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A machine learning approach to radiogenomics of breast

cancer: a study of 922 subjects and 529 DCE-MRI features
Ashirbani Saha 1, Michael R. Harowicz1, Lars J. Grimm1, Connie E. Kim1, Sujata V. Ghate1, Ruth Walsh1 and Maciej A. Mazurowski1,2,3

BACKGROUND: Recent studies showed preliminary data on associations of MRI-based imaging phenotypes of breast tumours with
breast cancer molecular, genomic, and related characteristics. In this study, we present a comprehensive analysis of this
relationship.
METHODS: We analysed a set of 922 patients with invasive breast cancer and pre-operative MRI. The MRIs were analysed by a
computer algorithm to extract 529 features of the tumour and the surrounding tissue. Machine-learning-based models based on the
imaging features were trained using a portion of the data (461 patients) to predict the following molecular, genomic, and proliferation
characteristics: tumour surrogate molecular subtype, oestrogen receptor, progesterone receptor and human epidermal growth
factor status, as well as a tumour proliferation marker (Ki-67). Trained models were evaluated on the set of the remaining 461 patients.
RESULTS: Multivariate models were predictive of Luminal A subtype with AUC= 0.697 (95% CI: 0.647–0.746, p < .0001),
triple negative breast cancer with AUC= 0.654 (95% CI: 0.589–0.727, p < .0001), ER status with AUC= 0.649 (95% CI: 0.591–0.705,
p < .001), and PR status with AUC= 0.622 (95% CI: 0.569–0.674, p < .0001). Associations between individual features and subtypes
we also found.
CONCLUSIONS: There is a moderate association between tumour molecular biomarkers and algorithmically assessed imaging
features.

British Journal of Cancer (2018) 119:508–516; https://doi.org/10.1038/s41416-018-0185-8

INTRODUCTION
Radiogenomic1 (a.k.a. imaging-genomic) analysis of breast
cancer, which investigates the relationship between breast
tumour imaging characteristics and tumour molecular, genomic,
proliferation, and related features, has been gaining significant
interest in recent years.2–18 Establishing a strong relationship
between tumour imaging phenotypes and molecular markers
could provide a non-invasive surrogate means of genomic
analysis. This could be done by using a non-invasive imaging
signature instead of a genomic signature that requires invasive
tissue sampling. Otherwise, these relationships could help
identify groups of patients that may benefit from additional
genomic analysis.
Previous studies2,3,5,7–16,18 have demonstrated the potential for

radiogenomic associations in breast cancer, predominantly
associations of MR imaging features with molecular subtype or
gene assays to predict cancer recurrence. However, as shown in
Table 1, the majority of the prior studies on breast radiogenomics
have used moderate sample sizes (most studies to date used
<100 subjects) and small numbers of imaging features (typically
<100). Also, only two prior studies have used an independent
validation set to study the predictive ability of their imaging
features.3,18 Consequently, the reported strengths of the imaging
associations have varied widely. For example, for discriminating
triple-negative breast cancer versus other subtypes, area under

the curve (AUC) values of 0.92 in a study,3 0.79 in another study,18

0.78 in a different study,11 and 0.67 in another study17 were
reported. Furthermore, each study uses a different, often very
limited, set of imaging features which renders the comparison of
specific results infeasible.
In this study, we address this issue by presenting a

comprehensive study of associations of tumour surrogate
molecular subtype, receptor status, and proliferation of a set
of 922 patients and 529 MR imaging features. The dataset’s
heterogeneous imaging parameters (manufacturer, magnetic
field strength, acquisition parameters) ensure that the results are
not limited to a very specific MR setting. The set of features used
in this study was constructed to represent a wide range of
imaging characteristics including size, shape, texture, and
enhancement of both the tumour and the surrounding tissue.
We included both features published in the literature as well as
those developed in our laboratory and developed machine
learning-based multivariate models to test the effectiveness of
these features.

