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Predicting air quality is a complex task due to the dynamic nature, volatility, and high variability in time and space of pollutants
and particulates. At the same time, being able to model, predict, and monitor air quality is becoming more and more relevant,
especially in urban areas, due to the observed critical impact of air pollution on citizens’ health and the environment. In this paper,
we employ a popular machine learningmethod, support vector regression (SVR), to forecast pollutant and particulate levels and to
predict the air quality index (AQI). Among the various tested alternatives, radial basis function (RBF) was the type of kernel that
allowed SVR to obtain the most accurate predictions. Using the whole set of available variables revealed a more successful strategy
than selecting features using principal component analysis.&e presented results demonstrate that SVR with RBF kernel allows us
to accurately predict hourly pollutant concentrations, like carbonmonoxide, sulfur dioxide, nitrogen dioxide, ground-level ozone,
and particulate matter 2.5, as well as the hourly AQI for the state of California. Classification into six AQI categories defined by the
US Environmental Protection Agency was performed with an accuracy of 94.1% on unseen validation data.

1. Introduction

With the economic and technological development of cities,
environmental pollution problems are arising, such as water,
noise, and air pollution. In particular, air pollution has a
direct impact on human health through the exposure of
pollutants and particulates, which has increased the interest
in air pollution and its impacts among the scientific com-
munity [1–3]. &e main causes associated with air pollution
are the burning of fossil fuels, agriculture, exhaust from
factories and industries, residential heating, and natural
disasters.

Air quality has been studied for the last three decades in
the United States (US) since the creation of the Clean Air Act
program. Although this program has entailed an im-
provement in air quality over the years, air pollution is still a
problem [4]. Total combustion emissions in the US are
accountable for about 200,000 premature deaths per year
due to the concentration of pollutants such as particulate

matter 2.5 (PM2.5) and 10,000 deaths per year due to ozone
concentration changes. &e American Lung Association
estimated that air pollution-related illnesses cost approxi-
mately 37 billion dollars each year in the US, with California
alone hitting $15 billion [5].

In the face of increasingly serious environmental pol-
lution problems, scholars have conducted a significant
quantity of related research, and in those studies, the
forecasting of air pollution has been of paramount impor-
tance. &us, in full knowledge of the increasing pollution
derived problems, the importance of accurately forecasting
the levels of air pollutants has increased, playing an im-
portant role in air quality management and population
prevention against pollution hexes.

&e study aims to build models for hourly air quality
forecasting for the state of California, using one of the most
powerful existing machine learning (ML) approaches,
namely, a variant of support vector machines (SVMs), called
support vector regression (SVR). &e proposal is to build an
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SVR model for the prediction of each pollutant and par-
ticulate measurement on an hourly basis and an SVR model
to predict the hourly air quality index (AQI) for the state of
California.

&e paper is organized as follows. Section 2 frames and
motivates the work, giving an idea of the impactful con-
tribution represented by a successful predictingmodel for air
quality. Section 3 contains a critical revision of the literature,
discussing previous and related work. In Section 4, we in-
troduce SVM, with a particular focus on the functioning of
SVR. Section 5 contains a description of the data used in this
work. In Section 6, we discuss the data preprocessing phase
that we performed to obtain a more compact and infor-
mative dataset to be used by SVR. Section 7 presents our
experimental study; it is partitioned into a description of the
employed experimental settings and a discussion of the
obtained results. Finally, Section 8 concludes the paper and
discusses ideas for future research.

2. Background and Motivation

Air pollution is considered to occur whenever harmful or
excessive quantities of defined substances such as gases,
particulates, and biological molecules are introduced into
the atmosphere. &ese excessive emissions have obvious
consequences, causing diseases and death of populations and
other living organisms and impairing crops. Air pollutants
can either be solid particles, liquid droplets, or gases, which
are classified into the following:

Primary pollutants, which are emitted from the source
directly to the atmosphere. &e sources can be either
natural processes, such as sandstorms or human-re-
lated, such as industry and vehicle emissions. &e most
common primary pollutants are sulfur dioxide (SO2),
particulate matter (PM), nitrogen dioxide (NOx), and
carbon monoxide (CO).

Secondary pollutants, which are air pollutants formed
in the atmosphere, resulting from the chemical or
physical interactions between primary pollutants.
Photochemical oxidants and secondary particulate
matter are the major examples of secondary pollutants.

&e most common air pollutants are known as the
criteria pollutants, which correspond to the most wide-
spread health threats, e.g., CO, SO2, lead, ground-level
ozone (O3), NO2, and PM.&e levels of these pollutants are
measured by the US Environmental Protection Agency
(EPA), which controls overall air quality. Scientific research
has demonstrated a correlation between short-term ex-
posure to this kind of pollutants and many health prob-
lems, like limited ability to respond to increased oxygen
demands when exercising (especially for people with heart
conditions), airway inflammation in healthy people and
increased respiratory symptoms for people with asthma,
respiratory emergencies particularly for children and the
elderly, and so on [6].

EPA, EU, and many other national environmental
agencies have set standards and air quality guidelines re-
garding allowable levels for these pollutants. &e air quality

index (AQI) is an indicator created to report air quality,
measuring how clean or unhealthy the air is and what as-
sociated health effects might be a concern, especially for risk
groups. It focuses on health effects that can be experienced
within a few hours or days after being exposed to polluted
air. It is calculated based on the maximum individual AQI
registered for the criteria pollutants mentioned above.

Building a forecasting system, based on the levels of
concentration of individual pollutants, that can predict air
quality hourly, will make the AQI more flexible and useful
for the population’s health. Systems that can generate
warnings based on air quality are therefore needed and
important for the populations. &ey may play an important
role in health alerts when air pollution levels might exceed
the specified levels; also, they may integrate existing emis-
sion control programs, for instance, by allowing environ-
mental regulators the option of “on-demand” emission
reductions, operational planning, or even emergency re-
sponse [7].

