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Abstract—There is a rich literature on the prediction
of coverage in random wireless networks using stochas-
tic geometry. Though valuable, the existing stochastic
geometry-based analytical expressions for coverage are
only valid for a restricted set of oversimplified network
scenarios. Deriving such expressions for more general and
more realistic network scenarios has so far been proven
intractable. In this work, we adopt a data-driven approach
to derive a model that can predict the coverage probability
in any random wireless network. We first show that the
coverage probability can be accurately approximated by
a parametrized sigmoid-like function. Then, by building
large simulation-based datasets, the relationship between
the wireless network parameters and the parameters of the
sigmoid-like function is modeled using a neural network.

Index Terms—Coverage probability, sigmoid function,
neural networks, machine learning, stochastic geometry.

I. INTRODUCTION

Motivated by its tractability, researchers have widely

adopted stochastic geometry to model wireless net-

works performance and understand their behaviors [1].

Valuable and insightful stochastic geometry-based ana-

lytical expressions can be found in the literature [2–

7]. However, to ensure tractability, these expressions

are based on many simplifying assumptions on the

wireless network, which are often unrealistic [2]. For

general network setups, deriving analytical expressions

to predict performance is very often unfeasible.

The following three scenarios illustrate the above-

mentioned limitations.

• Correlated shadowing: most stochastic geometry-

based studies have either neglected shadowing in

the channel modeling, or assumed it to be a spa-

tially independent process, following a log-normal

distribution. Indeed, when spatial correlation is

considered, tractability of the analytical derivations

is in general no longer possible with stochastic

geometry theoretical tools. The authors in [8], [9]

have considered correlated shadowing but assumed

a particular shadowing model and ignored the path

loss component to make the derivations tractable.

Another approach that has been proposed in the

literature is to approximate the interference, which

includes a large number of log-normally distributed

shadowing terms, by a gamma distribution which

simplifies the derivations of the coverage probabil-

ity; see for example [10].

• Non-homogeneous base station distribution: most

stochastic geometry-based studies model the po-

sitions of the base stations using a homogeneous

Poisson point process (HPPP). While this simpli-

fies the analysis, it does not capture the repulsive

nature of the spatial topology observed in real-

world cellular networks; several works have shown

that base stations locations are better modeled us-

ing a Matérn hard-core point process (HCPP) [5],

[11]. This more realistic modeling however under-

mines the tractability of the analytical analysis of

network performance [12].

• Deterministic base station deployment: deriving a

closed-form expression for the average coverage

probability in this scenarion is a challenging task.

Indeed, random spatial distribution models for BS

positions simplify the analytical derivations. In-

troducing specific locations of BS in the network

generally undermines the tractability of the deriva-

tions [6].

The main objective of this paper is to propose an

easy-to-apply and practical approach to predicting net-

work performance for any given network setup, which is

characterized here by several network features describ-

ing the channel modeling, the base station distribution,

user association scheme, etc. Our approach is data-

driven and borrows machine learning tools to determine

an accurate mapping between the network features and

its performance. In this paper, the performance metric

is the coverage probability of a typical user, but the

approach could be applied to other performance metrics.

A. Related work

Deriving a closed-form expression of the coverage

probability as a function of the network parameters is

often a daunting task. In general, simplifying and of-

ten unrealistic assumptions such as Rayleigh channels,

uncorrelated shadowing, or closest base station user-

association are often considered to simplify the analysis.



Even with such assumptions, advanced mathematical

techniques are involved in order to compute the cov-

erage probability. As reported in [4], five techniques

are commonly used to calculate coverage probability in

stochastic geometry based networks. In general these

techniques either (i) rely on the Rayleigh fading as-

sumption, (ii) consider only the dominant or a limited

number of the nearest interferers, (iii) approximate the

probability density function (pdf) of the sum of the

interference, (iv) use Plancherel-Parseval theorem, (v)

or finally, invert the moment of the generating function

to obtain the pdf of the interference. These many

complicated mathematical processes involved in cover-

age probability computation make it difficult to have

an easy-to-apply and practical approach to coverage

prediction. Under these circumstances, the development

of a general framework that captures the real complexity

of the network system and proposes accurate, yet simple

and direct, coverage probability prediction is of a great

importance.

In the last few years, there has been a large interest in

machine learning (ML) techniques to provide accurate

analytical models based on the statistical analysis of

data [13]. The main success of machine learning tech-

niques can be attributed to its ability to map various

network parameters to the network’s response. Unlike

the theoretical tools provided by stochastic geometry, a

ML based approach captures the real complexity of the

network by running a large number of measurements

and/or experiments and proposes a mapping between

input features and the output feature (network perfor-

mance).