MATERIALS AND METHODS
Patient population
In this local institutional board approved study, we identified
1150 consecutive female patients, from 1 January 2000 to 23

www.nature.com/bjc

Received: 6 January 2018 Revised: 14 June 2018 Accepted: 25 June 2018
Published online: 23 July 2018

1Department of Radiology, Duke University School of Medicine, Durham, NC 22705, USA; 2Department of Electrical and Computer Engineering, Duke University, Durham, NC

22705, USA and 3Duke University Medical Physics Program, Durham, NC 22705, USA

Correspondence: Ashirbani Saha (ashirbani.saha@duke.edu)

© Cancer Research UK 2018

http://orcid.org/0000-0002-7650-1720
http://orcid.org/0000-0002-7650-1720
http://orcid.org/0000-0002-7650-1720
http://orcid.org/0000-0002-7650-1720
http://orcid.org/0000-0002-7650-1720
mailto:ashirbani.saha@duke.edu


March 2014 with invasive breast cancer and available
pre-operative MRI at our institution. A waiver for informed
consent was also secured for this study. Patients with
prior breast surgery, history of breast cancer, or neoadjuvant
therapy prior to the MRI acquisition were excluded. From
these patients, 922 patients were selected for our study
using the specific criteria shown in Fig. 1. These 922 patients
included 271 patients that were used in our earlier much more
limited analyses6,19 which in addition to analysing a notably
smaller cohort, did not investigate the associations of MR
imaging features with ER, PR, and HER2 status, and proliferation
marker (Ki-67). Our previous studies with the subset of this
cohort also did not validate the findings on an independent
test set.

Pathology data
Pathology results from the first immunohistochemistry (IHC)
analysis, or the clinician’s note if not available (n= 65), were
reviewed for the ER, PR, and H2 status. An Allred score from the
IHC greater than or equal to 3+ was considered positive for ER
and PR. For the determination of HER2 status, an IHC HER2 score
of 3+, or a score of 2+ with an additional condition of
amplification of HER2 gene by FISH (PathVysion Her2 DNA Probe
kit, Abbott Laboratories, Chicago, IL)6 was considered positive.
Following the criteria described in earlier publications,20,21 the
surrogate molecular subtype was determined as: Luminal A (ER
and/or PR positive, HER2 negative), Luminal B (ER and/or PR

positive, HER2 positive), HER2 (ER and PR negative, HER2 positive),
triple-negative (ER, PR, and HER2 negative). We also recorded the
proliferation marker (Ki-67) values from the initial IHC data, when
available. Ki-67 was considered high if it was greater than 14 as in
refs. 22,23. Additionally, the majority (84%) of tumours were ductal,
10% were lobular, 4% belonged to other categories, and 4% did
not have this data available.

Imaging data
For the patients included in our study, we collected axial breast
MRIs that were acquired by 1.5T or 3T scanners in the prone
position. Scanner related details and MR acquisition parameters
can be found in Supplementary material (Tables S1 and S2,
respectively). The following MRI sequences were available: a
non-fat saturated T1-weighted sequence, a fat-saturated gra-
dient echo T1-weighted pre-contrast sequence, and typically
four post-contrast T1-weighted sequences acquired after the IV
administration of contrast agent (using a weight-based protocol
of 0.2 mL/kg). In our cohort, three types of contrast agents were
used as follows: gadobutrol (Gadavist, Bayer Healthcare, Berlin,
Germany) for 2 (0.2%) patients, gadopentetate dimeglumine
(Magnevist, Bayer Healthcare, Berlin, Germany) for 560 (60.8%)
patients, and gadobenate dimeglumine (Multihance, Bracco,
Milan, Italy) for 263 (28.5%) patients. The specific name of the
contrast agent used was not available for 97 (10.5%) patients.
The median acquisition time between a pair of post-contrast
sequences was 131 s.