3. Previous and Related Work

&e autoregressive integrated moving average model
(ARIMA) is one of the most important and widely used
models to forecast time series. Proposed in [8], it achieved
high popularity due to its statistical properties [9], adapt-
ability to represent a wide range of processes, and the ability
to be extended.&rough the years, since the concern with air
quality and quality of life in urban areas has emerged,
statistical methods like ARIMA have been widely used to
forecast the levels of air pollutants and air quality. For in-
stance, the ability of ARIMA to forecast the monthly values
for the air pollution index was studied in [10], demonstrating
that it could produce forecasts that fall under the 95%
confidence level. More recently, the performance of ARIMA
was compared against a Holt exponential smoothing model
to predict AQI daily values [11].

With the increasing amount of historical data available
for analysis and the need for performing more accurate
forecasts in different scientific areas and domains, machine
learning (ML) [12] models have drawn attention, estab-
lishing themselves as a solution that can replace the more
classical statistical models in time-series forecasting. Spe-
cifically, ML algorithms have been widely used to forecast air
quality.

Due to the high nonlinear processes that involve the
concentrations of pollutants and their partially known dy-
namics, it is very difficult to produce a model able to forecast
these types of events [13]. ML models are an example of
nonparametric and nonlinear models that leverage only in
historical information to learn the hidden relationship be-
tween data [14]. In general, ML approaches, like artificial
neural networks (ANNs), genetic programming (GP), and
support vector machines (SVMs), have been shown to
outperform ARIMA when predicting time series (TS) with a
high level of nonlinearity. For instance, Sharda and Patil [15]
compared the results achieved by an ANN against ARIMA.
Later, Alon et al. [16] compared ANNs against traditional
methods, like ARIMA, Winter exponential smoothing, or
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multivariate regression, concluding that ANNs outperform
the traditional statistical methods when the dataset presents
more volatile conditions. Also, Dı́az-Robles et al. [17] per-
formed an empirical study with the application of a hybrid
model using ANNs and ARIMA to predict the air quality in
Chile, in particular, P10 measurements. &e models were
combined to capture the different patterns within the data:
the ARIMAmodel to capture the linearity of the dataset and
ANNs to capture the nonlinearity from ARIMA’s model
residuals. &e authors concluded that the resulting model
has high generalization ability and outperforms both
ARIMA and ANNs used in isolation. Cai et al. [18] com-
pared the results obtained using a multilinear regression
model to the ones achieved by an ANN when predicting
hourly air pollutant concentration, concluding that ANNs
produce more robust results. Pires et al. [19] applied GP to
predict the daily averages of PM10 concentrations, com-
paring it with partial least square regression (PLSR). Tikhe
Shruti [20] applied both ANNs and GP to the forecasting of
air quality in India. Both approaches obtained reasonable
performance when predicting the air pollutant concentra-
tions, but in general terms, GP obtained better results when
short-term forecasting was considered. Castelli et al. [21]
presented an evolutionary system to predict ozone con-
centrations one hour ahead with GP, based on other pol-
lutant concentrations. &e approach achieved accurate
results, outperforming the state-of-the-art ML techniques.

Numerous published contributions exist exploiting the
use of support vector machines (SVMs) to forecast time
series, and several authors applied SVM to generate models
to forecast the air quality and level of pollutants. In par-
ticular, Drucker et al. [22] proposed a variant of SVM, to be
applied in regression problems, called support vector re-
gression (SVR), which can be particularly appropriate for
this type of task. In the same year, Müller et al. [23] con-
ducted a study in which SVR was compared against ANNs.
&e authors concluded that, overall, SVR performance was
better. Cao [24] presented a hybrid approach for time-series
forecasting, combining ANNs to partition the input space
and SVMs to model each portioned region. &e results
showed that this hybrid approach achieves high prediction
performance and allows efficient learning. Wang et al. [25]
used SVMs to forecast daily ambient air pollutants in the city
of Macau.

Regarding time-series air quality forecasting, Lu and
Wang [26] applied SVMs to forecast the air quality in
downtown Hong Kong. &e results showed that the SVM
model delivers more promising results than other ML ap-
proaches. Arampongsanuwat and Meesad [27] applied
SVMs with success to forecast the levels of PM10 in Bangkok.
Vong et al. [28] developed a model to predict the levels of air
pollution in Macau using SVMs. More recently, Sotomayor-
Olmedo et al. [29] presented a standard approach using
SVMs to forecast the air quality in Mexico City. In this
approach, the authors concluded that SVMs provided
flexibility and scalability to forecast air quality when applied
to dynamic and nonlinear data. Li et al. [30] proposed a
hybrid approach model based on co-integration theory,
SVM, and the flower pollination algorithm. &e results

comparing this hybrid model with the particular models
show that the hybrid model outperforms and combines all
the advantages from each model.

4. Support Vector Machines

Support vector machines (SVMs) were introduced in [31],
for classification problems. &e objective is to look for the
optimal separating hyperplane between classes. &e points
lying on classes’ boundaries are called support vectors, and
the in-between space is called the hyperplane; when a linear
separator is not able to find a solution, data points are
projected into a higher-dimensional space, where the pre-
vious nonlinearly separable points become linearly separa-
ble, using kernel functions. &e whole task can be
formulated as a quadratic optimization problem that can be
solved with exact techniques.

Figure 1 presents an example of a linearly separable
classification problem solved using SVM. SVM aims at
maximizing the margin between the support vectors and the
hyperplane.

4.1. Support Vector Regression. One year after the intro-
duction of SVM, Smola et al. [32] advanced an alternative
loss function, which also allowed SVM to be applied to
regression problems. Support vector regression (SVR) has
been applied in the field of TS forecasting, with excellent
outcomes. For instance, Drucker et al. [22], Müller et al. [23],
and Cao and Tay [33] suggest that SVR is a promising
method for TS forecasting, as it offers several advantages: a
smaller number of free parameters, better forecast ability,
and faster training.

