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ABSTRACT: Zeolites are porous, aluminosilicate materials with
many industrial and “green” applications. Despite their industrial
relevance, many aspects of zeolite synthesis remain poorly
understood requiring costly trial and error synthesis. In this
paper, we create natural language processing techniques and text
markup parsing tools to automatically extract synthesis informa-
tion and trends from zeolite journal articles. We further engineer a
data set of germanium-containing zeolites to test the accuracy of
the extracted data and to discover potential opportunities for
zeolites containing germanium. We also create a regression model for a zeolite’s framework density from the synthesis
conditions. This model has a cross-validated root mean squared error of 0.98 T/1000 Å3, and many of the model decision
boundaries correspond to known synthesis heuristics in germanium-containing zeolites. We propose that this automatic data
extraction can be applied to many different problems in zeolite synthesis and enable novel zeolite morphologies.

■ INTRODUCTION

Zeolites are microporous, crystalline aluminosilicate materials
with a wide range of applications including catalysis,
adsorption, separation, and ion exchange.1,2 Beyond their use
as Brønsted acid catalysts in the chemical and petroleum
industries,2−4 zeolites have been utilized for several important
environmental improvement and renewable energy applica-
tions including biomass conversion, CO2 capture, NOx

abatement, and water purification.5 Notably, the topochemical
features (i.e., pore structure, framework type, and heteroatom
composition) often determine the performance of the
zeolite.6,7 As such, recent efforts in the community have
focused on developing rational design strategies to engineer
zeolites for targeted applications, such as designing a pore
geometry that mimics the transition state of the specific
reaction or crystallizing a framework with structural chirality.8,9

Zeolite crystallization often occurs through a hydrothermal
synthesis pathway governed by a large synthesis parameter
space and complex crystallization kinetics that yield metastable
structures.10 In a typical zeolite synthesis, sources of SiO2,
Al2O3, and a mineralizing agent (e.g., a source of OH− or F−

anions) are mixed with water to form an aluminosilicate gel. In
addition, inorganic cations or organic structure directing agent
(OSDA) molecules are added to direct the formation of the
zeolite structure. This gel is aged, reacted, and then crystallized
under hydrothermal conditions. The composition of the gel,
traditionally parametrized using molar ratios (e.g., OSDA/Si or
H2O/Si), and the synthesis conditions determine the outcome

of the crystallization process. Because of these complexities,
zeolite synthesis−structure relationships are difficult to under-
stand. Several studies have advanced this understanding;11−14

however, global methodologies for predicting new zeolite
structures from synthesis parameters are still limited. As a
result, the synthesis of novel zeolite structures requires a
semiempirical process governed mostly by domain heuristics
acquired through experience.
The lack of predictive ability to design synthesis routes for

zeolites is a major bottleneck for discovering new zeolite
structures.15,16 Using first-principles approaches, researchers
have estimated that several million unique zeolite structures are
energetically favorable.17−19 However, currently only 245
zeolites have been synthesized,20 and far fewer are
commercially available.21 This presents a particular oppor-
tunity considering that the global market for zeolite-driven
commercial processes exceeds 2 million metric tons per year.22

This massive gap existing between theoretical and synthetically
confirmed structures (also important in crystallization more
generally) demonstrates the need for new, cutting-edge
approaches to zeolite synthesis.23

Data-driven synthesis approaches have found success in a
number of domains, including organic24−27 and inorganic28−30

materials synthesis. These approaches have the potential to
accelerate the development of new materials, as experts can
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learn new, complex relationships from existing data resources
using visualization and automated data mining algorithms, as
well as build fast predictive models coupled to experimental
validation.31 Along with the need for significant volumes of
data, a critical aspect of accurate, data-driven models is the
inclusion of negative examples,32,33 for example, synthesis
routes that did not yield the desired product. Unlike many
other materials science domains, the zeolite community often
includes failed syntheses (i.e., amorphous and dense phases) in
publications and data sets, thus making the data-driven study
of zeolites very promising.
Several zeolite studies have found success using data science

to predict the zeolite framework type from crystallographic
data34,35 and modeling the mechanical properties of zeolites.36