Table 1. Prior studies reporting association of breast MR imaging features and genomic characteristics

First author, year and
reference

Number of imaging
features from MR

Number of patients (dataset
information: S for single and
M—for multiple institutions)

Breast cancer related principal
research question

Uematsu et al.9 9 176 (S) Correlation of Imaging features and
pathologic findings in TNBC and non-
TNBC

Costantini et al.14 14 225 (S) Comparison of imaging features of
TNBC and non-TNBC

Yamamoto et al.7 26 10 (M) Association of imaging features and
interferon breast cancer subtype

Sung et al.8 7 321 (S) Comparison of imaging features of
TNBC and non-TNBC

Agner et al.13 120 65 (S) Imaging features for predicting TNBC
and other cancers

Mazurowski et al.15 23 48 (M) Association of imaging features and
molecular subtypes

Blaschke et al.10 6 112 (S) Association of imaging features and
molecular subtypes

Grimm et al.6 56 275 (S) Association of imaging features and
molecular subtypes

Guo et al.12 38 91 (M) Integrated radiomics and genomics
data to predict clinical phenotypes

Wang et al.11 85 84 (M) Association of imaging features of
background parenchymal
enhancement and TNBC

Yamaguchi et al.16 5 186 (S) Association of imaging features and
molecular subtypes

Li et al.17 37 91 (M) Association of imaging features and
molecular subtypes

Fan et al.3 88 96 (S) Association of imaging features and
molecular subtypes

Wu et al.18 35 210 (M) Association of imaging features and
molecular subtypes

TNBC triple negative breast cancer
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Each case was annotated by one of eight fellowship-trained
breast imagers (1–22 years of post-fellowship experience, 3–32%
of cases annotated by different readers). For each patient, a
graphical user interface developed in our laboratory displayed to
the reader the following MR sequences: (a) pre-contrast, (b) first
post-contrast, and (c) subtracted (obtained by subtracting the pre-

contrast from the first post-contrast). Tumours were delineated by
three-dimensional boxes provided by the reader.

Image segmentation
Using a reader’s annotation (3D box), we applied a fuzzy C-means
automatic segmentation24 to obtain the tumour mask. The breast

1150 consecutive female patients from 1 January 2000 to 23 March 2014 with invasive breast

cancer and available pre-operative MRI at our institute with no breast surgery (definitive or non-

definitive) or history of breast cancer or neoadjuvant therapy prior to MRI

18 patients excluded:

1132 patients for further assessment

173 patients excluded

37 patients excluded

959 patients for annotation and image pre-processing

922 patients included in the study

Incomplete pathology data

Incomplete history in medical records

161

3

9

Sagittal MRI

Readed did not mark any abnormality23

1

13

Wrongly marked abnormality

Software failure in image reading or pre-processing

Missing fat-saturated pre/post-contrast sequence,

unclear MRI tags and discordant number of slices

T1 not-fat saturated MRI sequence not available

14

4

Fig. 1 Flowchart of inclusion and exclusion criteria for patients

Imaging features from breast MRI (529)

1. Breast and fibroglandular tissue

volume features (5)

2. Tumour size and morphology (10)

3. Fibroglandular tissue enhancement (82)

9. Fibroglandular tissue enhancement variation (34)

6. Fibroglandular tissue enhancement texture (176)

10. Tumour enhancement variation (35)

7. Tumour enhancement texture (135)

8. Tumour enhancement spatial heterogeneity (4)

4. Tumour enhancement (30)
5. Combining tumour and fibroglandular tissue

enhancement (18)

Used voxels’ intensity values only

(130)
Used image intensity values

+

additional relationship

(384)

Used spatial relationship

(use of information from

the neighbouring voxels)

(315)

Used variability (in values over

time or in values only) of

enhancement features without

considering spatial relationship

(69)

Used MRI voxels’ intensity values after

extraction of masks

(514)

Did not use MRI

voxels’ intensity

values after

extraction of masks

(15)

Fig. 2 Feature distribution as per the different groups
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and fibroglandular tissue masks were automatically extracted from
the N4-corrected25 T1-non-fat saturated (T1-NFS) images and first
post-contrast sequences. Thus, we had four masks extracted for
each patient: (a) tumour (semi-automatic) (b) breast mask
(automatic) (c) fibroglandular tissue (FGT) mask from T1-NFS
(automatic) (d) FGT mask from post-contrast sequence (auto-
matic). We removed any tumour voxels overlapping with the FGT
masks to arrive at the final FGT masks used for feature extraction.