In SVR, the idea is to map the data events X into a
k-dimensional feature space F, through a nonlinear mapping
φj(X), so that it is possible to fit a linear regression model to
the data points in this space. &e obtained linear learner is
then used to forecast in the new feature space. Once again,
the mapping from the input space into the new feature space
is defined by the kernel function.

One of the most attractive characteristics of SVR is
related to the model errors; instead of minimizing the ob-
served training error, SVR minimizes a combination of the
training error and a regularization term, aimed at improving
the generalization ability of the model [34]. Other attractive
properties of SVR are related to the use of kernel functions,
which make them applicable both to linear and nonlinear
forecasting problems, and the absence of local minima in the
error surface, due to the convexity of the fitness function and
its constraints.

Given:

Training dataset T, represented by

T � x1, y1( ), x2 , y2( ), . . . , xm, ym( ){ }, (1)

where x ∈ X ⊂ Rn are the training inputs and
y ∈ Y ⊂ R are the training expected outputs.
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A nonlinear function:

f(x) � wTΦ xi( ) + b, (2)

where w is the weight vector, b is the bias, and Φ(xi) is the
high dimensional feature space, which is linearly mapped
from the input space x; the objective is to fit the training
dataset T by finding a function f(x) that has the smallest
possible deviation ε from the targets yi.

Equation (2) can be rewritten into a constrained convex
optimization problem as follows:

minimize
1

2
wTw

subject to

yi − w
TΦ xi( ) − b≤ ε

wTΦ xi( ) + b − yi ≤ ε.




(3)

&e aim of the objective function represented in equa-
tion (3) is to minimize w while satisfying the other con-
straints. One assumption is that f(x) exists, i.e., the convex
optimization problem is feasible. &is assumption is not
always true; therefore, one might want to trade off errors by
the flatness of the estimate. Having this in mind, Vapnik
reformulated equation (3) as

minimize
1

2
wTw + C∑

m

i�1

ξ+i + ξ
−
i( )

subject to

yi − w
TΦ xi( ) − b≤ ε + ξ+i

wTΦ xi( ) + b − yi ≤ ε + ξ−i

ξ+i ξ
−
i ≥ 0,




(4)

where C< 0 is a prespecified constant that is responsible for
regularization and represents the weight of the loss function.
&e first term of the objective function wTw is the regu-
larized term, whereas the second term C∑mi�1(ξ+i + ξ−i ) is
called the empirical term and measures the ε-insensitive loss
function.

To solve Equation (4), Lagrangian multipliers
(∝ +

i , ∝ −
i , η

+
i , η

−
i ) can be used to eliminate some of the

primal variables. &e final equation that translates the dual
optimization problem of SVR is

minimize
1

2
∑
m

i,j�1

K xi, xj( ) ∝ +
i − ∝

−
i( ) ∝ +

j − ∝
+
j( ) + ε∑

m

i�1

∝ +
i + ∝

−
i( ) −∑

m

i�1

∝ +
i − ∝

−
i( )

subject to

∑
m

i�1

∝ +
i − ∝

−
i( ) � 0

∝ +
i , ∝ −

i ϵ[0, C],




(5)

where K(xi, xj ) is the kernel function; the above formu-
lation allows the extension of SVR to nonlinear functions, as
the kernel function allows nonlinear function approxima-
tions while maintaining the simplicity and computational
efficiency of linear SVR.

&e performance and good generalization of SVR de-
pend on three training parameters:

&e kernel function

C (the regularization parameter)

ε (the insensitive zone)

Many possible kernels exist. In this work, the polynomial
kernel and the radial basis function (RBF) kernel were
studied. &e interested reader is referred to [35] for a dis-
cussion of these and other existing kernel functions.

5. Data Description

&e dataset used in this study was extracted from EPA’s Air
Quality [6]. All the files contain hourly data, separated by
pollutant or parameter that is being measured—CO, SO2,
NO2, ozone, PM2.5, temperature, humidity, and wind, with

Margin

Separating
hyperplane

Support vectors

Figure 1: Linearly separable problem.
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observations from the state of California. &e hourly events
were collected between January 1, 2016, and May 1, 2018. A
total of 102090 records were used.

Tables 1 and 2 report a summary of the measured pa-
rameters and sites and a detailed description of the variables
used in the study:

Table 3 provides a short descriptive statistic of the
available pollutants, particles, and environment events
measures: minimum, maximum, mean, standard deviation,
quantiles, kurtosis, and skewness.

A high value of skewness for SO2 indicates the presence
of sharp increases in the data. &e high values in the kurtosis
index for CO, SO2, and PM2.5 confirm the existence of data
discontinuities. For SO2, the calculated standard deviation is
almost two times bigger than its mean, which means that, for
this pollutant, the sensitivity to uncertainties is high.

Time plots are significantly important for an initial time-
series analysis, as they serve as a descriptive tool that may
show both trend and seasonality, potential outliers, or
discontinuities, allowing us to make better decisions when it
comes to choosing the appropriate technique to forecast the
TS. Some visual representations of the data used in this work
are shown in Figures 2 and 3.

From the plots, it can be observed that the distribution
for each one of the pollutants and particulates is nonlinear. A
series is stationary when the variance of it remains the same
over time. &e plots reported below seem to indicate the
stationarity from the pollutants’ series. Furthermore, it is
possible to identify the presence of outliers. One particular
case is sulfur dioxide, in April 2017, with a measurement
clearly above the regular series values. &e time plots also
portray the differences in terms of pollutant levels evolution
across the years. For instance, SO2 presents higher values for
the first semester of 2018.

