
A Machine Learning Approach to Workflow

Management

Joachim Herbst

DaimlerChrysler AG, Research and Technology
P.O. Box 2360, 89013 Ulm, Germany

joachim.j.herbst@daimlerchrysler.com

Abstract. There has recently been some interest in applying machine
learning techniques to support the acquisition and adaptation of work-
flow models. The different learning algorithms, that have been proposed,
share some restrictions, which may prevent them from being used in
practice. Approaches applying techniques from grammatical inference
are restricted to sequential workflows. Other algorithms allowing con-
currency require unique activity nodes. This contribution shows how the
basic principle of our previous approach to sequential workflow induc-
tion can be generalized, so that it is able to deal with concurrency. It
does not require unique activity nodes. The presented approach uses a
log-likelihood guided search in the space of workflow models, that starts
with a most general workflow model containing unique activity nodes.
Two split operators are available for specialization.

1 Introduction

The success of today’s enterprises depends on the efficiency and quality of their
business processes. Software based tools are increasingly used to model, ana-
lyze, simulate, enact and manage business processes. These tools require formal
models of the business processes under consideration, which are called work-
flow models in the following. Acquiring workflow models and adapting them to
changing requirements is a time consuming and error prone task, because pro-
cess knowledge is usually distributed among many different people and because
workflow modeling is a difficult task, that needs to be done by modeling experts
(see [1,5] or [9]). Thus there has been interest in applying machine learning
techniques to induce workflow models from traces of manually enacted workflow
instances. The learning algorithms, we are aware of, share some restrictions, that
may prevent them from being used in practice. They either apply grammatical
inference techniques and are restricted to sequential workflows [5,9] or they allow
concurrency but require unique activity nodes [1,6].

2 Definitions

In the following we define the terms workflow model and workflow instance.
This is essential for a description of the induction task. A workflow model is a
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formal explicit representation of a business process, describing how this process
is (or should be) performed. It decomposes the process into elementary activities
and defines their control and data flow. The activities A = {a1, . . . , an} of the
process are specified in terms of their required resources and actors. Different
formalisms have been proposed for workflow modeling. Within this paper we are
using the ADONIS modeling language [3]. According to the ADONIS modeling
language a workflow model can be defined as follows: A workflow model is a
tuple M = (VM , fM , RM , gM , PM ), where VM = {v1, . . . vnM } is a set of nodes,
STARTM ,ACTM ,DECM , SPLITM , JOINM ,ENDM is a partition of VM , fM :
ACTM → A is the activity assignment function, that assigns an activity to
each activity node, RM ⊆ (VM × VM ) is a set of edges, PM : RM → [0, 1]
assigns a transition probability to each edge and gM : RM →COND assigns a
condition to each edge. This definition is incomplete, as it concentrates on the
behavioral and functional view (see [7]) on a workflow model. For a complete
definition describing also the organizational and informational view [7] as well
as a discussion of additional syntactical rules and the semantics of the modeling
language we refer to [3]. For our purposes the above definition and figure 1
showing the graphical representation of the node types and a brief explanation
of their semantics should be sufficient. An example for a workflow model is given
in figure 2.
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Fig. 1. ADONIS node types

A workflow instance is a tuple e = (Ke, fe(),≤e), where Ke = {k1, . . . kne}
is a set of nodes, fe : Ke → A is the activity assignment function, which assigns
an activity to each node and ≤e is a partial order on Ke. Workflow instances
represent a completed business cases. The nodes describe the activities, which
were executed to complete a business case and the partial order describes the
temporal order of their execution. For the sake of clarity, we define only those
components, of a workflow instance which are relevant for this paper. Two exam-
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Fig. 2. Part of a simple ADONIS workflow model

ples for workflow instances are shown in figure 4. Activity nodes are represented
by boxes, which are labeled with the values of the activity assignment function.

3 Inducing Workflow Models

3.1 Characterization and Decomposition of the Induction Task

The induction task to be solved can be characterized as follows: Given a mul-
tiset of workflow instances E, find a good approximation M of the workflow
model M0, that generated E. Of course M0 need not exist. It is simply a mod-
eling hypothesis. We have decomposed the induction task into two subtasks:

– Induction of structure - within this subtask the nodes, the edges, the activity
assignment function and the transition probabilities of M are induced.

– Induction of conditions - where possible, local conditions for transitions fol-
lowing a split or a decision node are induced.

In this contribution we focus only on the induction of the structure. The
induction of conditions can be done using standard decision rule induction algo-
rithms such as C4.5 [12] as explained in more detail in [9].