Imaging feature extraction and organisation
A review of the literature on breast MR image processing,
computer-aided diagnosis, and radiomics guided our feature
selection. The goal was to compile a comprehensive set of
features that have been shown to be effective predictors and
could quantify characteristics of the breast, tumour, and FGT.
Based on the source and the nature of image processing
represented by a feature, we categorised all features as shown
in Fig. 2. Based on the type of the feature extracted, different
subsets of the available MR sequences were used (all of them if
necessary).
Features were derived from the following sources: (a) features

that capture the properties of breast as a whole are in category 1, (b)
categories 2, 4, 7, 8 and 10 quantify characteristics of the tumour, (c)
characteristics of FGT are expressed by features included in
categories 1, 3, 6 and 9, and (d) category 5 represents features
that capture the properties of tumour and FGT enhancement
simultaneously. As per the image processing, (a) features in
categories 1 and 2 do not require the voxel intensity values after
the extraction of the corresponding masks (b) features in categories
3, 4 and 5 use voxel intensity values for capturing tumour/tissue
enhancement but the spatial relationship of the voxels are not
explored, (c) features in categories 6, 7 and 8 exploit the spatial
relationship of the voxels while quantifying enhancement (d)
features in categories 9 and 10 use variation in enhancement over
time or in values but does not use the spatial relationship.
The list of the features are available in the Appendix

(Supplementary Material A) of our previous publication.26

Training and test sets
Half (461) of the available 922 patients were included in our
training set and the remaining 461 were included in our test set.
The training set included 271 patients that were used in our earlier
analyses6 to minimise the potential bias that could arise by
including such cases in the test set since we have worked with this
subset of data previously. A random split of the remaining data
was used to arrive at the equal split between the training set and
the test set.

Model development and statistical analysis
The primary goal of this study was to evaluate whether machine
learning-based multivariate models based on imaging features
can distinguish between different tumour subtypes and can
predict molecular, genomic, and proliferation markers such as ER
status, PR status, HER2 status, and proliferation (Ki-67). We
considered eight-specific prediction tasks corresponding to eight
radiogenomics associations where an imaging-based model aims
to distinguish: (1) Luminal A versus other subtypes, (2) Luminal B
versus other subtypes, (3) HER2 versus other subtypes, (4) TNBC
versus other subtypes, (5) ER positivity versus OR negativity, (6) PR
positivity versus PR negativity, (7) HER2 positivity versus HER2
negativity, and (8) high Ki-67 versus low Ki-67.
A multivariate model for each of these 8 tasks was developed

using the training set in a following manner. First, N features
with the highest area under the receiver operating characteristic
(ROC) curve (AUC) were selected using the corresponding
feature as the independent variable and the binary label
pertinent to the task as the dependent variable. Then features
with high absolute value of correlation (>c) with other features

were removed from the feature set to form a pre-selected
feature set. Then a random forest classifier was trained using the
pre-selected set of features. The parameters of the random
forest classifier (number of features that are selected for each
tree and number of cases included in each tree leaf) as well as
the parameters N and c described above were selected through
a cross-validation experiment within the training set in which
the training and evaluation were repeated multiple times for a
range of values of the four parameters. The parameters that
provided the highest cross-validation AUC were selected. This
procedure was repeated separately for each of the 8 classifica-
tion tasks resulting in one final model trained using the training
set for each of the tasks. Once the parameters were optimised
and the models were developed using the training set, they
were evaluated on the independent test set using area under
the ROC curve metric. Confidence intervals were estimated
using the DeLong method27 and the significance of the
association was established using a logistic regression model
using the classifier output as the covariate. A p-value <0.00625
(0.05/8 models) was considered significant. An additional
analysis was conducted in subgroups formed in the test sets
based on the scanner manufacturers (GE and Siemens), race
(white and other races), and menopausal status (pre and post).
The grouping within the race category was done in order to
have a sufficient number of cases in each subgroup (some races
have a very low representation in our cohort).
Furthermore, we conducted an exploratory analysis to establish

which individual features showed the highest association with the
molecular markers. Specifically, for all features, we computed the
AUC for the eight prediction tasks on the training set. We sorted
the features in descending order according to AUC and removed
highly correlated features (|r| > 0.5) to select the top (N= 10)
features for each of the eight prediction tasks. For tasks (1–4), we
removed repeated occurrences of any feature to arrive at a set of
37 unique features and calculated the AUCs and confidence
intervals for these selected features on the test set. For each of
tasks (5–8) we computed AUCs and confidence intervals for 10
features.
All analysis, except for the computation of confidence interval

was conducted in MATLAB, 2016b (MathWorks, Natick, Mass). The
confidence intervals were computed in R, version 3.4.0 (http://
www.r-project.org/).