In [14] and [15], comprehensive surveys on the

potential use of machine learning in 5G networks and

wireless sensor networks, respectively, are provided.

In [16], the authors compare a measurements-based pre-

diction model to the signal-to-interference-and-noise-

ratio (SINR) theoretical model. The paper shows that

the ML approach outperforms the traditional SINR

based model by providing results that are closer to

the real measurements. Their ML approach is also

used to predict the achievable throughput, and can thus

be used for resource allocation optimization. In [17],

the authors describe the experimental environment and

methodologies to model the throughput of a trans-

mission control protocol connection. The experimental

results therein show that the throughput can be predicted

with a very high accuracy using a support vector

machine model [18]. In [19], the authors show that

operators and service providers can adapt their services

and contents using prediction models based on user’s

experience feedback. In particular, a supervised ML

technique is proposed to overcome video starvation in

large-scale wireless networks. Other machine learning

applications can be found in [20] and [21]. In [20],

a machine learning approach is proposed for drones

to build a radio map that supports their path planning

and positioning. In [21], the authors propose a neural

network based approach for a better handover decision

in heterogeneous networks. This approach was shown

to improve the quality of service perceived by the users.

In [22], the authors propose a distributed deep neural

network to learn the optimal power allocation for a

device-to-device network. The main advantage of such

an approach is to reduce the computational complexity

caused by optimization-based algorithms.

B. Contribution

In this work, we are interested in the prediction of

coverage probability of a typical user in a random

wireless network using machine learning. To the best

of our knowledge, this has not been addressed before.

The contribution of this paper is twofold.

1) First, by running a large number of simulations, we

show that the coverage probability can be closely

approximated using a parametrized sigmoid-like

function.

2) Second, we propose to use the exceptional ability

of neural networks (NN) to approximate compli-

cated functions in order to estimate the parameters

of the sigmoid-like function from the feature set

that characterizes the random wireless network,

namely: base stations spatial intensity, path loss ex-

ponent, Nakagami-channel parameter, log-normal

shadowing variance, log-normal spatial correlation,

the BS transmit power, and background noise

variance. This modeling is carried out for two user-

association schemes.

C. Structure

The rest of the paper is organized as follows. The next

section describes the studied system model. Section III

presents the proposed coverage probability approxima-

tion. Section IV proposes a method to learn the model’s

parameters using NN, and presents accuracy results.

Finally, concluding remarks and possible extensions of

this work are provided.

II. SYSTEM MODEL

In this section, we explain the general framework

of our simulations. We consider a cellular network

where the base stations (BS) are randomly distributed

on the 2D plane following either (i) a homogeneous

Poisson point process (PPP) of intensity λ (ii) or a

HCPP extracted from a PPP with the same intensity

λ, with a given radius of the guard zone Rc, (iii)

or a deterministic base station deployment with the

same intensity λ (here, we consider the conventional

hexagonal pattern) as described in Fig. 1. Without loss

of generality, we assume a typical user at the origin

of the 2D plane. We assume two BS-user association
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Fig. 1: (a) A PPP realization of base stations with λ = 4.4∗10−6 BS/m2 , (b)

A HCPP realization of base stations extracted from a PPP with λ = 4.4∗10−6

BS/m2 when Rc = 200 m, (c) 256 BS positions following a hexagonal

pattern.

schemes: (i) the user is associated with the nearest

base station (Nearest Base station Association Scheme,

NBAS), (ii) the user is served by the BS that provides

the best signal-to-interference-and-noise ratio (SINR)

(SINR Maximization Association Scheme, SMAS). Let

b0 denote the BS serving the typical user. In this paper,

we focus on the downlink communication. The SINR

experienced by the typical user is given by

SINR =
d−α
b0

Gb0gb0Pb0

σ2 +
∑
b 6=b0

d−α
b GbgbPb

, (1)

where Pb is the transmit power of BS b, db is the

distance between the typical user and BS b, α ∈ [2, 6] is

the path loss exponent, Gb is the channel power gain due

to shadowing, gb is the small-scale fading power gain.

In our simulations, we focus on the following setup: all

BS transmit powers are equal to each other i.e. Pb =
Pb0 = P, ∀b; the small-scale fading follows the general

Nakagami distribution, i.e. gb ∼ Γ(m, ω
m ) follows a

gamma law of parameters (m, ω
m ); the shadowing is

log-normally distributed, i.e. log(Gb) ∼ N (0, σ2
s). and

is spatially correlated; the spatial correlation between

two shadowing gains depends on the distance between

the corresponding BS, as described by 3GPP in [23], i.e.

the correlation between the shadowing gains associated

with BS i and BS j, R(i, j), is an exponentially

decreasing function of the distance separating the two

BS, ∆di,j , and so R(i, j) = exp(
−∆di,j

dcor
) where dcor is

the correlation distance which controls the strength of

the spatial correlation.