6. Data Preprocessing

Data quality and its representativity are the first and fore-
most points to guarantee the successful building of fore-
casting models. &e data preprocessing step often impacts
the generalization ability of a machine learning algorithm
[36]. Data preprocessing usually encompasses missing data
imputation, removing or modifying outlier observations,
data transformation (often normalization and standardi-
zation), and feature engineering.While the first two steps are
useful to have more accurate and complete sets of data, the
third one is typically used to have more uniformly dis-
tributed data and to minimize data variability. Finally, the
fourth step is used to obtain a new, typically smaller, and
more informative dataset. &is last step is typically com-
posed of feature extraction and feature selection. In the
continuation of this section, we describe how these steps
were accomplished in this work.

6.1.MissingData Imputation. In our dataset, the majority of
missing data is present in the qualifier variable for all pol-
lutants, particles, andmeteorological conditions, followed by
CO sample measurements. Given the large number of

missing values for pollutants qualifier features, more than
50% of the total available events, it was decided to discard
them from the dataset. For all the other categorical variables,
it was decided to fill the missing values with the most
common value from each feature, as suggested in [37]. We
used the estimation of a 2nd order polynomial to handle the
missing data for numerical variables (CO, SO2, NO2, PM2.5,
outdoor temperature, relative humidity, and wind speed).
&is method was adopted because it outperformed the more
traditional imputation using the series mean or linear in-
terpolation (these preliminary experimental results are not
shown here to save space).

6.2. Removing Outliers. An irregular behavior was observed
in the SO2 series for the last months of 2018, as shown in
Figure 4, where the levels are much lower than expected.

As these observations are outliers, the decision was to
remove all the observations from March 2018 onwards, for
the SO2 series.

6.3. Data Transformation. We selected the Yeo-Johnson
power transformation method [38] to transform our data.
&is choice is motivated by the fact that, as reported in [39],
the Yeo-Johnson method provides a nonlinear transfor-
mation, less impacted by the presence of abnormal obser-
vations. &is option allowed us to obtain a dataset with
improved features’ distribution and to minimize data
variability.

6.4. Feature Extraction. &e datetime component contained
in our dataset was used to obtain new features, valuable to
help tease out series seasonality information. Considering all
the properties that can be extracted from a datetime type of
variable, the following new features were created: month
number [1–12], hour of the day [0–23], andweekend added as
a Boolean feature. As the hour of the day is, actually, a cyclical
variable, it was decided to create two new features through a
trigonometric approach, hour_sin� sin(2π hour/24) and
hour_cos� cos(2π hour/24), tomap this behavior. Finally,
we created a variable called season, with four possible values
for Fall, Winter, Spring, and Summer.

Table 1: Summary of measurement sites and observed variables.

Measurement
sites

Type Variables

California

Meteorological
conditions

Outdoor
temperature

Relative humidity
Wind speed

Criteria gases

Carbon monoxide
Ozone

Sulfur dioxide
Nitrogen dioxide

(NO2)
Particulates PM2.5

&epollutant data are expressed in units of mass concentrations, i.e., mg/m3

(ppm), except for NO2, which is measured in ppb.
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Table 2: Dataset variable description.

Variable name Description

Stated name &e state name where the monitor resides.
Parameter code &e AQS code corresponding to the parameter being measured.

Parameter name
&e name or description assigned in AQS to the parameter measured by the monitor. &e parameters are CO, SO2,

NO2, ozone, PM2.5, temperature, humidity, and wind.
Date GMT &e calendar date of the average in Greenwich Mean Time.
Time GMT &e time of the day for the average on a 24-hour clock in Greenwich Mean Time.
Units of measure &e units of measured parameter.
Uncertainty &e reporting agency indicates the total measurement uncertainty associated with a reported measurement.

Qualifier
Sample values may have qualifiers that indicate why they are missing or that key is out of ordinary. Types of qualifiers

are null data, exceptional events, natural events, and quality assurance.
Date of last
change

&e date the last time any numeric values in this record were updated in the AQS data system.

&e pollutant data are expressed in units of mass concentrations, i.e., mg/m3 (ppm), except for NO2, which is measured in ppb.

Table 3: Dataset descriptive statistics.

CO NO2 SO2 Ozone PM2.5 Wind speed Temperature Relative humidity

Mean 0.29 12.00 1.07 0.03 7.71 95.52 55.93 55.79
Std 0.16 7.10 2.31 0.01 4.93 26.96 18.53 21.57
Min 0.05 0.28 −0.57 0.00 −2.78 2.20 −11.58 2.89
25% 0.19 6.68 0.35 0.02 4.60 76.14 42.67 39.45
50% 0.25 10.25 0.55 0.03 6.81 96.45 56.65 57.75
75% 0.33 15.83 0.92 0.04 9.70 114.18 69.70 73.00
Max 2.14 55.58 158.37 0.08 240.06 301.25 109.21 97.75
Kurtosis 7.29 1.22 330.72 −0.283 192.49 1.05 −0.45 −0.85
Skew 2.15 1.13 11.61 0.38 6.76 0.17 −0.16 −0.25

SO2 measurements for the state of california
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Figure 2: Sulfur dioxide measurements for the state of California.

Carbon monoxide measurements for the state of california
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Figure 3: Carbon monoxide measurements for the state of California.
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In time-series analysis, lags are considered a backshift in
the series and are useful to measure an important phe-
nomenon, called series autocorrelation. &e selection of
appropriate time lags for forecasting is an important step,
through the elimination of redundant features. &is pro-
cedure generally helps improve the overall forecasting model
accuracy and gives a better understanding of the underlying
process [40]. An exploratory study was conducted using
autocorrelation function (ACF) and partial autocorrelation
function (PACF), commonly used in time-series analysis, to
define the number of lag variables per pollutant and particle.
As one can notice in Figures 5 and 6, the ACF plots show a
repeating pattern every 24 hours, while the PACF plots
present spikes in the first two lags and a decrease for all the
others lags. Assuming a confidence level of 80%, only the
first and the second lag were considered as relevant for all the
pollutants series, resulting in a total of 10 new variables.
Finally, the last featured variables regard each pollutant
series rolling mean, with a 24 lag time window.