RESULTS
Table 2 shows the patient clinical characteristics. The distribution
of patients according to molecular biomarkers, in the training and
test set shown in Table 3 are very similar.
The results from the multivariate models are presented in

Table 4. Regarding molecular subtypes, the highest performance
was obtained for the models distinguishing Luminal A from other
subtypes with AUC= 0.697 (95% CI: 0.647–0.746, p < 1.24e−11)
and TNBC from the other subtypes AUC= 0.654 (95% CI:
0.589–0.720, p < 1.42e−05). The performances for distinguishing
HER2 from other subtypes and for Luminal B from other subtypes
were somewhat lower and did not reach statistical significance
(p= 0.03 and p= 0.13, respectively). Regarding individual mole-
cular markers, the models showed significant prognostic value for
distinguishing ER+ from ER− patients (p < 4.2e−06), PR+ from
PR− patients (p < 1.93e−04). The model for predicting high vs low
proliferation (Ki-67) showed AUC= 0.624 with a p-value on the
margin of significance (p= 0.01).
The results for the subgroup wise analysis using the test set are

shown in Table 5. No notable and systematic differences in the
performance of the trained models were observed in the
subgroups for a majority of the tasks. A minor difference was
found in the task of discriminating TNBC patients from other
subtypes between the pre and post-menopausal cohorts. Some

A machine learning approach to radiogenomics of...

A Saha et al.

511

http://www.r-project.org/
http://www.r-project.org/


differences were observed in the discrimination of high Ki-67 from
low Ki-67 for different scanner manufacturer, races, and meno-
pausal status.
The results for the exploratory univariate analysis are presented

in Figs. 3 and 4. The number of features with AUC confidence

interval not overlapping with 0.5 was 18, 4, 18, and 11 for the tasks
of distinguishing Luminal A, Luminal B, HER2, and TNBC from
other subtypes, respectively. All but two of these features
maintained their directionality as obtained from the training set.
Except for 4 features, all of these features were extracted from the
tumour only. Among these 4 features, 2 were extracted from FGT
and 2 were extracted using both tumour and tissue, a result
consistent with.15 The higher values of AUCs were obtained for
discriminating HER2 molecular subtype versus others and Luminal
A versus other subtypes.
For ER positivity versus ER negativity, 5 features were found to

have AUC higher than 0.5 for the lower bound of the confidence
interval of AUC. This condition was met by 7, 5, and 4 features for
PR positivity versus PR negativity, HER2 positivity versus negativity,

Table 2. Clinicopathological characteristics of the overall patient population, by molecular subtypes, receptor status positivity and Ki-67 availability

Patient characteristics Entire cohort Luminal A Luminal B HER2 TNBC ER positive PR positive HER2
positive

Ki-67

Number of patients 922 (100%) 595 (64.53%) 104 (11.27%) 59 (6.39%) 164 (17.79%) 686 (74.40%) 598 (64.86%) 163 (17.68%) 450 (48.81%)

Median age (age range)
in years

52.25
(21.75–89.49)

53.61
(25.7–89.49)

46.54
(29.78–79.52)

51.92
(27.14–79.08)

50.4
(21.75–80.70)

52.82
(25.7–89.49)

52.42
(25.7–89.49)

48.38
(27.1–79.52)

52.5
(23.98–80.46)

Race

White 651 (70.61%) 442 (74.29%) 75 (72.12%) 36 (61.02%) 98 (59.76%) 510 (74.34%) 453 (75.75%) 111 (68.10%) 332 (73.38%)

Black 203 (22.02%) 107 (17.98%) 21 (20.19%) 15 (25.42%) 60 (36.59%) 123 (17.93%) 103 (17.22%) 36 (22.09%) 88 (19.56%)

