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Abstract

Patients with diabetes must continually monitor their
blood glucose levels and adjust insulin doses, striving
to keep blood glucose levels as close to normal as pos-
sible. Blood glucose levels that deviate from the normal
range can lead to serious short-term and long-term com-
plications. An automatic prediction model that warned
people of imminent changes in their blood glucose lev-
els would enable them to take preventive action. In this
paper, we describe a solution that uses a generic phys-
iological model of blood glucose dynamics to generate
informative features for a Support Vector Regression
model that is trained on patient specific data. The new
model outperforms diabetes experts at predicting blood
glucose levels and could be used to anticipate almost a
quarter of hypoglycemic events 30 minutes in advance.
Although the corresponding precision is currently just
42%, most false alarms are in near-hypoglycemic re-
gions and therefore patients responding to these hypo-
glycemia alerts would not be harmed by intervention.

Introduction and Motivation
Of the world’s 347 million people with diabetes, from 5
to 10% have type 1 diabetes (T1D), the most severe kind.
In T1D, the pancreas fails to produce insulin, an essential
hormone needed to convert food into energy and to regu-
late blood glucose (BG) levels. T1D can not be prevented or
cured, but it can be effectively treated with external supplies
of insulin and managed through BG control. Good BG con-
trol helps to delay or prevent serious long-term complica-
tions of diabetes (Diabetes Control and Complications Trial
Research Group 1993). Patients strive to avoid both hyper-
glycemia, or high BG levels, and hypoglycemia, or low BG
levels. Hyperglycemia can lead to long-term complications
including blindness, amputations, kidney failure, strokes,
and heart attacks, while hypoglycemia can cause immedi-
ate symptoms of weakness, confusion, dizziness, sweating,
shaking, and, if not treated in time, seizures, coma or death.

Achieving and maintaining good BG control is a difficult
task. T1D patients must monitor their BG levels throughout
the day and take corrective action whenever they are hyper
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or hypoglycemic. Being able to accurately predict impend-
ing hyper or hypoglycemia would give patients time to in-
tervene and prevent these BG excursions, improving overall
health, safety, and quality of life. Such predictions would en-
able or facilitate numerous potential applications of benefit
to T1D patients, including: (a) alerts warning of immediately
impending problems; (b) recommendations of interventions
to prevent problems; (c) “what if” analysis to project the ef-
fects of different lifestyle choices and treatment options; and
(d) enhanced individual BG profiles that could help physi-
cians tailor treatment to the needs of each patient.

There has been a recent explosion of interest in BG pre-
diction due to its role in closed loop control for the Artificial
Pancreas Project (Juvenile Diabetes Research Foundation
2014). In brief, an artificial pancreas consists of three com-
ponents: an insulin pump; a continuous BG monitoring sys-
tem; and a closed loop control algorithm to tie them together,
so that insulin flow can be continuously adjusted to meet pa-
tient needs (Klonoff 2007; Dassau et al. 2012). Although
still a work in progress, Time Magazine named the artificial
pancreas one of the 25 best inventions of 2013 (Time Mag-
azine 2013). Several recent publications detail related work
in BG prediction (Jensen et al. 2013; Zecchin et al. 2013;
Wang et al. 2014); however, a limiting factor has been the
use of small and/or simulated patient datasets.

Over the past ten years, we have worked on intelligent
decision support systems for patients with T1D on insulin
pump therapy (Marling et al. 2012), and we have amassed
a database of over 1,600 days worth of clinical patient data.
We are now capitalizing on this data to build machine learn-
ing models aimed at predicting BG levels 30 and 60 min-
utes into the future. Since BG measurements have a natural
temporal ordering, we approach the task of predicting BG
levels as a time series forecasting problem. The collected
data consists of blood glucose measurements, taken at five-
minute intervals through a continuous glucose monitoring
(CGM) system, and the corresponding daily events that im-
pact BG levels, such as insulin, meals, exercise and sleep. In
this paper, we describe our machine learning approach and
report on our latest experiments, which focus on the safety-
critical problem of predicting hypoglycemia. The structure
of the paper is as follows: we first introduce a small dataset
on which we assess the prediction performance of diabetes
experts; we then describe a physiological model that is used
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to generate informative features for a support vector regres-
sor; in the following experimental results section we evalu-
ate the performance of the new model, both on the general
blood glucose level prediction and on the more focused task
of hypoglycemic event prediction; the paper ends with con-
clusions and ideas for future work.