However, only a handful of reports exist that successfully
model relationships between synthesis parameters and the
resulting structure.37,38 These studies relied on high-
throughput synthesis methods to generate data used to
model synthesis parameters. Even with synthesis methods
designed for rapid sample generation, each generated less than
150 synthesis routes, thereby limiting the analysis to only a
subset of zeolite structures.
Global data-driven zeolite synthesis approaches will require

large amounts of data. Given that the field of zeolite synthesis
has been very active in both the academic and industrial
communities for more than 60 years, one rich source of
abundant data is directly from scientific journal articles and
patents.39 However, it is impractical to manually extract data
from more than a few hundred publications.32,40,41 Automatic
data extraction from materials science and chemistry text using
natural language processing (NLP) techniques greatly
increases the amount of available data.42 Several NLP tools
and software pipelines have been developed for automatic data
extraction from scientific journal articles.42−44 These pipelines
have been used to extract material property and synthesis
information from several different material domains including
Curie and Neél temperatures for magnetic materials,45

synthesis conditions of titania,39,46 and screening of potential
novel perovskite materials.47 Indeed, this automatic extraction
can be applied to capture all published, available zeolite
synthesis data into a single data set allowing global
comparisons between all types of zeolite structures, but the
necessary tools to do so have not been developed.
In this paper, we present an automatic data extraction

pipeline to study the crystallization of zeolite structures and
suggest ways in which machine learning (ML) can be used to
predict synthesis pathways for new zeolite structures. We
create tools to automatically extract zeolite synthesis and
topology data from multiple locations within a journal article,
including tables, captions, and footnotes along with body text,
thus greatly extending our previous method developed for
metal oxides.42 We demonstrate the accuracy and usefulness of
our extracted data by examining trends in both a global zeolite
set and a focused subset comprising germanium-containing
zeolites. The latter data set is used to elucidate specific
synthesis trends, where a random forest regression model
allowed prediction of the framework density of synthesized
zeolites. This model moves toward predicting new zeolite
topologies from synthesis data.

■ RESULTS AND DISCUSSION

Zeolite Data Extraction. From our database of 2.5 million
journal articles, we filtered down to a set of 70 000 papers

relevant to zeolite synthesis through text matching specific
zeolite keywords. The papers were processed through a
pipeline that consists of extracting precursor information
from the text of the paper with NLP algorithms (see Kim et
al.42 for additional information), applying HTML and XML
parsing on the relevant synthesis tables, and using Regular
Expressions (regex) to locate and extract compositional ratios.
The extracted data were combined to reveal trends and train
ML algorithms that could be used to gain insight into the effect
of different synthesis variables. Figure 1 presents a schematic

representation of this data pipeline of extracting and
combining zeolite synthesis data. The figure depicts our
process to obtain information from multiple aspects of a
journal article (including text and table data) and use these
data to inform zeolite synthesis through prediction of a
structural property such as the framework density, defined as
the number of T atoms (Si, Al, Ge, etc.) per 1000 Å3, which is
one of the simplest metrics used to distinguish zeo-type porous
materials.
In a typical journal manuscript, zeolite synthesis information

in the form of molar ratios and crystallization conditions is
often scattered throughout tables, figures, and text within the
main, supporting, and methods sections, each requiring a
specialized extraction technique. Prior to our work, techniques
capable of accurately extracting and correlating data from both
tables and text in a journal article had not been developed. For
tables, our software extracted information from HTML files,
accounting for variation in both difference in HTML
implementation and design of the actual table. Tables were
converted into data mineable JSON file formats that are both
human- and machine-readable. Next, we used our NLP
pipeline to locate the target zeolite, type of OSDA, and
missing crystallization conditions within the body text of the
paper. Finally, the data were featurized into a fixed set of
zeolite-relevant synthesis features (such as structural data from
the International Zeolite Association (IZA) database) suitable
for data analytics and ML (see methods section for extraction
and data engineering details).