Others* 49 (5.31%) 30 (5.04%) 8 (7.69%) 6 (10.17%) 5 (3.05%) 38 (5.54%) 27 (4.52%) 14 (8.59%) 21 (4.67%)

Not available 19 (2.06%) 16 (2.69%) 0 2 (3.39%) 1 (0.61%) 15 (2.19%) 15 (2.51%) 2 (1.23%) 9 (2.00%)

Menopausal status

Pre 407 (44.14%) 240 (40.34%) 59 (56.73%) 23 (38.98%) 85 (51.83%) 293 (42.71%) 263 (43.98%) 82 (50.31%) 198 (44.00%)

Post 499 (54.12%) 344 (57.82%) 43 (41.35%) 36 (61.02%) 76 (46.34%) 380 (55.39%) 323 (54.01%) 79 (48.47%) 249 (55.33%)

Not available 16 (1.74%) 11 (1.85%) 2 (1.92%) 0 3 (1.83%) 13 (1.90%) 12 (2.01%) 2 (1.23%) 3 (0.67%)

Tumour staging (size)1

T1 409 (44.36%) 289 (48.57%) 41 (39.42%) 16 (27.12%) 63 (38.41%) 327 (47.67%) 292 (48.83%) 57 (34.97%) 194 (43.11%)

T2 395 (42.84%) 234 (39.33%) 51 (49.04%) 32 (54.24%) 78 (47.56%) 278 (40.52%) 244 (40.80%) 83 (50.92%) 194 (43.11%)

T3 90 (9.76%) 57 (9.58%) 8 (7.69%) 9 (15.25%) 16 (9.76%) 63 (9.18%) 47 (7.86%) 17 (10.43%) 50 (11.11%)

T4 22 (2.39%) 11 (1.85%) 4 (3.85%) 0 7 (4.27%) 14 (2.04%) 12 (2.01%) 4 (2.45%) 9 (2.00%)

Not available 6 (0.65%) 4 (0.67%) 0 2 (3.39%) 0 4 (0.58%) 3 (0.50%) 2 (1.23%) 3 (0.67%)

ER oestrogen receptor, HER2 human epidermal growth factor, PR progesterone receptor, TNBC triple negative breast cancer. *Includes Asian, Native, Hispanic,

Multi, Hawaiian, and American Indian

Table 3. Distribution of patients in the training and test sets as per

the molecular subtype, receptor status, and Ki-67 values

Molecular marker Details Count in
training set

Count in
test set

Molecular subtype
(NTRAIN= 461 NTEST= 461)

Luminal A 305 (66.16%) 290
(62.91%)

Luminal B 47 (10.20) 57
(12.36%)

HER2 27 (5.86%) 32 (6.94%)

TNBC 82 (17.79%) 82
(17.79%)

ER status (NTRAIN= 461
NTEST= 461)

Positive 341 (73.97%) 345
(74.84%)

Negative 120 (26.03%) 116
(25.16%)

PR status (NTRAIN= 461
NTEST= 461)

Positive 306 (66.38%) 292
(63.34%)

Negative 155 (33.62%) 169
(36.66%)

HER2 status (NTRAIN= 461
NTEST= 461)

Positive 74 (16.05%) 89
(19.31%)

Negative 387 (83.95%) 372
(80.69%)

Ki-67 (NTRAIN= 246
NTEST= 204)

High 153 (62.20%) 155
(75.98%)

Low 93 (37.80%) 49
(24.02%)

ER oestrogen receptor, HER2 human epidermal growth factor, PR

progesterone receptor

Table 4. AUC, CI, and p-values obtained for the trained multivariate

models in the test set

Name of the Task AUC in test set with
95% CI

p-Value for the
model in test set

Luminal A vs other
subtypes

0.697 (0.647–0.746) <0.0001*

Luminal B vs other
subtypes

0.566 (0.494–0.638) 0.13

HER2 vs other subtypes 0.633 (0.539–0.727) 0.03

TNBC vs other subtypes 0.654 (0.589–0.720) <0.0001*

ER positivity vs ER
negativity

0.649 (0.591–0.705) <0.0001*

PR positivity vs PR
negativity

0.622 (0.569–0.674) <0.001*

HER2 positivity vs HER2
negativity

0.500 (0.433–0.567) 0.81

High Ki-67 vs low Ki-67 0.624 (0.531–0.718) 0.01

AUC area under the curve, CI confidence interval, ER oestrogen receptor,

HER2 human epidermal growth factor, PR progesterone receptor.