Blood Glucose Prediction Dataset
Using data collected from 5 T1D patients, we created an
evaluation dataset of 200 timestamps, 40 points per patient,
with the aim of measuring the prediction performance of ex-
pert physicians. The 200 evaluation points were manually
selected to reflect the diverse set of situations the predictor
would encounter in practice: different times of day or night;
close to or far from each of the possible types of daily events;
on rising, decreasing, or flat BG curves; close to or far from
local minima or maxima of the BG curve – where the lo-
cal optima were either in the past or in the future; or in the
vicinity of inflection points.

To better understand the role of daily events in the dynam-
ics of blood glucose levels, we asked three diabetes experts
to label this evaluation dataset with their 30 and 60 minute
predictions. The annotation exercise was performed using
an in-house graphical user interface (GUI) through which
the doctors could see only the patient data up to the present
time t0. The doctors were able to use the interface to navi-
gate to any day in the past in order to make generalizations
about BG level behavior. Before each annotation exercise,
the doctors were trained to use the annotation user interface
on a separate development dataset of ten points. For each
point t0 in the dataset, the doctors made two predictions:
one for 30 minutes, one for 60 minutes, in this order. After
the two predictions were made for any given point, the sys-
tem displayed the real BG behavior, so that the doctors could
further fine tune their prediction strategy. The dataset anno-
tation was done separately with each of the three doctors.

The root mean square error (RMSE) results of the three
physicians are summarized in Table 1, together with the
performances of two baselines on the same dataset of 200
timestamps. The first baseline, t0, simply assumes that BG
does not change, i.e., stays at its t0 level. The second is
an Auto Regressive Integrated Moving Average (ARIMA)
(Box, Jenkins, and Reinsel 2008) trained on 4 days of CGM
data – an exploratory data analysis had shown that 4 days
gave the lowest RMSE for the ARIMA model. Model iden-
tification for ARIMA was completed with the R statistical
function auto.arima, which uses the Bayes information cri-
terion to determine the orders p and q of the autoregressive
and moving average components, and the Phillips-Perron
unit root test for determining the order d of the difference
component.

The best performing doctors outperform the simple t0
baseline. Most important, however, is the comparison be-
tween the doctors and ARIMA. Our highest scoring doctors,
who use both the CGM data and daily events to perform
prediction, outperform the ARIMA model that is using only
CGM data. Regarding the third doctor’s performance, we
noticed during the annotation sessions that the doctor was
fairly accurate in guessing the trend of the BG levels, but

Table 1: Physician prediction RMSE vs. baselines.

Horizon t0 ARIMA Phys1 Phys2 Phys3
30 min 27.5 22.9 19.8 21.2 34.1
60 min 43.8 42.2 38.4 40.0 47.0

Table 2: Physician prediction cost vs. baselines.

Horizon t0 ARIMA Phys1 Phys2 Phys3
30 min 0.40 0.27 0.20 0.21 0.29
60 min 0.38 0.33 0.27 0.30 0.28

typically overestimated the magnitude of the increase or de-
crease in BG levels. To quantify this behavior, we defined a
ternary classification task with the following three classes:

1. Same (S): the future BG value is within a threshold τ of
the current value.

2. Lower (L): the future BG value is more than τ lower than
the current value.

3. Higher (H): the future BG value is more than τ higher
than the current value.

We used a threshold τ = 5mg/dl for 30 minute prediction
and τ = 10mg/dl for 60 minute prediction. We then eval-
uated performance using a symmetric cost matrix C with a
zero diagonal in which C(L, S) = 0.5, C(H,S) = 0.5,
and C(L,H) = 1. The average costs for each doctor over
the same evaluation dataset are listed in Table 2. While the
first physician still obtains the best results (lowest costs), the
third physician now has results on the 60 minute task that
are better than the baselines and the second physician.