Figure 1. Schematic overview of zeolite data engineering including
(1) literature extraction from sources such as NLP from body text,
parsing of html tables, and regex matching between text and tables,
(2) regression modeling, and (3) zeolite structure prediction.
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Gel composition is a critical variable in determining the
resulting zeolite topology for a synthesis route.48,49 Using our
table extraction software, we extracted gel composition data
from the synthesis tables found in our set of 70 000 zeolite
papers to identify trends among the synthesis variables and the
products of zeolite synthesis. Figure 2 shows these data plotted
as pairwise relationships between several of the compositional
features.

Zeolites are traditionally synthesized with theoretical molar
ratios of Si/Al > 1, OSDA/Si < 1, H2O/Si < 100, and F/Si < 1.
However, the data extracted by our pipeline represented in
Figure 2 clearly show that these ranges can be exceeded. This
effect is rationalized based on the specific conditions required
for the synthesis of related zeotypes, such as silicoalumino-
phosphates (SAPOs) and Ge-rich silicogermanates.50 The
SAPO framework is formed by alternating tetrahedrally
coordinated Al and P atoms, with a few of these heteroatoms
isomorphically substituted by Si. Consequently, both SAPOs
and Ge-rich molecular sieves have low Si contents, resulting in
Si-normalized molar ratios beyond the classical values for
typical high-silica zeolites.
Although it is difficult to extract complex synthetic

relationships and predictions from the simple compositional
features shown in Figure 2, the data obtained from our pipeline
can be used to validate general trends in zeolite synthesis. For
example, a positive linear trend between the quantity of
fluoride ions and OSDA molecules is observed (see bottom-
left panel in Figure 2). Fluoride is used as a mineralizer in
zeolite synthesis,51 often resulting in zeolites with a lower
concentration of defects by providing more negative species to
counterbalance the positive charge of the OSDA cations.52

These fluoride-based routes are often performed close to

neutral pH values, and, consequently, researchers tend to add
similar molar amounts of fluoride and OSDA cations to the
synthesis,53−55 which is reflected in the trend we see in Figure
2. Taken together, these data show that the automated
extraction algorithms are capable of isolating compositional
information from the literature in a reliable fashion, thus
allowing us to perform more in-depth analyses of the zeolite
synthesis space (vide infra).

Analysis of Germanium-Containing Zeolites. Germa-
nium addition into zeolite framework sites is responsible for
the synthesis of many new zeolite structures over the past two
decades.56 Motivated by this success, we constructed a
germanium-containing zeolite data set with our automated
extraction pipeline. These data enabled us to verify the
accuracy of our extracted data against known trends between
synthesis variables and structures by providing a concise data
set in a zeolite subdomain with a large amount of heuristic
synthesis knowledge developed by the community. Besides
verification of the data extraction, we also identified potentially
interesting areas within the germanium zeolite system that can
be explored further with ML and experimental techniques.
Using germanium keyword text matching, we condensed our

zeolite data into a set of 238 papers discussing the impact of
germanium on zeolite synthesis. Using our automated data
extraction pipeline and manually adding data from the
supplemental sections of these papers, we created a data set
of 1638 unique synthesis routes, an excerpt of which is shown
in Table 1. Of these, 1214 synthesis routes successfully result
in the creation of a zeolite or germanate, while the remainder
result in either a dense crystal or amorphous material. The data
contained compositional variables (i.e., Si, Ge, Al, B, alkali
cations, H2O, F

−, and OSDA amounts), conditional variables
(e.g., crystallization time and temperature), the type of OSDA
used in the synthesis, and the products formed all of which are
extracted automatically and manually checked to ensure
accuracy. The latter were featurized further with structural
information extracted from the IZA Web site (e.g., framework
density, secondary building units, and composite building
blocks). Note that the OH−/Si molar ratio could be obtained
by a simple postextraction data refining process.
Figure 3a shows the wide range of structural variability in