*Statistically significant p < 0.00625
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and high Ki-67 versus low Ki-67, respectively. All of these features
were extracted from tumours.

DISCUSSION
In this study, we conducted a comprehensive radiogenomic
analysis of breast cancer in the context of dynamic contrast
enhancement MRI using a machine-learning-based approach.
Motivated by the recent surge in the development of new features
in breast MRI radiomics and a strong interest in breast cancer
radiogenomics, we looked at the effectiveness and generalisability

of the features available in the literature as well as features
proposed by our group to predict receptor status, proliferation
and, surrogate molecular subtypes in a heterogeneous cohort of
922 patients.
Our study demonstrated that there were associations between

characteristics of tumours and FGT in dynamic contrast-enhanced
MRI and tumour molecular composition. The associations using
multivariate models were, however, only of moderate strength
with the highest AUC of 0.697 for distinguishing Luminal A from
other subtypes. Overall, we demonstrated the strongest associa-
tions for OR and PR which suggests that among the imaging

Table 5. AUC and 95% CI obtained for the trained multivariate models in the test set divided into subsets by scanner manufacturer, race, and

menopausal status

Scanner manufacturer Race Menopausal status

GE (N= 284) Siemens (N= 177) White (N= 322) Other declared
races (N= 129)

Pre (N= 216) Post (N= 235)

Luminal A vs other
Subtypes

0.701 (0.638–0.763) 0.685 (0.605–0.765) 0.708 (0.648–0.769) 0.646 (0.55–0.741) 0.652 (0.579–0.725) 0.737 (0.668–0.807)

Luminal B vs other
Subtypes

0.579 (0.476–0.683) 0.521 (0.41–0.632) 0.560 (0.467–0.653) 0.543 (0.427–0.659) 0.585 (0.487–0.682) 0.529 (0.417–0.640)

HER2 vs other
Subtypes

0.651 (0.534–0.768) 0.625 (0.467–0.783) 0.652 (0.527–0.776) 0.620 (0.472–0.767) 0.612 (0.469–0.548) 0.660 (0.535–0.847)

TNBC vs other
Subtypes

0.671 (0.586–0.756) 0.623 (0.52–0.727) 0.658 (0.571–0.746) 0.619 (0.511–0.726) 0.667 (0.582–0.753) 0.612 (0.496–0.727)

ER positivity vs ER
negativity

0.638 (0.565–0.712) 0.670 (0.577–0.762) 0.616 (0.542–0.691) 0.669 (0.574–0.765) 0.644 (0.564–0.724) 0.644 (0.559–0.730)

PR positivity vs PR
negativity

0.616 (0.549–0.683) 0.633 (0.549–0.717) 0.611 (0.545–0.678) 0.616 (0.516–0.717) 0.627 (0.551–0.702) 0.616 (0.542–0.690)

HER2 positivity vs
HER2 negativity

0.500 (0.408–0.593) 0.495 (0.394–0.596) 0.514 (0.428–0.599) 0.505 (0.392–0.617) 0.508 (0.412–0.604) 0.500 (0.405–0.596)

High Ki-67 vs Low
Ki-67*

0.648 (0.536–0.760) 0.590 (0.408–0.772) 0.601 (0.495–0.708) 0.725 (0.527–0.922) 0.576 (0.417–0.734) 0.640 (0.520–0.760)

*Number of cases in each category is less than the mentioned counts in second row due to missing Ki-67 values