Additional support for the utility of daily event data came
from the live feedback that the doctors generated during the
annotation sessions. In making their predictions, the doctors
would regularly refer to the presence of daily events and
their properties, such as: the timing of meal events, the num-
ber of carbohydrates and meal composition, the frequency
of the bolus events and their type and dosage. This further
reinforced our belief that daily event data is important in BG
prediction, motivating us to explore the utility of physiolog-
ical models in the extraction of informative features for an
adaptive regression model.

Physiological Model
Physiological models try to capture the dynamics of glucose
relevant variables within different systems in the body. For
example, equations have been introduced in the literature for
tracking the carbohydrate intake as it is converted to blood
glucose which then interacts with the kidneys, liver, mus-
cles, and other body systems. Most physiological models
characterize the overall dynamics into three compartments:
meal absorption dynamics, insulin dynamics, and glucose
dynamics (Andreassen et al. 1994; Lehmann and Deutsch
1998; Briegel and Tresp 2002). Since they are based on the
same data, the equations used in the literature to model the
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Figure 1: Variables and dependencies in the physio model.

underlying processes are almost identical (Briegel and Tresp
2002; Duke 2009). For our physiological model, we used
these equations based on the description in Duke’s PhD the-
sis (Duke 2009), with a few adaptations in order to better
match published data and feedback from our doctors.

A physiological model of glucose dynamics can be seen
as a continuous dynamic model that is described by its state
variables X , input variables U , and a state transition func-
tion that computes the next state given the current state and
input variables i.e. Xt+1 = f(Xt, Ut). The vector of state
variables X is organized according to the three compart-
ments as follows:

1. Meal Absorption Dynamics:
• Cg1(t) = carbohydrate consumption (g).
• Cg2(t) = carbohydrate digestion (g).

2. Insulin Dynamics:
• IS(t) = subcutaneous insulin (µU).
• Im(t) = insulin mass (µU).
• I(t) = level of active plasma insulin (µU/ml).

3. Glucose Dynamics:
• Gm(t) = blood glucose mass (mg).
• G(t) = blood glucose concentration (mg/dl).

The vector of input variables U contains the carbohydrate
intake UC(t), measured in grams (g), and the amount of
rapid acting insulin UI(t), measured in insulin units (U).
The value UI(t) at any time step t is computed automati-
cally from bolus and basal rate information. The state tran-
sition function captures dependencies among variables in the
model, as illustrated in Figure 1.

The state transition equations are parameterized with a set
of parameters α and are listed below for each compartment.
For the meal absorption compartment, the equations are:
• Cg1(t+ 1) = Cg1(t) − α1C ∗ Cg1(t) + UC(t) [consumption]

• Cg2(t+ 1) = Cg2(t) +α1C ∗Cg1(t)−α2C/(1 + 25/Cg2(t))
[digestion]

The equations for the insulin compartment are:
• IS(t+ 1) = IS(t) − αfi ∗ IS(t) + UI(t) [injection]

• Im(t+ 1) = Im(t) + αfi ∗ IS(t) − αci ∗ Im(t) [absorption]

The general equation for the glucose compartment
is Gm(t+1)=Gm(t)+∆abs−∆ind−∆dep−∆clr+∆egp,
where:
• ∆abs = α3C ∗ α2C/(1 + 25/Cg2(t)) [absorption]

• ∆ind = α1ind ∗
√
G(t) [insulin independent utilization]

• ∆dep = α1dep ∗ I(t) ∗ (G(t) + α2dep)[insulin dependent uti-
lization]

• ∆clr = α1clr∗(G(t)−115) [renal clearance, only whenG(t) >
115)]

• ∆egp = α2egp∗exp(−I(t)/α3egp)−α1egp∗G(t) [endogenous
liver production]

Finally, the glucose and insulin concentrations depend deter-
ministically on their mass equivalents as follows, where bm
refers to the body mass and IS refers to the insulin sensitiv-
ity:
• G(t) = Gm(t)/(2.2 ∗ bm)

• I(t) = Im(t) ∗ IS/(142 ∗ bm)

The parameters α used in the physiological model were
tuned to match published behavior and further refined based
on feedback from the doctors, who were shown plots of the
dependencies between variables in the model. In order to
account for the noise inherent in the CGM data and the in-
put variables, the state transition equations were used in an
extended Kalman filter (EKF) model (Simon 2006), as de-
scribed in more detail in (Bunescu et al. 2013).

