing,
1(2), 85–91.

López de Mántaras, R. (1991). A distance-based attribute selection measure for decision tree induction.Machine
Learning, 6(1), 81–92.

López de Mántaras, R., Cerquides, J., & Garcia, P. (1996). Comparing information-theoretic attribute selection
measures: A statistical approach research report 96-16, IIIA. To appear in Artificial Intelligence Communica-
tions.

Magerman, D.M. (1996). Learning grammatical structure using statistical decision-trees.Proceedings of the 3rd
International Colloquium on Grammatical Inference, ICGI(pp. 1–21). Springer-Verlag Lecture Notes Series
in Artificial Intelligence 1147.

Marcus, M.P., Marcinkiewicz, M.A., & Santorini, B. (1993). Building a large annotated corpus of english: The
penn treebank.Computational Linguistics, 19(2), pp. 313–330.

Màrquez, L. (1999).Part-of-speech tagging: A machine-learning approach based on decision trees. Ph.d. Thesis,
Dep. Llenguatges i Sistemes Inform`atics. Universitat Polit`ecnica de Catalunya.

Màrquez, L. & Padr´o, L. (1997). A flexible POS tagger using an automatically acquired language model.Pro-
ceedings of the 35th Annual Meeting of the Association for Computational Linguistics. Joint ACL/EACL(pp.
238–245). Madrid, Spain.

Màrquez, L., Padr´o, L., & Rodrı́guez, H. (1998). Improving tagging accuracy by voting taggers.Proceedings of the
2nd Conference on Natural Language Processing & Industrial Applications, NLP+IA/TAL+AI(pp. 149–155).
New Brunswick, Canada.

Màrquez, L. & Rodr´ıguez, H. (1995). Towards learning a constraint grammar from annotated corpora using
decision trees. Working Paper #21, ESPRIT BRA–7315 Acquilex II.

Màrquez, L. & Rodr´ıguez, H. (1997). Automatically acquiring a language model for POS tagging using decision
trees.Proceedings of the Second Conference on Recent Advances in Natural Language Processing, RANLP(pp.
27–34). Tzigov Chark, Bulgaria.

Màrquez, L. & Rodr´ıguez, H. (1998). Part-of-speech tagging using decision trees.Proceedings of the 10th Euro-
pean Conference on Machine Learning, ECML(pp. 25–36). Chemnitz, Germany. (Lecture Notes in Artificial
Intelligence, Vol. 1398. Claire N´edellec and C´eline Rouveirol Eds., Springer).

McCarthy, J.F. & Lehnert, W.G. (1995). Using decision trees for coreference resolution.Proceedings of the 14th
International Joint Conference on Artificial Intelligence, IJCAI(pp. 1050–1055).

Merialdo, B. (1994). Tagging english text with a probabilistic model.Computational Linguistics, 20(2), 155–171.
Mooney, R.J. (1996). Comparative experiments on disambiguating word senses: An illustration of the role of bias

in machine learning.Proceedings of the 1st Conference on Empirical Methods in Natural Language Processing,
EMNLP(pp. 82–91).

Nigam, K., McCallum, A., Thrun, S., & Mitchell, T. (1998). Learning to classify text from labeled and unla-
beled documents.Proceedings of the 15th National Conference on Artificial Intelligence, AAAI-98Madison,
Wisconsin.

Oostdijk, N. (1991).Corpus linguistic and the automatic analysis of English. Amsterdam: Rodopi.
Padró, L. (1996). POS tagging using relaxation labelling.Proceedings of the 16th International Conference on

Computational Linguistics, COLING(pp. 877–882). Copenhagen, Denmark.
Padró, L. (1998). A hybrid environment for syntax-semantic tagging. Ph.d. Thesis, Dep. Llenguatges i Sistemes

Informàtics. Universitat Polit`ecnica de Catalunya.
Padró, L. & Màrquez, L. (1998). On the evaluation and comparison of taggers: The effect of noise in testing

corpora.Proceedings of the Joint 17th International Conference on Computational Linguistics and 36th Annual
Meeting of the Association for Computational Linguistics, COLING-ACL(pp. 997–1002). Montr´eal, Canada.

A MACHINE LEARNING APPROACH TO POS TAGGING 91

Pelillo, M. & Maffione, A. (1994). Using simulated annealing to train relaxation labelling processes.Proceedings
of ICANN ’94(pp. 250–253).