&e total extracted features encompass variables related
to pollutant and particulate measurements, meteorological
conditions, lag features, rolling mean variables, season time,
and time-related variables. Finally, the complete dataset
contains 46 features, including the ones added in the feature
extraction phase. In particular, in the feature extraction
phase, the following variables were created: ten lag variables
for the pollutant series, five rolling mean variables (one for
each pollutant), one variable for the season, four trigono-
metric variables (two for the month and two for the hour),
one Boolean variable for the weekend, and variables for the
date and time.

6.5. Feature Selection. From the 46 features resulting from
the feature engineering process described above, variable
selection was performed to reduce dataset dimensionality
and eliminate the presence of collinearity. As reported in
[41], air pollutant concentration, including ground-level
ozone, PM2.5, and NO2, varies depending on meteorological
factors and the local topography. Meteorological conditions,
in particular, can impact the concentrations, as they have
complex interactions between the various processes such as
air pollutant emission, transportation, chemical

transformations, disposition (wet and dry), and dispersion
[42]. For this reason, all variables relative to meteorological
conditions were kept in the dataset. On the other hand, both
filters and embedded methods were used to select all the
other features. Filters are methods that perform feature
selection regardless of the forecasting model chosen; em-
bedded methods perform variable selection based on the
chosen learning method (SVR in our case).

With respect to filters, the Pearson correlation-based
feature selection was used, as suggested in [43]. &is method
was employed to verify the existence of collinearity between
the available features. We discovered that some pollutants in
the dataset present an almost linear relationship between
their observations; this is the case for NO2 and CO and even
between CO and PM2.5. Based on the strong correlation
between pollutants and their natural dependence, as referred
by Cagliero et al. [44], it was decided to keep all pollutants in
the dataset. Since pollutants’ respective lag variables hold
high variance between them, it was decided only to use the
target pollutants’ respective lag features to avoid possible
collinearity between features.

Furthermore, although SVR is known to be robust in
terms of collinearity and multicollinearity [45], some re-
dundant variables were excluded to reduce dataset di-
mensionality. In particular, the variable referring to the
month number presents a high correlation with some
pollutants, the same for month cyclical variables
(Month_cos and Month_sin). &us, we eliminated the
variable month. An analogous decision was taken for data
concerning hour information, with variables Hour_sin and
Hour_cos chosen and variable hour eliminated. &e sea-
son-related features were also excluded from the dataset,
given their linear correlation with Month_cos and
Month_sin and features reporting on the meteorological
conditions. Also, both quarter and weekday were removed,
due to a high correlation with the month cyclic and
Is_Weekend features.

&e objective of our work is to generate different
forecasting models for five different pollutants: CO, NO2,
SO2, ozone, and PM2.5. Table 4 summarizes the features that
were maintained in the dataset for the forecasting of each
one of these pollutants (features that were maintained in the
dataset are marked with “∗” in the table).

SO2 measurements for california
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Figure 4: Abnormal behavior detected for SO2 levels for the last months of 2018.
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Figure 5: ACF and PACF plots for SO2 and PM2.5 in California.
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Figure 6: Continued.
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Figure 6: ACF and PACF plots for CO, NO2, and ozone in California.

Table 4: Selected variables’ summary per target variable.

Features
Pollutants and particulates

CO NO2 SO2 Ozone PM2.5

CO ∗

NO2
∗

SO2
∗

Ozone ∗

PM2.5
∗

Wind speed ∗ ∗ ∗ ∗ ∗

Relative humidity ∗ ∗ ∗ ∗ ∗

Outdoor temperature ∗ ∗ ∗ ∗ ∗

CO roll mean ∗

CO lag features ∗ ∗ ∗ ∗ ∗

SO2_roll_mean
∗

SO2 lag features
∗ ∗ ∗ ∗ ∗

NO2_roll_mean
∗

NO2 lag features
∗ ∗ ∗ ∗ ∗

Ozone lag features ∗ ∗ ∗ ∗ ∗

Ozone roll mean ∗

PM2.5 lag features
∗ ∗ ∗ ∗ ∗

PM2.5 roll mean
∗

Is_Weekend ∗ ∗ ∗ ∗ ∗

Hour_sin ∗ ∗ ∗ ∗ ∗

Hour_cos ∗ ∗ ∗ ∗ ∗

Month_sin ∗ ∗ ∗ ∗ ∗

Month_cos ∗ ∗ ∗ ∗ ∗
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Table 5: Random search optimal parameter results per pollutant dataset.

Pollutants
PCA dataset Normalized dataset

Kernel Opt C Opt ε R 2 Kernel Opt C Opt ε R 2

CO RBF 3 0.08 0.783 RBF 2 0.033 0.916
NO2 RBF 3 0.025 0.882 RBF 1 0.067 0.948
SO2 RBF 1 0.062 0.712 RBF 2 0.086 0.718
Ozone RBF 2 0.076 0.903 RBF 2 0.02 0.979
PM2.5 RBF 1 0.055 0.765 RBF 3 0.032 0.767

Carbon monoxode boxplot prediction comparision
Normalized data Denormalized data
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Figure 7: Boxplot of predicted and observed carbon monoxide values.

Datetime GMT

1.0

0.8

0.6

0.4

0.2

CO predicted values

CO_pt_denorm

Predicted_CO_denorm

CO_pt_denorm

CO_pt_denorm

Predicted_PCA_CO_denorm

Datetime GMT

Figure 8: Forecasts of carbon monoxide measurements in California using the produced SVR forecasting models. &e black line shows the
observed values, whereas the red and yellow lines show the produced forecasts.
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Table 6: Error metrics from CO forecasting models in the training and validation sets.