SVR Model with Physiological Features
The state vector computed by the physiological model is
X(t) = [Cg1(t), Cg2(t), IS(t), Im(t), I(t), Gm(t), G(t)].
While the transition equations reflect generic blood glu-
cose behavior, the actual parameters of these equations dif-
fer among patients. Instead of tuning these parameters di-
rectly for each patient, we opted for a simpler approach, us-
ing the state variables to create features for a Support Vector
Regression (SVR) model (Smola and Scholkopf 1998) that
was individualized for each patient, as follows. First, the ex-
tended Kalman filter was run up to the training/test point
t0, with a correction step every 5 minutes, including a cor-
rection at t0. This resulted in a state vector X(t0). The EKF
model was then run in prediction mode for 60 more minutes,
and the state vectors at 30 minutes X(t0 + 30) and 60 min-
utes X(t0 + 60) were selected for feature generation. The
actual physiological features were as follows: all the state
variables in the vectorsX(t0 +30),X(t0 +60), and the dif-
ference vectors X(t0 + 30) −X(t0), X(t0 + 60) −X(t0).
The 4 * 7 = 28 physiological features were augmented with a
set of 12 ∆i features that were meant to encode information
about the trend of the CGM plot in the hour before the test
point t0. Each ∆i feature was computed as the difference
between the BG level at time t0 and the BG level at i time
steps in the past, i.e., ∆i = BG(t0) − BG(t0 − 5i). Fur-
thermore, whenever ARIMA was used to generate features,
it was trained on the 4 days before t0 and then used to fore-
cast the 12 values at 5 minute intervals in the hour after t0.
These values were used as additional features in one version
of the SVR system.

For a given test point t0 in the dataset, the SVR systems
were trained on the week of data preceding t0, using a Gaus-
sian kernel. The width γ of the kernel, the width ε of the
ε-insensitive tube, and the capacity parameter C were tuned
using grid search on the data preceding the training week.
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Table 3: SVR prediction results vs. baselines and highest
scoring doctor results.

Horizon t0 ARIMA Phys1 SVRφ SVRφ+A
30 min 27.5 22.9 19.8 19.6 19.5
60 min 43.8 42.2 38.4 36.1 35.7

Experimental Results
We used the evaluation dataset previously described to com-
pare the following BG prediction systems:

1. ARIMA and the simple t0 baseline.

2. The SVR system that uses physiological features, as de-
scribed above. Two versions of this system were evalu-
ated: with (SVRφ+A) and without (SVRφ) ARIMA fea-
tures.

The RMSE results are summarized in Table 3, in which, for
comparison purposes, we repeat the first three columns of
results from Table 1. The new SVR system that is trained
with physiological features outperforms the t0 and ARIMA
baselines. Most importantly, it also outperforms the best pre-
dictions from our three diabetes experts, thus demonstrat-
ing the utility of physiological modeling for the engineering
of features in machine learning models for blood glucose
level prediction. To determine whether the overall competi-
tive RMSE performance can translate to practical utility, we
conducted an evaluation of the SVR system on the more fo-
cused task of hypoglycemia prediction, as described in the
next section.

Hypoglycemia Prediction
Hypoglycemia prediction is the most critical application of
BG prediction from a clinical perspective. Untreated hypo-
glycemia is a safety hazard for patients, especially for sleep-
ing patients, who are at risk for the “dead in bed” syndrome.
Being able to accurately predict that BG will drop to under
70 mg/dl 30 minutes in advance would give patients time to
intervene and prevent the drop.