Pelillo, M. & Refice, M. (1994). Learning compatibility coefficients for relaxation labeling processes.IEEE
Transactions on Pattern Analysis and Machine Intelligence, 16(9), 933–945.

Quinlan, J.R. (1993).C4.5: Programs for machine learning. San Mateo, CA: Morgan Kaufmann Publishers Inc.
Quinlan, J.R. (1986). Induction of decision trees.Machine Learning, 1, 81–106.
Ratnaparkhi, A. (1996). A maximum entropy part-of-speech tagger.Proceedings of the 1st Conference on Empirical

Methods in Natural Language Processing, EMNLP.
Ratnaparkhi, A. (1997).A simple introduction to maximum entropy models for natural language processing.

Technical Report 97-08, Institute for Research in Cognitive Science, University of Pennsylvania.
Richards, J., Landgrebe, D., & Swain, P. (1981). On the accuracy of pixel relaxation labelling.IEEE Transactions

on Systems, Man and Cybernetics, 11(4), 303–309.
Ristad, E. & Thomas, R.G. (1996). Nonuniform Markov models.Proceedings of the International Conference on

Acoustics, Speech and Signal Processing, Munich, Germany.
Ristad, E.S. (1997). Maximum entropy modeling for natural language.Joint ACL/EACL Tutorial Program, Madrid,

Spain.
Rosenfeld, R. (1994).Adaptive statistical language modelling: A maximum entropy approach. Ph.d. Thesis, School

of Computer Science, Carnegie Mellon University.
Rosenfeld, R., Hummel, R., & Zucker, S. (1976). Scene labelling by relaxation operations.IEEE Transactions on

Systems, Man and Cybernetics, 6(6), 420–433.
Samuelsson, C., Tapanainen, P., & Voutilainen, A. (1996). Inducing constraint grammars.Proceedings of the 3rd

International Colloquium on Grammatical Inference, ICGI(pp. 146–155). Montpellier, France.
Samuelsson, C. & Voutilainen, A. (1997). Comparing a linguistic and a stochastic tagger.Proceedings of the 35th

Annual Meeting of the Association for Computational Linguistics(pp. 246–253). Madrid, Spain.
Saul, L. & Pereira, F. (1997). Aggregate and mixed-order Markov models for statistical language processing.

Proceedings of the 2nd Conference on Empirical Methods in Natural Language Processing, EMNLP.
Schmid, H. (1994a). Part-of-speech tagging with neural networks.Proceedings of the 15th International Confer-

ence on Computational Linguistics, COLING(pp. 172–176). Kyoto, Japan.
Schmid, H. (1994b). Probabilistic part-of-speech tagging using decision trees.Proceedings of the Conference on

New Methods in Language Processing(pp. 44–49). Manchester, UK.
Southwell, R. (1940).Relaxation methods in engineering science. Clarendon.
Torras, C. (1989). Relaxation and neural learning: Points of convergence and divergence.Journal of Parallel and

Distributed Computing, 6, 217–244.
Voutilainen, A. (1994).Three studies of grammar-based surface parsing on unrestricted English text. Ph.d. Thesis,

Department of General Linguistics. University of Helsinki.
Voutilainen, A. & Padr´o, L. (1997). Developing a hybrid NP parser.Proceedings of the 5th Conference on Applied

Natural Language Processing, ANLP(pp. 80–97). Washington DC: ACL.
Waltz, D. (1975).Understanding line drawings of scenes with shadows: Psychology of Computer Vision. New

York: McGraw-Hill.
Weischedel, R., Schwartz, R., Palmucci, J., Meteer, M., & Ramshaw, L. (1993). Coping with ambiguity and

unknown words through probabilistic models.Computational Linguistics, 19(2), 359–382.
Wilks, Y. & Stevenson, M. (1997). Combining independent knowledge sources for word sense disambiguation.

Proceedings of the Second Conference on Recent Advances in Natural Language Processing, RANLP(pp. 1–7),
Tzigov Chark, Bulgaria.

Zhou, X. & Dillon, T.S. (1991). A statistical–heuristic feature selection criterion for decision tree induction.IEEE
Transactions on Pattern Analysis and Machine Intelligence, 13(8), 834–841.

Received December 2, 1997
Accepted December 1, 1998
Final manuscript December 1, 1998