Error metrics
PCA SVR-RBF SVR-RBF

Training set Validation set Training set Validation set

MAE 0.119 0.311 0.080 0.211
R2 0.948 0.769 0.976 0.868
RMSE 0.184 0.492 0.128 0.367
nRMSE 0.032 0.076 0.022 0.057
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Figure 9: (a) Carbon monoxide forecast detail between the period of the 1st of January and the 15th. Both forecasting methods missed to
forecast some of the spikes registered in the series in the beginning of January. (b, c) Two scatter plots with model’s respective errors plotted
against observed CO values for the same period.
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Given a total of 40 dependent variables for each target
pollutant and as per the existence of collinearity between
variables, it was also decided to apply principal component
analysis (PCA) [46] to reduce the dataset dimensionality.
&e datasets for each pollutant prediction were reduced in
approximately 77.5% of their size through the application of
PCA. In the experimental study presented in the next sec-
tion, SVR will be applied both to the dataset containing all
the 40 dependent variables and to the dataset that was re-
duced through PCA.

7. Experimental Study

7.1. Experimental Settings. As discussed above, SVM has
three hyperparameters that need to be user-defined: the
kernel type function, the regularization constant C, and the
maximum allowed deviation ε. Time-series split combined
with random grid search was used to obtain the optimal
numbers for both C and ε, similar to what was done in
[47, 48]. According to [33], the appropriate range for the C
parameter should be between 10 and 100; in order to have a
wider exploration of this parameter, the search range for C
was extended to [1, 100].&e range defined for εwas between
0.001 and 0.1, with a step of 0.001. &e most frequently used
kernel functions, as discussed previously, are polynomial
and RBF. For that reason, both were used in random grid
search.

&e number of iterations chosen to run the random
search was selected based on [49], reporting that random
search needs 60 iterations, on average, to achieve results as
good as the ones achieved by the grid-search algorithm.
Table 5 shows the results of the random search.

As shown in Table 5, different values of C and ε were
obtained for the different pollutants; on the other hand, the
RBF kernel consistently returned the best results. For this
reason, from now on, only the RBF kernel will be considered.
So, in the next section, two types of results will be analyzed and
compared between each other: those obtained by SVR with
RBF kernel on the dataset without application of the PCA
(SVR-RBF from now on) and those obtained by SVRwith RBF
kernel on the dataset filtered by PCA (PCA SVR-RBF from
now on). We utilized the Pearson correlation, the mean ab-
solute error (MAE), the root mean squared error (RMSE), and
the normalized RMSE (nRMSE) as measures to compare these
twomodels between each other.&emodels were trained using
70% of the available data, which correspond to the period
between 02-01-2018 at 08 : 00 : 00 and 07-08-2017 at 00 : 00 : 00.
&e validation set is composed of the remaining 30% of the
observations, which is relative to the period between 07-08-
2017 at 01 : 00 : 00 and 01-03-2018 at 23 : 00 : 00.

7.2. Experimental Results. In this section, we report and
discuss the experimental results achieved by SVR-RBF and
PCA SVR-RBF in the forecasting of five different
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Figure 10: Boxplot of predicted and observed sulfur dioxide values.
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Figure 11: (a) Sulfur dioxide forecasts in California using the produced SVR forecastingmodels as well as the observed SO2 values.&e black
line shows the observed values and the red line shows the produced forecasts with the PCAmodel, whereas the yellow line shows the forecast
produced with the normalized dataset. (b, c) Two scatter plots with model’s respective errors plotted against observed SO2 values for the
same period.

Table 7: Error metrics from SO2 forecasting models in the training and validation sets.

Error metrics
PCA SVR-RBF SVR-RBF

Training set Validation set Training set Validation set

MAE 0.236 0.461 0.229 0.414
R2 0.787 0.023 0.830 0.273
RMSE 0.364 0.752 0.352 0.703
nRMSE 0.036 0.053 0.035 0.049
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pollutants (CO, NO2, SO2, ozone, and PM2.5, Sections
7.2.1 to 7.2.5, respectively) and the forecasting of the air
quality index (AQI) (Section 7.2.6). &e software used for
performing this experimental phase was developed in
Python (version 3.6), mainly using the Pandas and Scikit-
learn packages.

7.2.1. Carbon Monoxide (CO). &e results obtained for the
forecasting of carbon monoxide are shown in the boxplots
of Figure 7. Median, first, and third quantiles and maxi-
mum and minimum values of the prediction, together with
the value of the expected output, are reported. &e leftmost
plot shows the results obtained before applying the inverse
Yeo-Johnson power transformation (indicated as “nor-
malized data” in the figure), whereas the right side reports

the data after this transformation (indicated as “denor-
malized data” in the figure). Inside both these plots, three
boxplots are shown: the leftmost one reports the observed
CO values, the one in the middle shows the predicted values
returned by PCA SVR-RBF, and the rightmost boxplot
reports the predicted values returned by SVR-RBF. &e
obtained predictions have very close median values to the
observed carbon monoxide both for PCA SVR-RBF and
SVR-RBF. However, the observed CO values present a
higher quantity of extreme observations that the fore-
casting models tend to underestimate. Figure 8 shows the
forecasted values produced by both PCA SVR-RBF (red
line) and SVR-RBF (yellow line). &e carbon monoxide
forecast error statistics are shown in Table 6. &e values
predicted by the SV-RBF model are slightly lower than the
ones obtained by the PCA SVR-RBF model, although both
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Figure 12: Boxplot representation of observed and forecasted nitrogen dioxide values (PCA SVR-RBF and SVR-RBF values, before and after
Yeo-Johnson power transformation).

Table 8: Error metrics from NO2 forecasting models in the training and validation sets.