Ge-containing zeolites with medium-, large-, and extra-large
pore materials spanning framework densities from 7.5 to 19 T
atoms/1000 Å3. Indeed, the inclusion of Ge, which is an
element with a larger nonbonding radius compared to Si and
capable of forming smaller OTO angles into the framework of
silicates results in the stabilization of small-ring secondary
building units (SBUs), including double four-membered rings
(D4R), three-membered rings (3MR), and double three-
membered rings (D3R).16,62 The presence of these units gives
rise to zeolite topologies with low tetrahedral site densities and
large pores. While the use of Ge to stabilize small-ring SBUs is

Figure 2. Pairwise plot of gel composition data automatically
extracted from zeolite tables.

Table 1. Excerpt of the Data Set of Germanium-Containing Zeolitesa

Si/Ge Si/H2O Si/F− OSDA product reference

4 0.08 1.6 1,2-dimethyl-3-(3-methylbenzyl)imidazolium CIT-13 57

30 0.19 1.9 hexamethonium ITQ-13 58

2 0.67 2.7 benzyltriethylammonium ITQ-44 59

1 0.1 1 1-methyl-3-(2′-methylbenzyl)imidazolium NUD-2 60

7.5 0.13 1.76 pentamethyldiethylenetriamine amorph 61

aThe full data set is available online (see Supporting Information).
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a known effect, the visual representation of all the data
extracted with our pipeline gives rise to new insights and trends
that were not previously clear. For example, extra-large pore
structures are clustered in three areas corresponding to low,
intermediate, and high framework densities (see purple
triangles, yellow diamonds, and red squares, respectively, in
Figure 3a). Further analysis revealed that materials with
framework densities less than 10 T atoms/1000 Å3 correspond
to pure nonzeolitic germanates (see germanates in Figure 3a),
while materials with densities ranging between 11 and 14 T
atoms/1000 Å3 correspond to topologies with some of the
largest pores reported to date including ITQ-33 (18 MR × 12
MR × 12 MR)16 and ITQ-44 (18 MR × 12 MR × 12 MR)63

that have only been obtained with Si/Ge less than 4 (see ITQ-
series in Figure 3a). Lastly, extra-large pore materials with
narrow framework densities ranging from 15.5 to 16.5 T
atoms/1000 Å3 correspond to crystalline structures, including
UTL and CTH, where Ge is placed within the D4R units
spacing the siliceous layers (see Assembly-Disassembly-
Organization-Reassembly (ADOR)-precursors in Figure
3a).57,64 This feature has been exploited to access new
topologies by disassembling the interlayer Ge−O bonds and
reorganizing into a new structure (i.e., the ADOR
method).65,66

Figure 3b depicts the close relationship between Ge and
fluoride (F−) ion contents. The stabilization of small-ring
SBUs requires either the presence of Ge as a heteroatom with
smaller OTO angles or F− as a small structure-directing agent
that fits within the SBU.67 Our data clearly reveal that there is a
trade-off between Ge content and the amount of F− ions
required to stabilize a particular structure in agreement with

well-established synthesis tenets. Thus, zeolites containing
large amounts of Ge can be synthesized with simple OSDAs
and small amounts, or even in the absence, of F−, but these
structures will not have high hydrothermal stability. For
example, polymorph C of Beta (BEC) and IWR zeolites can be
synthesized with Si/Ge ratios below 5 using simple OSDA
molecules, such as, tetraethylammonium or hexamethonium,
under F− free conditions.68,69 In contrast, synthesizing more
hydrothermally stable zeolites with the same topology that
have less Ge content always requires the use of F− ions (see
Figure 3b), in combination with more specific OSDAs, such as
large organic molecules synthesized via the Diels−Alder
cycloaddition of bulky addends.70,71 Importantly, visualization
of the data obtained with our extraction tool provides new
insights by identifying areas of interest for future study. For
example, Figure 3b reveals that there exist several cases for Ge-
containing zeolites, including ITQ-22 (IWW, see Ge-IWW in
Figure 3b), for which an OSDA has not been discovered to
crystallize a Ge-free high-silica analogue.72 We surmise that our
data extraction tool combined with ML approaches will be
essential to predict the required physicochemical properties to
design such OSDAs. This is currently a main research topic in
our laboratories.