3.2 Problem Classes

To allow a comparison between different workflow induction algorithms reported
in the literature, we have defined four problem classes. These are defined in terms
of two characteristics of the unknown workflow model M0. The first characteris-
tic is sequentiality. A workflow model is strictly sequential, if it does not contain
any split or join nodes. The second characteristic is a characteristic of the ac-
tivity assignment function fM0 . As we will see, it is a difference whether fM0

is injective or not. If the activity assignment function is injective, then the un-
known workflow model M0 contains unique nodes for each observed activity.
Using these two characteristics the four problem classes shown in figure 3 can
be defined.

Actually it would be sufficient, to solve the induction task for the most general
problem class, which contains all other problem classes. But we are not aware of
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Fig. 3. Problem classes

any induction algorithm in the literature, that attempts to solve the induction
task for this class. In this paper we will shortly discuss the induction of sequential
workflow models and in more detail we will explain how this algorithm can be
generalized to provide a solution to the problem classes three and four.

3.3 Sequential Workflow Models: Problem Classes 1 and 2

The structure of sequential workflow models can be represented by stochastic
finite state automatons (SFA) and sequential workflow instances can be seen as
strings over a finite alphabet. Each symbol in this alphabet corresponds to an
activity of the workflow instance. Thus the problem of sequential workflow struc-
ture induction can be reduced to the problem of inducing SFAs from a positive
sample of strings. This problem has already been addressed in the grammatical
inference community (see e.g. [11]) and some algorithms like e.g. ALERGIA [4]
or Bayesian Model Merging [14], have been proposed. In [9] we present two al-
gorithms for sequential workflow induction. The first one follows a specific to
general approach. It is a variation of the Bayesian Model Merging [14], using the
log-likelihood of the workflow model as a heuristic. The second one follows a gen-
eral to specific approach. For specialization it applies a split operator that splits
one node into two nodes assigned to the same activity. Search starts with a most
general model, containing unique nodes for each observed activity. The solution
to problem class 4, which we present below, follows the same basic principle.

3.4 Concurrent Workflow Models with Unique Activity Nodes:
Problem Class 3

Let’s now turn to concurrent workflow models having unique activity nodes.
For each activity ai ∈ {a1, a2, . . . an} we observe, we create a unique node vi

with fM (vi) = ai. This gives us the set of activity nodes ACTM = {v1, .., vn} of
the workflow model M . Whenever we observe the occurrence of an activity ai,
we can identify the corresponding activity node vi of M . This allows us to talk
about the “occurrence of a node vi within an instance e”.

But as the workflow model may contain concurrent threads we may not
determine the activity node, whose completion triggered the current observed
activity, as easily as in the sequential case, where we considered the immediate
predecessor to be the cause for an observed activity (see [9]). This is not adequate
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in case concurrent threads of control are possible. First of all the cause for an
observed activity is not necessarily its immediate predecessor and also there may
be more than one cause for an activity (e.g. after a join construct). This is shown
in figure 4. The workflow instances e1 and e2 may have been generated by the
workflow model M0. In this case the cause for activity D within instance e2 is
activity C, and not its immediate predecessor B.
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B❘✲

✒
✲

A B

C D

M0

✼e1
✻ e2 ✲ D✲C A B✲C ✲D

Fig. 4. Unknown model M0 and observed workflow instances e1 and e2

Before we can add edges to M , we must find the cause for an observed activity.
This leads us directly to the task of detecting dependencies between activities.
This is done by analyzing the temporal relationships between activities. For the
following definition to be well defined, we need to assume, that the unknown
model M0 is acyclic. We will later eliminate this restriction. This assumption
assures that no activity occurs more than once within a workflow instance. We
can now define the dependency graph as the directed graph Gdep = (VM , Rdep)
with

– VM = STARTM ∪ACTM ∪ENDM with STARTM = {v0}, ENDM = {vn+1}
– Rdep =

{
(vi, vj)

∣∣ ∀e ∈ E (vi, vj appear in e)⇒ vi precedes vj in e
}
, v0

and vn+1 implicitly occur within every e. v0 is a predecessor of any node
within every e and every node occurring within e is a predecessor of vn+1.

The dependency graph can be determined in one pass over the sample E. If we
observed all possible instances that could be generated from M0 the dependency
graph shown in figure 5 would be found. We also define dependency graphs Ge =
(VM (e), Rdep(e)) for each instance e. Ge is the subgraph of Gdep containing only
those nodes occurring in e and all edges between them. The dependency graphs
for the instances e1 and e2 are depicted on the top right of figure 5. Using the
dependency graphs Ge, we now determine the cause graphs (Ge)∗. The cause
graph (Ge)∗ = (VM , Rdep(e)∗) is the transitive reduction of Ge. The transitive
reduction of a directed graph G is defined as a minimal subgraph of G having
the same transitive closure as G. In this case the transitive reduction of Ge is
unique because Ge is acyclic and it can be efficiently determined, because a
topological ordering of the nodes in Ge is indirectly given by the partial order
≤e of the workflow instance. The cause graphs for each workflow instance can be
calculated in a second pass over the sample E. The cause graphs for e1 and e2 are
shown on the bottom left of figure 5. We can now determine the set of edges RM

of M as RM =
⋃

e∈E Rdep(e)∗.
Let’s drop the assumption that M0 is acyclic. Now an activity ai may appear

more than once within an instance e. We simply distinguish different occurrences
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Fig. 5. Dependency graphs, cause graphs and induced model

of one and the same activity within one instance by adding an index (1st, 2nd,
3rd, ... occurrence). We then apply the same algorithm and treat different oc-
currences of the same activity as different activities until the edges of the model
have been determined. At this point all nodes belonging to the same activity are
merged to one node, that inherits the edges of all merged nodes.