We are interested in the coverage probability of the

typical user, which is defined as the probability that the

SINR of that user is above a given threshold τ , i.e.

pc(τ) = P(SINR > τ). (2)

In the case of hexagonal grid model for BS positions,

we assume that the center of the grid is random in order

to be able to use the same definition for the coverage

probability as in the case of PPP and HCPP models.

III. MODELING THE COVERAGE PROBABILITY

We have generated a large number of network setups

with different values of the path loss exponent, BS

intensity, Nakagami channel parameter, transmit power-

to-noise ratio γ = P/σ2, variance of shadowing and

correlation distance, and for each network setup, we

have generated a large number of network realizations.

For each network setup, we have estimated the average

coverage probability for typical values of the threshold

τ . Examples of these estimation results are provided

in Fig. 2. For each network setup, curve-fitting using

the non-linear least squares method and different fitting

models is then performed to model the average coverage

probability of the typical user versus the threshold τ .

The simulation results indicate curve-fitting provides

more compact models when applied to the logarithm

of the SINR. Hence, we define the following coverage

probability function

p̃c(τdB) := pc(10
τdB/10), (3)

where τdB is the SINR threshold in dB. Our extensive

simulations results led to the following proposition.

Proposition The coverage probability of the typical

user in a random wireless network can be accurately

described by the following parameterised sigmoid-like

function

p̃c(τdB) ≈
1

1 + exp(−βpτ
p
dB − · · · − β1τdB − β0)

,

(4)
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Fig. 2: (a) Coverage probability for correlated and uncorrelated shadowing and PPP base stations locations, with NBAS, σ2 = −100 dB, P = 1 mw,

λ = 1.2 ∗ 10−6 BS per m2, m = 2, dcorr = 150 m, σs = 50 (b) Coverage probability for correlated and uncorrelated shadowing and PPP base stations

locations, with NBAS, σ2 = 0 mW, P = 1 mw, λ = 1.2 ∗ 10−6 BS per m2, m = 2, dcorr = 150 m, σs = 50 (c) Coverage probability for correlated

shadowing and HCPP base stations locations, with NBAS, σ2 = −100 dB, P = 1 mw, λ = 1.2 ∗ 10−6 BS per m2, Rc = 200 m, m = 2, dcorr = 150
m, σs = 50(d) Coverage probability for correlated and uncorrelated shadowing and HCPP base stations locations, with NBAS, σ2 = 0 mW, P = 1 mW,

λ = 1.2 ∗ 10−6 BS per m2, Rc = 200 m, m = 2, dcorr = 150 m, σs = 50 (e) Coverage probability for correlated shadowing and PPP base stations

locations, with different BS-user associations scheme, σ2 = −100 dB, P = 1 mw, λ = 1.2 ∗ 10−6 BS per m2, m = 2, dcorr = 150 m, σs = 50 ,(f)

coverage probability for 256 BS and correlated shadowing, with NBAS, σ2 = −100 dB, P = 1 mW, m = 2, dcorr = 150 m, σs = 50.

where the value of vector β = (β0, β1, . . . , βp), which is

obtained through curve-fitting, depends on the network

parameters. �

In our simulations, the maximum value of the degree

of the polynomial in the above sigmoid-like function

was p = 3. More precisely, p = 2 was sufficient

when the user association scheme was based on the

nearest BS, and p = 3 when it was based on SINR

maximization.

As seen from the examples described in Fig. 2,

a very good fit can be provided using the sigmoid-

like approximation. Using 500000 network setups, i.e.

randomly selecting network parameters from typical

value intervals, and millions of network realizations, the

average value of R-square of the sigmoid-like modeling

is around 0.98.

The result in the above proposition allows to pre-

dict the coverage probability for a typical user for

a given network setup but to determine the values

of the sigmoid-like function parameter vector β, one

would still have to run Monte Carlo simulations. In

the next section, we will build large datasets consisting

of network parameter values and the corresponding

estimated values of β, and use machine learning tech-

niques to learn the relationship between the network

parameters and β. This would allow to predict the

coverage probability for any network setup without

running Monte Carlo simulations, as is the case when

stochastic geometry-based closed-form expressions of



coverage are available.