Germanium Zeolite Framework Density Prediction.
Finally, we combined our extracted data with ML algorithms to
model the structural properties of a zeolite for a given set of
synthesis parameters. While the previous examples verified our
extracted data through simple trends, here we aimed to
discover less intuitive, more complicated relationships between
the synthesis parameters with the ultimate goal of potentially
unearthing synthesis routes for new zeolite structures.

Figure 3. Germanium-containing zeolite data extracted with our pipeline. (a) Framework density clusters corresponding to different classes of
germanium-containing zeolites. (b) Trade-off between Ge content and the amount of F− ions required to stabilize different zeolites. The three
letter codes refer to specific zeolite framework structures defined by the IZA. ADOR is an interzeolite transformation synthesis method.73

Figure 4. Random forest regression model predicting zeolite framework density from synthesis conditions. (a) Cross-validation results for the
random forest model showing the actual experimental vs model predicted values for framework density. (b) A single decision tree regression model
trained to predict framework density. Samples values correspond to the percentage of data passing through a node. Density refers to the average
framework density value passing through each node. Vol SDA = the volume of the OSDA.
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Specifically, we modeled framework density as a regression
problem using a random forest ensemble method (see
Methods). In Figure 4a, we evaluated the fivefold cross
validation accuracy of the model, where the color hue
corresponds to the frequency of data points. The root mean
squared error (RMSE) is 0.98 T/1000 Å3 compared with the
standard deviation of framework density in our data, which is
1.76 T/1000 Å3. The RMSE and the r-squared values indicate
our model begins to map synthesis conditions to the resulting
structure’s framework density allowing predictions of synthesis
conditions for novel zeolite with both high and low framework
densities.
Besides the ability to accurately map synthesis conditions to

a zeolite’s framework density, an additional benefit of using
decision trees to model zeolite synthesis is human interpret-
ability. In Figure 4b, we compared a single decision tree
machine learned regression model trained on the data to
known synthesis pathways for zeolites with various framework
densities. Following the different nodes of this decision tree, it
is possible to predict the framework density of the potentially
achieved zeolite depending on the synthesis parameters
employed (lower framework densities are ordered toward the
left side of the tree). The first nodes embrace the more
influencing parameters on the target variable (in this case is the
framework density of the zeolite). As seen in Figure 4b, the Si/
Ge molar ratio, the H2O/T molar ratio, and the volume of the
OSDA, in this particular order, are the more determinant
variables to predict the zeolite framework densities of the Ge-
containing zeolites. As a simple validation, we note that most
of the Ge-containing zeolites featuring a very low framework
density reported in the open literature require Si/Ge molar
ratios of 1−2, very concentrated gels with H2O/T less than 5,
and bulky OSDA molecules, all parameters that are in good
agreement with the variables and their corresponding values
presented in our decision tree.74,75 While some of these
heuristics might be evident to an expert in the field of zeolite
synthesis, this example represents the first instance of a
machine learned decision guideline for zeolites generated from
automatically extracted literature synthesis data.
The models in Figure 4 demonstrate the potential of ML for

predicting zeolite structural information from synthesis
parameters. While not directly related to catalytic performance,
predicting framework density represents an important step in
tailoring synthesis conditions for zeolites. Combined with
models for ring geometry and active-site chemistry, we will
continue to progress toward predicting the synthesis
conditions required to make new zeolites tailored for specific
applications and find the synthesis conditions necessary to
yield hypothetical zeolite structures.

■ CONCLUSION

We have developed an automatic data extraction pipeline that
locates, extracts, and formats zeolite synthesis data from tables,
ratios, and text. This pipeline is applied to the synthesis of
germanium-containing zeolites to study the complex relation-
ships between the synthesis parameters and resulting topology.
Beyond looking at existing trends, we have demonstrated a
machine learning model that predicts an important structural
descriptor of a zeolite’s topology from the synthesis conditions.
This model represents an important step toward using data to
predict synthetic pathways for plausible zeolite structures that
have not been crystallized yet.