To complete M we finally add explicit control flow constructs (Decision, Split
and Join) to the model M where necessary. This step is not as trivial as in the
sequential case (compare [9]), because dependencies between different edges must
be analyzed. Within this paper we will not elaborate on this task any further.

3.5 Concurrent Workflow Models in General: Problem Class 4

For problem class 4 M0 may contain more than one node for a specific activity.
The basic idea of our solution is the same as the splitting approach presented
in [9] for sequential workflows. One starts with the most general model, gener-
ated by the algorithm of the previous section, called induceUniqueNodeModel()
in the following. This is like assuming that M0 is in problem class 3. The most
general model is specialized using split operators. The selection of the state to
split and of other parameters is guided by the log-likelihood per sample. In our
prototype we are using beam-search as search algorithm. A larger model (con-
taining more nodes) is preferred over a smaller model, only if the log-likelihood
per sample is larger than some user defined threshold LLHmin.

Probability of a Sample The likelihood heuristic requires to estimate the
probability of E given M . For this purpose one could describe all outgoing edges
of a node vi as a n of m selection. To distinguish decision nodes allowing only
a 1 of m selection from split nodes we decided to use better estimation, that
considers clusters of nodes. These are defined in a way that all nodes vj sharing
a common cause vi within any instance are contained in a common cluster Cik
1. This idea is shown in figure 6. In the example of figure 6 the probability that
the activities B and C follow the activity A would be calculated for example as
0.5 ·(1 ·0.5 ·(1−0.5)). The transition probabilities are estimated by the empirical
counts.
1 This is still a simplification because dependencies may be more complex. One might
for example be interested in finding exclusive successors within one cluster
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Specialization of Concurrent Workflow Models For sequential workflow
induction [9] we defined the split operator as an operator on the workflow model.
The effects of a split operation on a concurrent model are not restricted to the
incoming and outgoing edges of the node that is split. Global effects are possible
if the split operation changes the dependencies. It is thus not clear how to find a
simple description for a split operator on concurrent workflowmodels. To prevent
these difficulties, we define the split operator as an operator on the workflow
instances, that introduces an artificial distinction between certain occurrences
of the activity that is split. After a split operator has been applied to all instances
in E, induceUniqueNodeModel() called with the changed instances E to return
a specialized model.

Split Operators For the specialization of the workflow model we initially de-
fined one split operator SplitCause(e, ai, aj , (Ge)∗) as:

∀k ∈ Ke with fe(k) = ai let fe(k) :=
{

a′
i : if aj is a cause of ai

a′′
i : otherwise

While one split operator based on the cause of a node is sufficient for sequen-
tial workflows, it is sometimes not applicable for concurrent workflows. When
multiple activity nodes are allowed, dependencies are often not identified cor-
rectly until the right degree of specialization has been reached. This may have the
consequence that a certain cause for an activity, can not be correctly identified. If
this cause is necessary to correctly distinguish different occurrences of an activ-
ity, SplitCause fails. To deal with this problem, we define a second split operator
SplitHistory(e, ai, aj) as:

∀k ∈ Ke with fe(k) = ai let fe(k) :=
{

a′
i : if aj is a predecessor of ai in e

a′′
i : otherwise

4 Related Work

In [1] an approach called process mining, based on the induction of directed
graphs, is presented. It is restricted to problem class 3 and very similar to our
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approach for this problem class. The main differences to our approach lie in the
representation of workflow instances as strictly ordered sets of activities and in
the way dependencies are defined and determined. Another approach that is also
restricted to problem class 3 is presented in [6]. It uses three different metrics for
the number, frequency and regularity of event sequences to estimate a model of
the concurrent process. In their previous work [5] the authors applied different
grammatical inference algorithms to sequential workflows.

Different approaches combining machine learning and workflow management
techniques are presented by Wargitsch [15] and by Berger et. al. [2]. Both are
using completed business cases to configure new workflows. While Wargitsch
employs a case-based reasoning component for the selection of an appropriate
historical case, Berger et. al. are using a neural network approach.