IV. LEARNING THE SIGMOID-LIKE MODEL

PARAMETERS

In order to determine the curve-fitting parameters

β = (βp, . . . , β1, β0), we design and implement a

machine learning system that applies a feed forward

neural network to estimate the fitting parameters.A NN

model is built for each of the spatial models of the

wireless network (PPP, HCPP and hexagonal). For each

spatial model, we first build large dataset consisting of

network features, namely path loss exponent, base sta-

tions density, transmit power-to-noise ratio γ = P/σ2,

shadowing variance, and correlation distance, and ra-

dius of the guard zone in the case of HCPP, and the

corresponding estimates of β. We denote the network

parameters by the vector θ, which is given by θ =
(α, λ,m, γ, σ2

s , dcorr) in the case of PPP and hexagonal

grid networks, and θ = (α, λ,Rc,m, γ, σ2
s , dcorr) in the

case of HCPP. The input features of the neural network

are the network parameters and the output features are

the elements of parameter vector β; see Fig. 3. The

proposed NN is composed of M layers with Nm being

the number of neurones of the mth layer. .

A. Dataset Construction

In order to train our NN, we need to build a dataset.

For this, we run a large number of simulations with

various network setups, i.e different values of θ. For

each scenario, we compute, using Monte Carlo (MC)

simulations, the corresponding coverage for the typical

values of the SINR threshold τdB ∈ [−30, 30] dB.

By fitting the model described in equation (4) to the

obtained coverage results, we collect the vector β that

matches the studied scenario. By the end of this iterative

process, we obtain the desired dataset. Table. I gives an

idea about how our dataset is structured in the case

of PPP networks; values of the network features are

randomly drawn from the the typical intervals shwon

in Table. II. Our dataset is constructed using Matlab

and Simulink curve-fitting tools.

The generated dataset, denoted by S , consists of

S = {(θ(1),β(1)), . . . , (θ(n),β(n))}, (5)

where θ(j) and β(j) denote respectively the j-th input

and j-th output feature vectors, and n is the size of the

dataset. The dataset is randomly split between a training

set, which represents 80% of the entire dataset, and test

set.

B. Cost function

The cost function allows to tune the NN parameters,

denoted by vector ψ, in order to obtain the best match-

ing between the actual and predicted outputs. We choose
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Fig. 3: Neural networks plots for β2 estimation.

this to be the conventional mean square error (MSE),

given by the following expression

J(ψ) =
∑

k∈NT

‖β(k) − f(θ(k);ψ)‖2. (6)

where f(θ(k);ψ) is the output of the NN to input θ(k)

and thus the estimate of β(k), and NT refers to the

training dataset. The optimum NN parameter vector ψ

is obtained by minimizing the above cost function using

a retropropagation algorithm.

C. Neural network model

Different neural networks are implemented using

neuralnet package in R studio. Comparing the different

NN models, we observed that a three-layer NN is

sufficient to achieve very high accuracy, and having

more than three layers did not significantly improve the

prediction accuracy.

In the case of PPP networks, after convergence, the

part of the NN which predicts β2 is shown in Fig. 3.

D. Accuracy results

In order to illustrate the accuracy of the NN-base

modeling, we select some PPP network scenarios and

depict in Figure 4 the estimated coverage (based on

Monte Carlo simulations) and the NN-based coverage

probability prediction. As shown in the figure, the NN-

based model provides a very accurate prediction of the

coverage probability.

V. CONCLUSION

In this paper, we have shown, through extensive

simulations, that the coverage probability can be closely

approximated by a parameterised sigmoid-like function.

In order to determine the parameters of the sigmoid-ike

function directly from the network parameters (e.g. path

loss exponent, BS density etc), we have proposed to use

a neural network model to characterise the mapping

between these two sets of parameters. As a future

work, we will compare the proposed approach to other

existing approximations, and in particular, those that are



Input features Output vector

α λ(BSperKm2) m σ2
s

dcor(m) γ β0 β1 β2

2 32 2 4 30 10 −3.57 −0.0763 8.05 ∗ 10−5

4 22 2 4 37 ∞ −2.72316444 −0.03 0.0005
. . . . . . . . . . . . . . . . . . . . . . . . . . .

TABLE I: Dataset sample for p = 2.

Parameter Typical intervals

Density of PPP [0.44, 0.6] ∗ 10−5 BS per m2

Path loss exponent [2, 6]
Power-to-noise ratio [10,+∞[
Nakagami parameter [1, 4]
Variance of shadowing [4, 6]
Correlation distance [5, 37]m

TABLE II: Simulation settings
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Fig. 4: Predicted coverage vs Monte Carlo simulations. For these simulations,

λ = 4.4 ∗ 10−6 BS per m2, dcor = 37m, σ2 = −100 dB, Pb = 1 mW.

based on the gamma approximation of the interference

distribution.
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