With relatively small changes in data engineering, this
pipeline can be applied to other research questions in zeolite
chemistry. The prevalence of unsuccessful synthesis routes
provides an opportunity to model the success of potential
zeolite synthesis routes. Future directions could also include
more complicated models to study OSDA design, more
complicated structure representations for new zeolite topology
synthesis, or synthesis parameter optimization using active
learning.

■ EXPERIMENTAL SECTION

Data Extraction. Tables. Tables from HTML and XML
files were converted into hierarchical JSON structures (see
Supporting Information for examples). Rule-based approaches
based on the placements of number entries in a table
determined the correct position of the column and row
headers and, by elimination, any header nesting within the
table. All words in the row and column headers were classified,
and the orientation of the table was determined by the
frequency of materials versus properties within the two
headers. The extractor then constructed the correct relation-
ship for each cell in the table. We also extracted the table
caption and table footers. Any references in the table were
linked to the corresponding footer entry as a dictionary key.
We extracted full tables from ACS, APS, Elsevier, Wiley, RSC,
and Springer. We were only able to extract table captions from
Nature and AAAS due to tables being embedded within the
paper HTML as external links.

Ratios. We used regular expressions to search the zeolite
paper text for compositional ratios. Once the ratio was located
in the text, we determined the type of numeric value associated
with each compositional element: either a number, range, or
variable. If the element was associated with a number, we
assumed every data point extracted from the paper had that
value. If the element value was a range, we assumed the range
described many experiments detailed elsewhere in the paper. If
the element value was a variable, we combined all other
elements with matching variables to construct algebraic
expressions. These expressions were necessary for correctly
normalizing compositional information.

Text. Text information filled in gaps in synthesis conditions
that existed after table extraction. We searched for crystal-
lization operations by filtering operations by requiring both a
time and temperature condition while excluding many
incorrect operations such as mix, dry, calcine, and stir. The
conditions associated with remaining operations were assumed
to be the crystallization time and temperature for all data
points associated with the syntheses extracted from the paper.
We also searched the text for common OSDA names, again
assuming the same OSDA applied to every syntheses.

Data Engineering. Composition. For the Ge data, the
compositional features are the molar amounts of Si, Ge, Al, B,
alkali cations, H2O, F, and OSDA. Raw extracted values
needed to be engineered from their representation in their
respective tables, to these standardized features. Other
important compositional variables, such as the OH/Si molar
ratio, can be achieved by a simple postextraction data refining
considering the sources employed in the zeolite syntheses.
Ratio values extracted from tables were split into the
corresponding features. Next we solve the algebraic expressions
extracted from ratios and normalize all species with the
condition that Si = 1, unless Si = 0, in which case Ge = 1.
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OSDA Featurization. All OSDAs were featurized using a
multistep procedure starting with the conversion of the text
form of each OSDA molecule into its SMILES representation
using ChemSpider.76 OSDA molecules represented by a non-
IUPAC name or picture were manually assigned the correct
IUPAC name and then converted to SMILES with
ChemSpider. The Kier flexibility index and force field-
optimized Cartesian coordinates were then obtained from a
locally modified version of molSimplify.77 Finally, ORCA 4.178

was used to calculate the volume, surface area, and dipole
moment from the molSimplify-generated Cartesian coordi-
nates. More details can be found in the Supporting
Information.
Product Featurization. We featurized the products of the

synthesis route with structural data from the IZA database.
Zeolite materials were matched to the corresponding topology
giving access to the framework density, ring configuration, and
building units. Several nonzeolite germanate structures were
also featurized with framework density and ring configuration
provided by ITQ crystallographers.
Manual Data Supplementation and Cleaning. In

addition to data extracted automatically, we manually extracted
and engineered data from the supplementary sections of the
Ge papers. These supplementary sections are highly unstruc-
tured PDF files, which prevents us from processing them with
our automatic pipeline. After extraction and engineering, all the
data were manually checked for inaccuracy, and any incorrect
values were fixed.
Random Forest Model Architecture. We trained a