Error metrics
PCA SVR-RBF SVR-RBF

Training set Validation set Training set Validation set

MAE 0.106 0.229 0.095 0.162
R2 0.975 0.885 0.981 0.937
RMSE 0.150 0.316 0.132 0.238
nRMSE 0.029 0.051 0.025 0.038
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forecasting models achieved good results on the validation
dataset. In Figure 9, both the observed values and obtained
predictions for the period between January 1st and January
15th are reported, as well as the obtained errors, which allow us
to understand that the highest error values occurred when the
highest spikes of carbon monoxide values were registered.
Overall, both studied forecasting models achieved good per-
formance in predicting the carbon monoxide values observed
in California.

7.2.2. Sulfur Dioxide (SO2). &e results obtained for sulfur
dioxide by PCA SVR-RBF and SVR-RBF are shown in
Figure 10. &is figure reveals that both PCA SVR-RBF and

SVR-RBF can predict the observed SO2 values with good
accuracy. PCA SVR-RBF forecasts present a relatively
smaller gap between quartiles when compared with SVR-
RBF. Also, considering extreme values, the observed values
have a higher incidence of outliers when compared with the
forecasts, which indicates that both PCA SVR-RBF and
SVR-RBF tend to underpredict the observed values slightly.
Figure 11 shows forecasts for PCA SVR-RBF (red line) and
SVR-RBF (yellow line). &e sulfur dioxide forecast error
statistics are shown in Table 7.

Similar to carbonmonoxide, the residual metrics present
lower values for the SVR-RBF model. From Figure 11, it is
possible to observe that both models missed predicting the
frequent high spikes present in the observed values. &is
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Figure 13: (a) Nitrogen dioxide observed values (black line) and obtained forecasts with PCA-SVR model (red line) and SVR-RBF model
(yellow line). (b, c) Two scatter plots with model’s respective errors plotted against observed NO2 values for the same period.
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result is also corroborated by the error scatter plots from
both forecasting models. &e error scatter plots
(Figures 11(b) and 11(c)) allow us to understand that most of
the errors are between the range of [0.25; −0.25] ppb, al-
though there are very high error values which occur mainly
for the higher and lower observed values. It is also possible to
corroborate that both models tend to underpredict the
registered pollutant values, given that we observe the highest
concentration of points below zero.

7.2.3. Nitrogen Dioxide (NO2). Figure 12 depicts the boxplot
representations for the observed values and the predicted
values with both PCA SVR-RBF and SVR-RBF. &e presented

boxplots have approximately the samemedian values as well as
the same data variability. As regards extreme observations, the
raw NO2 dataset has more identified outliers above the 3rd

quantile, when compared with the forecasted values. &e re-
sults concerningMAE, nRMSE, andR2 are shown in Table 8. In
Figure 13, the observed NO2 values, as well as the obtained
predictions, are reported (top figure plot). Figures 13(b) and
13(c) show the forecasting models’ errors, respectively, plotted
against the nitrogen dioxide observed values. As expected, both
forecasting models can capture the pollutant behavior very
well, although PCA SVR-RBF tends to underpredict the ob-
served values spikes. In conclusion, both models trained to
forecast nitrogen dioxide achieved good results, with SVR-RBF
slightly outperforming PCA SVR-RBF.

Table 9: Forecasting models’ error metrics for ozone measurement in the training and validation sets.

Error metrics
PCA SVR-RBF SVR-RBF

Training set Validation set Training set Validation set

MAE 0.083 0.190 0.041 0.088
R2 0.987 0.923 0.996 0.982
RMSE 0.110 0.262 0.060 0.133
nRMSE 0.023 0.050 0.013 0.025
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Figure 14: Boxplot representation of observed and forecasted ground-level ozone values (PCA and normalized dataset, before and after
Yeo-Johnson power transformation).
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7.2.4. Ground-Level Ozone. &e observed ground-level
ozone values and corresponding predictions are shown in
Figure 14. &e represented boxplots have approximately the
samemedian values and box size. A small number of outliers
were identified in ozone’s observed values, different from the
forecasts that have, almost, no outlier observation. Forecast
performance metrics are shown in Table 9. In Figure 15, we
report the observed ozone values and the obtained predicted
values from both PCA SVR-RBF and SVR-RBF during the
period between January 1st and January 15th. For this pe-
riod, it is possible to observe that the PCA SVR-RBF tends to
forecast higher ozone values compared to the observed ones,
while the SVR-RBF seems to model the ozonemeasurements
more accurately. Figure 16 reports the forecasting model’s

errors, plotted against the observed ozone values. As ex-
pected, based on the results shown in Table 9, ozone
measurements were modeled with very good results by both
forecasting models, with SVR-RBF scatter plot points more
concentrated around null values. In conclusion, both models
trained to predict ozone measurements achieved very good
results, but SVR-RBF slightly outperformed PCA SVR-RBF.

7.2.5. Particulate Matter 2.5 (PM2.5). &e last pollutant
forecast evaluation that we performed concerns particulate
matter 2.5. Similar to the evaluation of the other pollutants,
in Figure 17, we report the boxplots for both observations
and predictions. &e boxplots of the medians are
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Figure 15: Observed and predicted ozone values for the period between January 1st and January 15th.
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approximately the same for observed and forecast values, but
the amount of outlier observations in the raw PM2.5 data is
higher, which indicates that both forecasting models are
underpredicting observed spikes for this pollutant. Fore-
casting errors are shown in Table 10. Both models present
slightly bigger values in MAE in the validation set when
compared to the results obtained on the training set. In
Figure 18, we report the observed values and the forecasts
produced by PCA SVR-RBF and SVR-RBF for the period
between January 1st and January 15th. From this figure, it is
possible to see that both models underpredicted the high
values of PM2.5. Figure 19 shows the forecasting model’s
errors plotted against observed PM2.5 values. As expected,
the observed PM2.5 values were not correctly modeled
whenever the series of observed events presented an ab-
normally high value, as both scatter plots present a positive
correlation between the high residual values and high PM2.5

observations. To summarize, both studied models achieved
similar performance when predicting particulate matter 2.5,
with SVR-RBF outperforming PCA SVR-RBF.