WashinRate_map_skewness_tumor
WashinRate_map_cluster_prominence_tumor

SER_map_cluster_prominence_tumor
SER_map_sum_average_tumor

SER_washout_tumor_vol_cu_mm
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features tested, there is differential expression in the imaging
phenotype for OR and PR status. Lower levels of association were
found for HER2 and Ki-67 which did not reach the level of statistical
significance after accounting for multiple hypothesis testing (p <
0.03 and p < 0.01, respectively). HER2 is a vascular growth factor
receptor responsible in part for tumoural angiogenesis. Positive
HER2 status has been associated with an increased incidence of
multifocal and multicentric disease, increased apparent diffusion
coefficient (ADC) scores, and more rapid early enhancement.28–32

Higher ADC values have also been associated with lower Ki-67
scores, but diffusion weighted imaging is not typically performed in
routine breast MRI and was not included in this study.33 If
prediction of HER2 and Ki-67 with imaging features is of value,
then the inclusion of ADC measurement may be of additional help.
Our results indicate that computer-extracted features might be

helpful in identifying biological characteristics of the tumours
which help plan patient therapy. However, given the performance
of the models, MR imaging features alone could not be used as a
non-invasive surrogate of the molecular markers evaluated in this
study. The moderate association between MRI features and
subtypes demonstrates the promise of such features as part of a
composite marker that might include additional clinical variables

and imaging features from other modalities to determine tumour
genomics. Such a composite biomarker might provide additional,
heretofore unknown, benefits to treatment planning that allows
for more personalised care. Finally, understanding the relationship
between tumour biology and the corresponding radiological
phenotype furthers the overall understanding of breast cancer as
it informs about specific phenotypical expression of different
underlying genomic composition. Our detailed analysis of
individual imaging features showed that it is mostly the imaging
characteristics of the tumour and less of the normal breast
parenchyma that show associations with genomics. However,
some features that quantify the relationship between the tumour
and normal breast parenchyma enhancement6 had radiogenomic
associations. Among these tumour features, it was predominantly
those that capture enhancement dynamics that showed the
highest association with genomics and particularly those related
to signal enhancement ratio, which quantifies the relationship
between the uptake and the washout times.
A strength of our study is the use of an independent test set

which validates that the relationships identified in the training
cohort can be generalised to a larger population. The use of a
large number of evaluated imaging features and sophisticated
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machine learning-based multivariate models may result in finding
relationships as the result of chance or the result of overfitting the
models to the training data. Therefore, the use of a test set to
validate the process is of utmost importance. To our knowledge,
only two prior investigators have incorporated this important step
into their analysis.3,18

In this study, we analysed a highly heterogeneous cohort of
imaging and patient parameters: (a) age range of women from 21
to 89 years and seven races (b) tumours of all TNM sizes, nuclear
grade, OR, PR, and HER2 status (c) 10 different combinations of
magnetic field strengths and scanner manufacturers (d) 3 different
types of contrast agents were used for the patients (e) range of
values applied for image acquisition in terms of slice thickness,
repetition times, echo times, acquisition matrices, flip angles and
FOVs (e) eight different expert radiologists served as readers. Our
additional analysis on subgroups formed using different scanner
manufacturers, races, and menopausal status of the patients did
not demonstrate major differences in the performance of the
trained models the majority of the tasks.
This study had some limitations. While the heterogeneous

cohort used in this study allows for more generalisable conclu-
sions, it is likely that that variability in imaging acquisition
parameters were a significant source of noise in our analysis and
stronger associations could be found in a cohort with uniform
imaging parameters. Future analysis could be conducted to
evaluate this issue when a larger number of patients scanned in a
uniform manner are available.
A future study could also evaluate a variety of image

preprocessing techniques that could alleviate the variability in
image acquisition. Furthermore, this study relied on surrogate
molecular subtypes defined from ER, PR, and HER2 which are not
as robustly predictive of outcomes as formal genetic analysis.34

In summary, we evaluated associations of imaging variables
with the following molecular, genomic, and proliferation char-
acteristics: tumour surrogate molecular subtype, ER, PR, and
HER2 status, and the tumour proliferation Ki-67 marker in an
independent dataset. We showed moderate associations of
imaging features with Luminal A subtype, TNBC, ER, and PR
status. This shows a potential for extending the usage of imaging
in oncology. However, this needs to be done with caution and
likely in conjunction with other variables.
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