random forest regression model using sci-kit learn,79 a machine
learning Python library. The ensemble consisted of 100
decision trees with splits determined by mean squared error.
We trained and cross validated the model on syntheses that
resulted in a pure phase zeolite or germanate, which includes
898 synthesis routes. We also created support vector
regression, simple neural network, and Gaussian process
regression models to compare with the random forest model.
The random forest model was chosen, as it exhibited the
highest accuracy compared to the other models while also
having the benefit of human interpretability.
Decision Tree Model Architecture. We trained a single

decision tree regression model using sci-kit learn.79 Decision
splits were determined by mean squared error. The model was
trained on the 898 pure phase zeolite synthesis routes without
cross validation, since we were only concerned with
demonstrating machine learned synthesis intuition rather
than any predictive ability with this model. The model was
able to reproduce the framework density of the training data
with an r-squared score of 0.97.
Safety Statement. No unexpected or unusually high safety

hazards were encountered.
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extractor (PDF)
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Boronat, M.; Moliner, M.; Corma, A. Ab initio synthesis of zeolites for
preestablished catalytic reactions. Science 2017, 355, 1051−1054.
(9) Brand, S. K.; Schmidt, J. E.; Deem, M. W.; Daeyaert, F.; Ma, Y.;
Terasaki, O.; Orazov, M.; Davis, M. E. Enantiomerically enriched,
polycrystalline molecular sieves. Proc. Natl. Acad. Sci. U. S. A. 2017,
114, 201704638.
(10) Cundy, C. S.; Cox, P. A. The hydrothermal synthesis of
zeolites: Precursors, intermediates and reaction mechanism. Micro-
porous Mesoporous Mater. 2005, 82, 1−78.
(11) Piccione, P. M.; Yang, S.; Navrotsky, A.; Davis, M. E.
Thermodynamics of pure-silica molecular sieve synthesis. J. Phys.
Chem. B 2002, 106, 3629−3638.
(12) Corma, A.; Davis, M. E. Issues in the Synthesis of Crystalline
Molecular Sieves: Towards the Crystallization of Low Framework-
Density Structures. ChemPhysChem 2004, 5, 304−313.
(13) Serrano, D. P.; van Grieken, R. Heterogenous events in the
crystallization of zeolites. J. Mater. Chem. 2001, 11, 2391−2407.

ACS Central Science Research Article

DOI: 10.1021/acscentsci.9b00193
ACS Cent. Sci. 2019, 5, 892−899

897

http://pubs.acs.org/doi/suppl/10.1021/acscentsci.9b00193/suppl_file/oc9b00193_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.9b00193/suppl_file/oc9b00193_si_001.pdf
http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acscentsci.9b00193
http://pubs.acs.org/doi/abs/10.1021/acscentsci.9b00193
http://www.github.com/olivettigroup/table_extractor
http://www.github.com/olivettigroup/table_extractor
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.9b00193/suppl_file/oc9b00193_si_001.pdf
mailto:elsao@mit.edu
http://orcid.org/0000-0001-7635-5711
http://orcid.org/0000-0002-0781-5531
http://orcid.org/0000-0003-0357-6390
http://orcid.org/0000-0002-0025-4233
http://orcid.org/0000-0002-5440-716X
http://orcid.org/0000-0002-2232-3527
http://orcid.org/0000-0002-8043-2385
http://dx.doi.org/10.1021/acscentsci.9b00193


(14) Navrotsky, A.; Trofymluk, O.; Levchenko, A. A. Thermochem-
istry of microporous and mesoporous materials. Chem. Rev. 2009, 109,
3885−3902.
(15) Newsam, J. M.; Bein, T.; Klein, J.; Maier, W. F.; Stichert, W.
High throughput experimentation for the synthesis of new crystalline
microporous solids. Microporous Mesoporous Mater. 2001, 48, 355−
365.
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