7.2.6. Air Quality Index (AQI). &e AQI, as previously
pointed out, is an index used by government agencies to
quantify the level of pollution of air. According to the EPA
(the United States Environmental Protection Agency), AQI
values range from 0 to 500, where the greater the AQI, the
greater the pollution. AQI values should be understood
according to the classification reported in Table 11.

Based on the observed values of the pollutants and the
predicted values, the AQI value per hour was calculated for
the training and validation sets. In Tables 12 and 13, we
report the confusion matrix that both models (PCA SVR-

Table 10: Forecasting models’ error metrics for particulate matter 2.5 measurements in the training and validation sets.

Error metrics
PCA SVR-RBF SVR-RBF

Training set Validation set Training set Validation set

MAE 0.200 0.382 0.144 0.331
R2 0.882 0.563 0.937 0.647
RMSE 0.273 0.576 0.205 0.512
nRMSE 0.041 0.074 0.031 0.066
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Figure 17: Boxplots of observed and forecasted particulate matter 2.5 values (PCA SVR-RBF and SVR-RBF, before and after Yeo-Johnson
power transformation).
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RBF and SVR-RBF) obtained in the training and the vali-
dation datasets, respectively.

&e PCA SVR-RBF model achieved an accuracy of 88%
on the training set and 92.7% on the validation set, whereas
SVR-RBF achieved a slightly better accuracy score for both
datasets, with 90.02% on the training set and 94.1% on the
validation set.

Considering the obtained results for both models
(PCA SVR-RBF and SVR-RBF) for the cases that the AQI

was misidentified, Table 14 shows if the pollutant with
the max AQI was correctly identified. For all cases where
both the AQI classification and pollutant with the
maximum AQI were misidentified, the pollutant with the
second highest registered hourly AQI was always the
correct one.

Interestingly, we observe that for both PCA SVR-RBF
and SVR-RBF, all the AQI misclassifications happened when
the observed particulate matter 2.5 values registered the
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Figure 19: (a) PCA SVR-RBF forecasting errors plotted against observed PM2.5 values and (b) SVR-RBF forecasting errors plotted against
observed PM2.5 values.
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Figure 18: Observed and predicted particulate matter 2.5 values for the period between January 1st and January 15th.
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Table 14: AQI misidentified cases breakdown.

PCA SVR-RBF SVR-RBF

Training set Validation set Training set Validation set

Pollutant correctly identified?
True 449 123 370 99
False 29 1 19 1

Table 11: &e six AQI categories defined by EPA.

Air quality index
value range

Levels of health concern Description

0 to 50 Good Air quality is considered satisfactory.

51 to 100 Moderate

Air quality is acceptable; however, for some pollutants, there is a moderate
health concern for a small number of people, namely, those that experience

respiratory problems.

101 to 150 Unhealthy for sensitive groups
Although for most of the people, the health concern is moderate, for groups
with lung diseases, the elderly, and children, there is a great risk of exposure to

some pollutants and particulates.

151 to 200 Unhealthy Health side effects for all the affected area population. Sensitive groups may
experience more serious effects.

201 to 300 Very unhealthy Health alerts would be triggered as all the affected area population would
experience serious health effects.

301 to 500 Hazardous Health alerts with emergency warnings would be triggered. &e entire area
population would be severely affected.

Table 12: Confusion matrix for the AQI classifications obtained with both models for the training set.

Training dataset
PCA SVR-RBF SVR-RBF

Good Moderate Unhealthy∗ Good Moderate Unhealthy∗

Good 2507 151 0 2549 109 0
Moderate 300 993 0 253 1040 0
Unhealthy∗ 4 23 0 9 18 0
∗Unhealthy for sensitive groups.

Table 13: Confusion matrix for the AQI classifications obtained with both models for the validation set.

Validation dataset
PCA SVR-RBF SVR-RBF

Good Moderate Unhealthy∗ Good Moderate Unhealthy∗

Good 1161 59 0 1171 49 0
Moderate 62 420 0 48 434 0
Unhealthy∗ 0 3 0 0 3 0
∗Unhealthy for sensitive groups.
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maximum hourly AQI. In other words, the predictive
models were not able to predict abnormal PM2.5 values.

To summarize, both PCA SVR-RBF and SVR-RBF
achieved similar performance in forecasting the AQI.
Nevertheless, there is an underestimation of the pollution
levels when the highest AQI values were registered by PM2.5,
which would imply that pollution alerts would not be sent to
the affected population groups in those cases.

8. Conclusions and Future Work

Predicting the air quality is a complex task due to the dy-
namic nature, volatility, and high variability in space and
time of pollutants and particulates. At the same time, being
able to model, predict, and monitor air quality is becoming
more and more important, especially in urban areas, due to
the observed critical impacts of air pollution for populations
and the environment.

&is work presented a study of support vector regression
(SVR) to forecast pollutants and particulates’ levels and to
correctly identify the AQI. &e studied method produced a
suitable model of the hourly atmospheric pollution, allowing
us to obtain, generally, good accuracy in modeling pollutant
concentrations like O3, CO, and SO2, as well as the hourly
AQI for the state of California.

As future work, we intend to improve and investigate the
usage of SVR to forecast air quality through the following
topics:

Dataset and variable selection—considering a large
dataset with more parameters and measurements,
which can support more accurate predictive models for
air pollutants and particulates, in particular, NO2 and
PM2.5.

SVR parameter optimization—as SVR model perfor-
mance is greatly influenced by the kernel function
selection and the penalty parameter C, it would be
interesting to explore other methods, different from
random search, for hyperparameter optimization such
as genetic algorithms or particle swarm optimization.

Last but not least, we intend to compare the results
obtained by SVR to the ones achieved by other machine
learning algorithms of a different nature, like artificial neural
networks, Bayesian networks, decision trees, random forests,
and genetic programming.

Data Availability

A permanent link to download data used in this paper will be
made available after the publication.
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