Workflow induction has some similarity with the mining of temporal patterns
presented in [13] or [10]. But while we are trying to find one structure in a
relatively structured event trace, these approaches are trying to find all frequent
structures and they are applicable only for unstructured event traces, as their
performance scales exponentially with the size of the largest structure found.

5 Prototype and Experiences

We have realized a research prototype using the business process management
system ADONIS both as a front end for the generation of artificial workflow
instances and as a back end for the layout generation and visualization of the in-
duced workflow models. We applied this prototype to workflow traces generated
by different types of workflow models. Some of these models are from the litera-
ture (see e.g. [1] or [6]), some of them are workflow models we have defined and
others are real workflow models we have encountered within workflow projects
at DaimlerChrysler. In [8] we describe the application of our approach to a sim-
plified release process of the Mercedes Benz passenger car department. Tables 1
and 2 show comparisons with process mining [1] and with process discovery [6].
As the original samples were not available, we generated our own samples. This
of course has an influence on the results.

Table 1. Workflow splitting applied to workflow models reported in [1]

Model Nodes Nr. Nr. Process Workflow
/ splits samples Mining Splitting

Edges time correct? time correct?

Upload And Notify 11/11 0 134 11.5s yes 0.8s yes

StressSleep 18/27 0 160 111.7s yes 5.6s yes

Pend Block 10/11 0 121 6.3s yes 0.8s yes

Local Swap 14/13 0 24 5.7s yes 0.2s yes

UWI Pilot 11/11 0 134 11.8s yes 0.8s yes
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The comparison with process mining shows that exactly the same models
are found, which is not surprising as the algorithms are very similar. The im-
provement concerning the performance might be caused by the slightly different
definition of dependency we are using, which allows a more efficient algorithm
for dependency detection. Actually our approach should be less efficient, because
process mining is restricted to workflow models of problem class 3 and does not
try to split any nodes. The models described in [6] were initially not identified
correctly by our approach. They contained some incorrect edges. The reason for
these incorrect edges is that both models contain concurrent activities within
cycles. With some probability only a few samples are available for those work-
flow instances with the highest number of iterations over a certain cycle. In this
case it is likely that not all possible orderings of activities are observed for this
highest iteration. This may lead to an incorrect dependency graph and as a con-
sequence to an incorrect model. As these incorrect edges are characterized by
a probability close to zero they can be identified and removed from the model.
This enables our approach to induce these models correctly as well.

Table 2. Workflow splitting applied to workflow models reported in [6]

Model Nodes Nr. Nr. Process Workflow
/ splits samples Discovery Splitting

Edges time correct? time correct?

simple concurrent Process 11/12 0 300 ? yes 126.8s (yes)

complex concurrent Process 22/26 0 150 ? yes 194.7s (yes)

Fig. 7. Two Workflow Models used for evaluation
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Fig. 8. Workflow 1: Most general model and result model after applying
SplitCause(e, A, C, (Ge)∗) and SplitCause(e, C, E, (Ge)∗)

The workflow models presented in [1] and [6] are all located in problem
class 3. To evaluate the specialization procedure we also applied our approach
to workflow models of problem class 4. Two examples for such workflow models
are given in figures 7.

When observing a large enough sample generated from workflow 1 the most
general model depicted at the top of figure 8 would be induced. Given the right
choice for LLHmin, after one intermediate step our search procedure would re-
turn the model shown at the bottom of figure 8. Any further split operations
lead only to a small improvement of the log-likelihood per sample.

Fig. 9. Workflow 2: Overly specific model using LLHmin = 0

The degree of specialization depends on the user defined threshold LLHmin.
Overly specialized models will for example be found if this threshold is to small.
The effect of overspecialization is shown in figure 9. The cycle present within
workflow 2 of figure 7 has been “unrolled”. Figure 10 shows the log-likelihood
per sample for those models on the search path from the most general model to
the model of figure 9. As you can see, only the first four (from left to right) split
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operations significantly improve the log-likelihood per sample. After the fourth
split, the log-likelihood per sample remains nearly constant. Thus the threshold
LLHmin must be chosen within the right range close to zero, so that the search
stops after the fourth split and returns the correct model shown in figure 11.

Fig. 10. Log-likelihood per sample of the models on the search path

Fig. 11. Workflow 2: Result model using LLHmin = 0.1

6 Summary and Future Work

We have presented a learning algorithm that is capable of inducing concurrent
workflow models. This approach does not require unique activity nodes as other
workflow induction algorithms do. We are convinced that the integration of work-
flow induction algorithms such as ours has the potential to provide a number of
significant improvements to workflow management systems, including a shorter
acquisition time for workflow models, higher quality workflow models with less
errors and support for the detection of changing requirements.

Further work must be done to deal with noise, caused for example by erro-
neous workflow instances. Noise is especially critical if the dependency structure
is affected. We are also working on algorithms that add explicit control flow
constructs (Decision, Split and Join) to the induced model.
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