The evaluation dataset described above contains 200 eval-
uation points, of which only 13 belong to hypoglycemic re-
gions. In order to estimate the system’s performance on pre-
dicting hypoglycemia, we constructed a much larger dataset
of 5,816 test points as follows. First, consecutive CGM read-
ings under 70 mg/dl were combined into hypo events. Events
that lasted less than 20 minutes, i.e., had 3 or fewer sen-
sor readings, were ignored. The remaining hypo events were
checked for errors that might suggest recent sensor failure,
such as missing data shortly before or after the event. For
each hypo event, a prediction time t0 was selected such that
t0 + 30 was the first point where blood glucose dropped be-
low 70. This resulted in 152 hypo events and corresponding
prediction times. A set of non-hypo points was then sam-
pled automatically such that the overall evaluation dataset
contains a mix of hypo and non-hypo points reflecting the
true distribution. First, the ratio of hypo to non-hypo read-
ings was calculated for each patient. Then, the correspond-
ing number of non-hypo points for that patient was sampled

Table 4: SVR vs. ARIMA performance on hypo prediction.

System TPR FPR P F1

SVR 23.0% 0.8% 42.7% 29.9%
ARIMA 9.9% 0.3% 44.1% 16.2%

Table 5: SVR vs. ARIMA vs. t0 performance.

RMSE Average Cost
System All 30m 60m 30m 60m
SVR 24.4 22.6 35.8 0.27 0.27

ARIMA 27.1 24.9 39.6 0.31 0.33
t0 28.7 26.6 41.7 0.39 0.36

at random from the patient’s CGM data. For example, if a
patient had 64 hypo events and the ratio of non-hypo to hypo
points was 25 to 1, then 1600 non-hypo points were selected
at random from the patient’s CGM history. Each sampled
point was checked to make sure that the BG level did not
fall under 70 mg/dl in the next hour. This procedure resulted
in a new evaluation dataset of 5,816 test points.

During evaluation, each of the 5,816 test points served
as the prediction time t0. The SVR system was trained on
data preceding time t0, and predictions were made for future
timestamps in 5 minute increments, from t0 + 5 to t0 + 60.
If any one of the 12 predictions was less than 70 mg/dl, the
system was considered to have predicted a hypo event. Oth-
erwise, the system was considered to have predicted a non-
hypo event.

Table 4 shows the SVR and ARIMA results on the task
of predicting hypoglycemic events, in terms of sensitiv-
ity/recall (TPR), 1 − specificity (FPR), precision (P), and
F-measure (F1). By definition, the baseline t0 would never
predict hypoglycemia; therefore, it is not shown in this table.
Table 5 compares the SVR system with the ARIMA and t0
baselines in terms of their RMSE and average ternary clas-
sification costs at 30 and 60 minutes.

The results in Table 4 show that the SVR system is able to
predict 23% of the hypoglycemic events with a false positive
rate under 1%. All 47 false positives were for BG readings
under 140 mg/dl, with 32 of them for near-hypoglycemic
readings of 80 mg/dl or lower. Were the model to be used in
practice, patients responding to hypoglycemia alerts at these
BG levels would not be harmed by intervention. While we
are still working to improve sensitivity, results to date pro-
vide proof of concept that the system could alert patients to
impending dangerous situations.

Conclusion
We have described a machine learning approach to pre-
dicting blood glucose levels and presented the results of
recent experiments in hypoglycemia prediction. An SVR
model, informed by a physiological model and trained on
patient specific data, has outperformed diabetes experts at
predicting blood glucose levels and can predict 23% of hy-
poglycemic events 30 minutes in advance. We are working

38



to improve the overall accuracy of our model and its sen-
sitivity to impending hypoglycemia, in part through incor-
porating additional daily events that impact blood glucose
levels into the model. For example, sleep is known to impact
blood glucose levels, but it is not factored into current physi-
ological models. Our database includes patient-entered sleep
records which we are now incorporating. Further, we are ex-
perimenting with newly available, low-cost, noninvasive and
unobtrusive physiological sensors to aid in the automated
identification of relevant daily events. Diabetes management
presents many opportunities for clinicians and artificial in-
telligence researchers to collaborate on challenging research
that could potentially improve health, safety and quality of
life for millions of people living with diabetes.
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